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Abstract.  We consider a Bose gas with two-body Kac-like scaled interactions 

Vγ(r) = γ3v(γr) where v(x) is a given repulsive and integrable potential, while 
γ is a positive parameter which controls the range of the interactions and their 
amplitude at a distance r. Using the Hartree–Fock (HF) approximation we find 
that, at finite non-zero temperatures, the Bose–Einstein (BE) condensation is 
destroyed by the repulsive interactions when they are suciently long-range. 
More precisely, we show that for γ suciently small but finite the o-diagonal 
part of the one-body density matrix always vanishes at large distances. Our 
analysis sheds light on the coupling between critical correlations and long-
range interactions, which might lead to the breakdown of the o-diagonal long-
range order even beyond the HF approximation. Furthermore, our HF analysis 
shows the existence of a threshold value γ0 above which the BE condensation 
is restored. Since γ0 is an unbounded increasing function of the temperature 
this implies for a fixed γ, namely for a fixed scaled potential, that a condensate 
cannot form above some critical temperature whatever the value of the density.
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1.  Introduction

One century ago the Bose–Einstein (BE) condensation was first introduced [1] for an 
ideal gas of identical bosons enclosed in a box in three dimensions. In the thermo-
dynamic limit (TL) the BE condensation was predicted to occur above some critical 
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density depending on the temperature (see e.g. the thorough review [2] or the textbook 
[3]). Paradoxically, this phase transition is a pure eect of Bose statistics as no par-
ticle interactions are needed. On the contrary, such interactions might even destroy 
the condensation. The present paper is motivated by the fundamental question of the 
status of the BE condensation in presence of particle interactions for a homogeneous 
infinite system [4]. No trapping external potential is present, like in laboratory realiza-
tions with cold atoms (see the review [5]). Note that recent experiments [6] where the 
trapping potential is almost flat, should be more relevant for the homogeneous infinite 
system as considered here.

In this paper we study a three-dimensional (3D) Bose gas with two-body Kac-like 
scaled interactions Vγ(r) = γ3v(γr), where v(x) is a given positive repulsive potential 
such that its integral over the whole space is equal to a. The positive parameter γ 
controls both the range and the amplitude of Vγ(r). In the presence of interactions, 
the status of the BE condensation must be discussed in relation with the existence of 
o-diagonal long range order (ODLRO) for the one-body density matrix, which in this 
case is the relevant order parameter [7–9]. Here, we address this rather challenging 
question at finite non-zero temperatures within the Hartree–Fock (HF) approximation 
as a first step. Naturally, one needs to remember that such mean-field theory does not 
describe the exact behavior of the system in the critical region. It is well known that 
the HF approximation suers from various drawbacks, in particular because of its poor 
description of the condensate4. Nevertheless, and similarly to the spirit of other works 
(see e.g. [12]), we can reasonably expect that the mean-field HF theory would provide 
important insights into the main mechanisms at work.

Although the HF approximation was introduced long ago [13] and widely applied 
to an interacting Bose gas (see e.g. the textbooks [3, 14, 15]), to our knowledge the 
possible influence of the potential range on critical properties has never been studied in 
detail. It is worth noticing that the HF equations can be solved in two extreme cases 
γ = 0 and γ = ∞. It turns out that the HF prediction for γ = 0 becomes identical to 
the exact result proved for the so-called imperfect Bose gas or mean-field model [16, 
17], where the particles interact via a constant potential aρ with a  >  0 and ρ the par-
ticle density. Then the eigenstates of the corresponding mean-field Hamiltonian reduce 
to symmetric products of one-body states while the kinetic particle energies are shifted 
by the constant aρ. Not surprisingly, the BE condensation is preserved at the same 
critical density as in the ideal case (see the review [18] and references given therein). 
At γ = ∞, the HF approximation provides a simple shift of the particle kinetic energies 
by the constant 2aρ, so the BE condensation persists. For a suciently short-range 
potential, namely here for γ suciently large, the HF equations can be solved within a 
perturbative scheme around the solution obtained for the delta-potential V∞(r) = aδ(r) 
[14]. This leads to the prediction that the BE condensation persists for γ large but 
finite, with some shift of the critical temperature at fixed density [3, 14, 19]. Here we 
argue that such perturbative analysis fails for γ suciently small. In other words, the 
HF one-body density matrix obtained through a fully self-consistent solution of the HF 
equations does not exhibit ODLRO for γ suciently small.

4 The HF description of the condensate can be improved within the so-called Hartree–Fock–Bogoliubov approx
imation exposed in e.g. the textbook [10] or [11], which incorporates the Bogoliubov description of the condensate. 
However, the analysis of the onset of ODLRO in the normal phase remains unchanged within this approximation.

https://doi.org/10.1088/1742-5468/ab00ed
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Interestingly, our analysis shows that the value γ = 0 is singular, in the sense that 
the critical point is erased as soon as γ is small but finite. Indeed, for γ > 0, the situ-
ation is quite dierent from γ = 0, because the two-body interactions Vγ(r) do not 
reduce to a constant, hence the previous simple picture where particles feel a constant 
potential breaks down. In fact, since Vγ(r) varies over large length scales of order γ−1, 
it interferes with the slowly decaying critical tails which emerge when the BE condensa-
tion takes place. For large values of γ, the BE condensation persists because the corre
sponding short-range particle interactions can be safely neglected at large distances 
where critical correlations take place.

The paper is organized as follows. In section 2, we define the model and we recall 
the integral equations which define the HF approximation. We proceed to an asymp-
totic analysis of the HF equations for small values of γ in section 3. Exploiting the 
quasi-delta nature in Fourier space of the potential Vγ(r), and assuming a priori slower 
variations of the HF eective potential, we infer the asymptotic small-γ form of these 
equations showing that they rule out the possibility of ODLRO at suciently small but 
finite γ. These asymptotic equations play a central role in the derivation of the small-γ 
expansions of the eective HF potential and of the density. The corresponding explicit 
calculations whose details are given in appendices A (leading terms) and B (subleading 
corrections) are performed in a fully consistent way. The resulting eective potential 
displays indeed slow variations, which justifies a posteriori the validity of our deriva-
tions. This confirms the lack of ODLRO at suciently small but finite γ. Taking into 
account the persistence of the ODLRO for suciently large values of γ we then infer 
the existence of a threshold value γ0 above which the BE condensation is restored.

The above predictions are confirmed in section 4 by the numerical solution of the 
HF equations for a Gaussian potential v(x). Moreover, the behavior of γ0 with respect 
to the temperature is rather accurately reproduced by a simplified eective-mass ver-
sion of the HF equations discussed in appendix C. Interestingly, such behavior immedi-
ately implies the existence of a critical temperature above which the BE condensation 
cannot occur. Eventually, concluding comments are given in section 5.

2. Model and definitions

2.1. Bose gas with Kac-like two-body interactions

We consider a model of N non-relativistic spinless bosons with mass m, described by 
the Hamiltonian

Hγ = −
N∑
i=1

�2

2m
∆ri +

N∑
i<j=1

Vγ(|ri − rj|) ,� (2.1)

where the two-body interactions Vγ(r) depend on a scaling parameter γ > 0

Vγ(r) = γ3v(γr) .� (2.2)

Here, the spherically symmetric pair potential v(r) is assumed to be positive and inte-
grable. The dimensionless parameter γ controls the range of the potential Vγ(r) and its 
amplitude. When γ is varied while v(r) is kept fixed, the integral

https://doi.org/10.1088/1742-5468/ab00ed
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∫
drVγ(r) = 4π

∫ ∞

0

dr r2v(r) = a > 0� (2.3)

remains constant.
We start by enclosing the particles in a finite box with volume Λ. We describe 

an equilibrium state of that system in the grand canonical ensemble characterized by 
temperature T and chemical potential µ. Then, the TL, Λ → ∞ at fixed T and fixed µ, 
is taken, and it is assumed to exist. We consider values of (T ,µ) such that the resulting 
infinite system is in a fluid state, invariant under translations and rotations. In the fol-
lowing, all local quantities specific to that infinite system are implicitly defined through 
the usual TL procedure. For the sake of simplicity in the notations, we assume that 
the TL has been taken once for all. In particular, all involved spatial integrals run over 
the whole space.

2.2. Hartree–Fock approximation

The well-known HF approximation is based on two non-linear integral equations which 

couple the particle density ρ with an eective potential φ̂γ in Fourier space. If the 
eective energy

Uγ(k) = ε(k)− µ+ aρ+ φ̂γ(k)� (2.4)

with ε(k) = �2k2/(2m), is strictly positive for any k, then the HF equations read

ρ =
1

(2π)3

∫
dk

1

exp[β(ε(k)− µ+ aρ+ φ̂γ(k))]− 1
� (2.5)

and

φ̂γ(q) =
1

(2π)3

∫
dk

V̂γ(q− k)

exp[β(ε(k)− µ+ aρ+ φ̂γ(k))]− 1
.� (2.6)

The system is then predicted to be in a normal phase, with a fast decay of the o-diagonal 
matrix element 〈r2|D(1)|r1〉 of the one-body density matrix when |r2 − r1| → ∞.

At finite non-zero temperatures (β = 1/kBT < ∞) the emergence of the BE conden-
sation is signaled by vanishing of the eective energy (2.4) at k = 0, namely

φ̂γ(0) + aρ− µ = 0 .� (2.7)

At the corresponding critical point, the critical density ρcri and the critical eective 

potential φ̂cri are still given by equations  (2.5) and (2.6). However, the o-diagonal 
matrix element 〈r2|D(1)|r1〉 decays now slowly  ∼|r2 − r1|−1 at large distances which 
marks the onset of ODLRO. Above the critical density, for ρ > ρcri, a condensate with 
density ρcond > 0 emerges, while the ODLRO condition (2.7) is always satisfied. Then 
〈r2|D(1)|r1〉 tends to ρcond when |r2 − r1| → ∞, while the dierence 〈r2|D(1)|r1〉 − ρcond 
still decays slowly ∼ |r2 − r1|−1. The corresponding equations relating the total density 
to the eective potential then read

https://doi.org/10.1088/1742-5468/ab00ed
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ρ = ρcond +
1

(2π)3

∫
dk

1

exp[β(ε(k) + φ̂γ(k)− φ̂γ(0))]− 1
� (2.8)

and

φ̂γ(q) = ρcondV̂γ(q) +
1

(2π)3

∫
dk

V̂γ(q− k)

exp[β(ε(k) + φ̂γ(k)− φ̂γ(0))]− 1
.� (2.9)

Although the onset of ODLRO is characterized by the simple condition (2.7), the 
search for the corresponding critical point remains quite a hard task because both the 
density and eective potential are related by non-linear integral equations which are 
too dicult to be solved analytically in general. However, these equations  become 
significantly simpler in two limiting cases γ = 0 and γ = ∞. For γ = 0, φ0 identi-
cally vanishes and ρ reduces to its ideal expression with the shifted chemical potential 
(µ− aρ). We then recover the exact result for the imperfect Bose gas with constant 
interactions [16, 17]: the system undergoes the BE condensation at a critical density 

which coincides with its ideal counterpart, ρ0,cri = ρ
(id)
cri , while the corresponding criti-

cal potential is µ0,cri = aρ
(id)
cri . The case γ = ∞ is associated with the delta-potential 

V∞(r) = aδ(r), for which φ̂∞(q) reduces to the constant aρ. The situation then becomes 
analogous to that of γ = 0, with a shifted chemical potential which is now (µ− 2aρ), so 

the BE condensation persists at the same critical density ρ∞,cri = ρ
(id)
cri . For 0 < γ < ∞, 

which corresponds to potentials Vγ(r) with finite range, similar simple results are not 
available since φγ(r) no longer reduces to a constant.

Finally, some simple analytical properties of the HF quantities at γ finite can be 

derived as follows. According to the Kac scaling (2.2), the Fourier transform V̂γ(k) 
reduces to v̂(k/γ) where v̂(l) is the Fourier transform with respect to x of v(x) which 
does not depend on γ. Since |v̂(l)| � v̂(0) = a, the expressions (2.6) and (2.9) for the 
eective potential are readily bounded from above. We find the simple inequality

|φ̂γ(q)| � aρ� (2.10)

which holds in any phase. Furthermore, for potentials such that 0 � v̂(l) � a for any l, 

φ̂γ(q) is positive for any q, so the inequality (2.10) becomes

0 � φ̂γ(q) � aρ .� (2.11)

Now, if a condensate emerges at some critical chemical potential µγ,cri and critical 
density ργ,cri, the ODLRO condition (2.7) is satisfied for any µ � µγ,cri with the corre
sponding density ργ(µ, β). Combining this condition with the inequality (2.11) for q  =  0, 
we then obtain

aργ(µ, β) � µ � 2aργ(µ, β) .� (2.12)
Hence, the curve describing the equation of state (EOS) ρ = ργ(µ, β) in the (µ, ρ)-plane 
for µ � µγ,cri, lies in the wedge defined by the straight lines ρ = µ/a and ρ = µ/(2a). 
Inequalities (2.11) and (2.12) can serve as checks for numerical calculations, as illus-
trated in section 4 for a Gaussian potential v(x).

https://doi.org/10.1088/1742-5468/ab00ed
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3. Absence of ODLRO for suciently large but finite range of the potential

In this section, we consider the case of small values of γ, namely long-range interac-
tions. We fix the temperature at a non-zero value (β < ∞), as well as the chemical 
potential µ, and we seek for the behavior of various quantities of interest when γ → 0. 
For the sake of notational convenience, we do not write explicitly the dependence 

on (µ, β) of the eective potential and of the eective energy which are denoted by 

φ̂γ(k) and Uγ(k), respectively, while we keep all arguments specified in the density 

ρ = ργ(µ, β). We assume that both φ̂γ(k) and ργ(µ, β) are continuous functions of γ at 

γ = 0 for fixed values of their respective arguments k and (µ, β). This means that φ̂γ(k) 

vanishes when γ → 0, while ργ(µ, β) approaches ρ0(µ, β) which is nothing else but the 

density of the mean-field model.

3.1. Slow variations of the eective potential and the asymptotic HF equations

For our purpose, it is convenient to rewrite the integral equation (2.6) for φ̂γ as

φ̂γ(q) =
1

(2π)3

∫
dk

v̂((q− k)/γ)

exp[β(ε(k)− µ+ aργ(µ, β) + φ̂γ(k))]− 1
.� (3.1)

The integral over k in the rhs of this equation has to be performed on the product of 
function v̂((q− k)/γ) varying fast around k = q over a scale γ, times the eective Bose 
distribution

nB
γ (k) =

1

exp[βUγ(k)]− 1
.� (3.2)

Accordingly, the leading contributions are expected to arise in a relatively small region 
where k is close to q, namely k = q+ γl with l finite. It is useful to recast the integral 
equation (3.1) as

φ̂γ(q) =
γ3

(2π)3

∫
dl v̂((l)nB

γ (q+ γl) .� (3.3)

Let us assume a priori that nB
γ (q+ γl) varies around nB

γ (q) on a slower scale than γ. 
Since |l| cannot exceed the range of the potential v̂, we can replace nB

γ (q+ γl) by its 

Taylor expansion in powers of γl around nB
γ (q). Keeping only the leading order term, 

reduces the integral equation (3.3) to the local equation

φ̂γ(q) = γ3v(0)nB
γ (q) =

γ3v(0)

exp[β(ε(q) + ηγ(µ, β) + φ̂γ(q))]− 1
,� (3.4)

where we set

ηγ(µ, β) = aργ(µ, β)− µ .� (3.5)

Equations (3.4) and (3.5) have to be solved self-consistently together with equa-

tion (2.5) which provides the density ργ(µ, β) in terms of φ̂γ(q). They play a central role 

https://doi.org/10.1088/1742-5468/ab00ed
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in the derivation of the small-γ expansions of the HF quantities of interest, because the 

resulting eective potential φ̂γ(q) does vary on a scale slower than γ for any q, so the a 
priori assumption leading to the local equation (3.4) is justified a posteriori. Hence, as 
described in section (3.2), beyond the leading terms, subleading corrections can be con-

sistently computed, in particular those arising from the Taylor expansion of nB
γ (q+ γl) 

around nB
γ (q) in powers of γl in the integral HF equation (3.3).

Before turning to the explicit calculations of the small-γ expansions, a simple and 
fundamental consequence of the HF asymptotic equation (3.4) must be emphasized. Let 
us rewrite equation (3.4) as

φ̂γ(q)
{
exp[β(ε(q) + ηγ(µ, β) + φ̂γ(q))]− 1

}
= γ3v(0) .� (3.6)

The right hand side does not depend on q. We thus also have

φ̂γ(0)
{
exp[β(φ̂γ(0) + ηγ(µ, β))]− 1

}
= γ3v(0) .� (3.7)

Hence, any γ > 0 excludes the possibility of satisfying the ODLRO condition (2.7). This 
strongly suggests that within the HF approximation, the BE condensation is indeed 
removed for γ suciently small. In section 3.3 we comment and interpret this impor-
tant result.

Finally, let us mention some other simple properties of the asymptotic HF 
equation (3.4). First, the identity,∫

dqφ̂γ(q) = (2π)3γ3v(0)ρ ,� (3.8)

which follows by integrating over q both sides of the HF equation (2.6), is still fulfilled 
by the solution of the asymptotic HF equation (3.4). Moreover equation (3.6) implies 

that φ̂γ(q) = φ̂γ(q) is a decreasing function of q, whereas the eective energy (2.4) is 
monotonically increasing.

3.2. Small-γ expansions of the HF eective potential and density

The small-γ expansions are calculated in appendices A (leading terms) and B (sublead-
ing corrections) for the three dierent regions which naturally emerge, namely µ below 
the critical mean-field chemical potential µ0,cri, µ close to µ0,cri and µ above µ0,cri. Here 
we sketch the main steps of the derivations, and we give the small-γ expansions of 
ργ(µ, β)− ρ0(µ, β) and of the ODLRO parameter

Uγ(0) = φ̂γ(0) + ηγ(µ, β) .� (3.9)

For µ < µ0,cri, a straightforward perturbative solution of the local equation  (3.4) 
shows that φ̂γ(k) is of order γ3 at leading order (see formula (A.1)), while it varies over 
a finite scale O(1) much larger than γ. The resulting dierence ργ(µ, β)− ρ0(µ, β) then 
is also of order γ3 at leading order (see formula (A.3)). The ODLRO parameter (3.9) 
then goes to η0(µ, β) which is strictly positive. This analysis is no longer valid near the 
critical mean-field chemical potential because the coecients of the previous γ3-terms 
diverge when µ → µ0,cri.

https://doi.org/10.1088/1742-5468/ab00ed
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For studying the vicinity of the critical point of the mean-field model, we set 

µ = µ0,cri + ν and ργ(µ, β) = ρ
(id)
cri + nγ(ν, β). Moreover we scale ν as ν = ν∗γ3/4, and 

we compute the resulting small-γ expansions at fixed ν∗. The leading contributions 

to nγ(ν, β) arise from small values of q, for which we use the eective potential (A.8) 
inferred from the purely local equation  (3.4). The corresponding consistency equa-
tion for the density is then expressed in terms of the function K defined by its integral 
representation (A.17). This provides the small-γ expansion of nγ(ν, β),

nγ(ν, β) = a−1
[
γ3/4ν∗ + 2γ3/2

√
β−1v(0) sinhK−1

(
π2λ3

dB[βv(0)]
−1/4ν∗/a

)
+ o(γ3/2)

]
,� (3.10)

where K−1 is the inverse of K. We stress that the eective potential φ̂γ(k) does vary 
on a larger scale than γ for any q, which guarantees the validity of expansion (3.10) up 
to order γ3/2 included. In fact, the corrections to the local equation (3.4) derived from 
the integral equation (3.1) provide subleading terms of order γ2 in this expansion. For 
µ = µ0,cri, i.e. ν

∗ = 0, the small-γ expansion of the density then reads

ργ(µ0,cri, β) = ρ
(id)
cri + 2γ3/2a−1

√
β−1v(0) sinhK−1(0) + o(γ3/2) ,� (3.11)

with K−1(0)  <  0. Note that the emergence of the γ3/2-correction is consistent with 
the divergence of the coecient of the γ3-correction for µ < µ0,cri when µ → µ0,cri. As 
expected from the simple argument presented in section 3.1, the ODLRO condition 
(2.7) is no longer reached in the vicinity of the critical point of the mean-field model. 
The order parameter (3.9) indeed behaves at leading order as

Uγ(0) ∼ γ3/2
√

β−1v(0) exp
(
K−1

(
π2λ3

dB[βv(0)]
−1/4ν∗/a

))
� (3.12)

which remains strictly positive for any ν∗.
Now we fix µ > µ0,cri, and as above we still define ν = µ− µ0,cri and 

nγ(ν, β) = ργ(ν, β)− ρ
(0)
cri. For the mean-field model η0(µ, β) = 0 since the corresponding 

EOS is n0(ν, β) = aν for ν > 0. Therefore, by continuity ηγ(µ, β) vanishes in the limit 
γ → 0. Like in the vicinity of the critical point of the mean-field model, both ηγ(ν, β) 

and φ̂γ(q) become small for γ small, so the analysis of the corresponding leading terms 
can be carried out along similar lines. The corresponding consistency equation  for 
nγ(ν, β) again involves the function K, from which we infer

nγ(ν, β) = a−1

[
ν −

(
15π2λ3

dBν

2
√
2β3/2v(0)3/2a

)2/5

v(0)γ6/5 + o(γ6/5)

]
.� (3.13)

The eective potential φ̂γ(k) still varies on a larger scale than γ for any q, so the correc-
tions to the local equation (3.4) ultimately give raise to subleading terms in the small-
γ expansion (3.13), which turn to be of order o(γ6/5). The HF correction to the EOS 
of the mean-field model, namely n = ν/a for ν � 0, is here of order γ6/5 for ν > 0, in 
agreement with the divergence of the γ3/2-correction in the vicinity of the critical point 
of this model when ν∗ → ∞. Contrarily to the mean-field model there is no condensate 
present for ν > 0, since the ODLRO parameter (3.9) behaves as
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Uγ(0) ∼

(
2
√
2 a

15π2λ3
dBβv(0)ν

)2/5

v(0) γ9/5 .� (3.14)

Nevertheless, the HF density can take arbitrarily high values.

3.3. Breakdown of the BE condensation

The main consequence of the previous asymptotic analysis is the breakdown of the BE 
condensation for small but finite values of γ. Indeed, in this regime, the order param
eter (3.9) Uγ(0) never vanishes and remains strictly positive for any set (µ, β). In other 
words the critical point observed for the mean-field model is erased. In fact, according 
to the asymptotic formula (3.14), Uγ(0) vanishes only when µ → ∞, so the critical point 
can be seen as rejected to ∞. This mechanism can be roughly interpreted as follows. 
The slow 1/r critical decay of the o-diagonal one-body density matrix at γ = 0 which 
emerges for r � λdB, becomes drastically altered by contributions of the slow-varying 
interactions Vγ(r) when their range σγ ∝ 1/γ becomes much larger than λdB. In other 
words, the eects of long-range interactions on critical properties cannot be treated 
perturbatively, and they ultimately eliminate the critical point for γ suciently small. 
At a technical level, this means that such eects must be dealt with through a complete 
self-consistent description of the HF equations. The resulting fractional powers of γ 
which control the corrections to the EOS of the mean-field model, namely γ3/2 and γ6/5 
near and above the mean-field critical point respectively, are a signature of the singular 
character of the value γ = 0.

In the opposite limit γ → ∞, namely for γ suciently large, the ODLRO is expected 
to persist as shown by a standard perturbative calculation (see e.g. [14]). In the integral 

equation (3.1) for φ̂γ(q), the almost flat Fourier transform v̂((q− k)/γ) of the potential 
is replaced by its Taylor series expansion around v̂(0) = a in powers of (q− k)/γ. This 
generates an expansion of all the quantities of interest in integer powers of 1/γ2 around 
their respective values for the δ-potential V∞(r) = aδ(r) where all terms can be straight-
forwardly computed through a simple recursive scheme. The ODLRO condition (2.7) 
can then be satisfied order by order, and the 1/γ2-expansion of the critical density reads

ργ,cri = ρ
(id)
cri

[
1 +

3βaρ
(id)
cri σ

2

2γ2λ2
dB

+O(1/γ4)

]
� (3.15)

with the range σ of v(x) defined by

σ2 =

∫
dx x2 v(x)

3
∫
dx v(x)

= (3a)−1

∫
dx x2 v(x) ,� (3.16)

while the ideal critical density given by expression (A.11) reduces to the well-known 
formula

ρ
(id)
cri =

ζ(3/2)

(2πλ2
dB)

3/2
.� (3.17)

Assuming the convergence of the 1/γ2-expansion (3.15) it can be concluded that the 
ODLRO persists for γ suciently large, namely for a suciently short range σγ = σ/γ 
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of the potential Vγ(r) (see e.g. [14]). Similarly to the previous interpretation of the 
breakdown of the BE condensation, the potential range σγ becomes much smaller than 
the de Broglie wavelength λdB for γ suciently large, so the 1/r critical tails which 
occur for r � λdB are only weakly aected by the vanishing interactions Vγ(r) at large 
distances r � σγ.

The asymptotic results obtained near γ = 0 on the one hand, and near γ = ∞ on 
the other hand, imply the existence of a threshold value γ0 which separates the region 
where the condensation cannot occur (γ < γ0) from the region where it can possibly 
take place (γ > γ0). The eects of interactions on critical tails depend on both their 
magnitude and their range. Accordingly, the threshold parameter γ0 depends on two 
independent dimensionless parameters, the coupling constant g = βa/λ3

dB which mea-
sures the strength of v(x) at the ideal critical density, and the ratio λ = λdB/σ of the 
de Broglie wavelength to the range of the potential. Although the function γ0(g,λ) 
cannot be explicitly determined we can nevertheless reasonably expect that increasing 
g or decreasing λ, which means increasing the magnitude or the range of the potential, 
makes γ0 increase. Hence, for a given potential v(x) with a and σ fixed once for all, 
γ0(T ) = γ0(g,λ) should be an increasing function of the temperature. Interestingly, it 
can be noticed that the typical values γS and γL which control the convergence of the 
asymptotic expansions (3.11) and (3.15) respectively, roughly defined by equating the 
first corrections to the leading terms, read

γS ∝ g1/3λ−1 and γL ∝ g1/2λ−1
� (3.18)

where we have used v(0) ∝ a/σ3. As functions of T, both γS and γL reduce to power 
laws, i.e. cst T 2/3 and cst T 3/4 respectively, so they vary from 0 to ∞ when T varies 
from 0 to ∞. If a similar variation of γ0(T ) is plausible, its low- and high-temperature 
behaviors may involve other powers of T than those displayed in γS and γL.

The existence of γ0 will be confirmed in the next section through the numerical solu-
tion of the HF equations in the specific case of a Gaussian potential. In this case, we 
also provide an analytical estimation of γ0 within a simplified version of the HF equa-
tions relying on the introduction of an eective mass (see appendix C). Both numerical 
and analytical results show that the variations of γ0(T ) with T are indeed the ones 
predicted above.

4. Numerical calculations for a Gaussian potential

Now we turn to a numerical solution of the HF equations. The potential v(r) involved 
in Kac scaling is choosen as a Gaussian v(r) = (2πσ2)−3/2a exp(−r2/(2σ2)). Since the 
Fourier transform of v(r) is still a Gaussian, namely v̂(k) = a exp(−σ2k2/2), the inte-
grations over the angles Ωk of k in the integral equation (3.1) can be readily performed 
yielding
∫

dΩkv̂((k− q)/γ) =
2πaγ2

σ2kq

[
exp(−σ2(k − q)2/(2γ2))− exp(−σ2(k + q)2/(2γ2))

]
.� (4.1)
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The corresponding 3D integral is then reduced to a one-dimensional integral over k, 
a particularly useful simplification for numerical purposes. After rewriting the full set 
of HF equations in terms of suitably defined dimensionless quantities we proceed to 
a numerical solution of the coupled equations providing both the eective potential 
and the density as functions of the chemical potential along a given isotherm. We 
first consider a given fixed temperature, as well as a fixed Gaussian potential v(r), 
while we vary the range γ. As expected from section 3 a threshold value γ0 emerges 
such that for γ < γ0 the BE condensate is destroyed. We also analyze the function 
γ0(T ) introduced in section 3. From such analysis we infer that for a given potential 
with fixed range and amplitude there is no BE condensation above some critical 
temperature.

4.1. The coupled equations for dimensionless quantities

Now we set A = β(2πσ2)−3/2a for the amplitude of the potential in kBT  units, namely 
A = gλ3 in terms of the dimensionless parameters g and λ introduced in section  3. 
Moreover, we can rewrite all the quantities of interest in terms of their dimensionless 
counterparts: the dimensionless density ρ now stands for ρ/ρ0 with ρ0 = (2πσ2)−3/2, the 
dimensionless chemical potential µ is in units of kBT , while all wavenumbers become 

dimensionless and are measured in units of σ−1. Eventually, the eective potential φ̂γ 
in Fourier space is rescaled, which leads to the dimensionless potential ϕ̂γ linked with 

the original one by the relation βφ̂γ = Aϕ̂γ.
The coupled HF equations can be straightforwardly recast in terms of the dimensionless 

quantities and dimensionless wavenumbers. Using the angular integration (4.1) we find 
that the integral equation (3.1) becomes

ϕ̂γ(q) =
γ2

√
2π

∫ ∞

0

dk
k

q

[
exp(−(q − k)2/(2γ2))− exp(−(q + k)2/(2γ2))

]
nB(k) ,

� (4.2)
while the density is given by

ρ =

√
2

π

∫ ∞

0

dk k2nB
γ (k)� (4.3)

with the BE distribution

nB
γ (k) =

1

exp(λ2k2/2 + Aϕ̂γ(k) + Aρ− µ)− 1
.� (4.4)

The above equations are valid in the normal phase.
Along a given isotherm, when µ increases, a critical point may emerge for some crit-

ical chemical potential µγ,cri, such that the ODLRO condition (2.7) is satisfied, namely

µγ,cri = Aργ,cri + Aϕ̂γ,cri(0)� (4.5)
in terms of the dimensionless quantities. The corresponding critical potential is the 
solution of the integral equation

https://doi.org/10.1088/1742-5468/ab00ed


Hartree–Fock analysis of the eects of long-range interactions on the Bose–Einstein condensation

13https://doi.org/10.1088/1742-5468/ab00ed

J. S
tat. M

ech. (2019) 033101

ϕ̂γ,cri(q) =
γ2

√
2π

∫ ∞

0

dk
k

q

[
exp(−(q − k)2/(2γ2))− exp(−(q + k)2/(2γ2))

]

× 1

exp(λ2k2/2 + A(ϕ̂γ,cri(k)− ϕ̂γ,cri(0)))− 1
.

�

(4.6)

Interestingly, this equation does not involve neither ργ,cri nor µγ,cri, so ϕ̂γ,cri(q) can first 
be computed. The critical density then follows as

ργ,cri =

√
2

π

∫ ∞

0

dk k2 1

exp(λ2k2/2 + A(ϕ̂γ,cri(k)− ϕ̂γ,cri(0)))− 1
,� (4.7)

while the corresponding critical chemical potential µγ,cri is simply given by the ODLRO 
condition (4.5) specified to the critical point.

In presence of a condensate, the ODLRO condition (2.7), which can be rewritten in 
terms of the dimensionless quantities as

µ = Aρ+ Aϕ̂γ(0) ,� (4.8)
is still fulfilled. The coupled equations (2.9) and (2.8) then become

ϕ̂γ(q) = ρcond exp(−q2/(2γ2))

+
γ2

√
2π

∫ ∞

0

dk
k

q

[exp(−(q − k)2/(2γ2))− exp(−(q + k)2/(2γ2))]

exp(λ2k2/2 + A(ϕ̂γ(k)− ϕ̂γ(0)))− 1

� (4.9)

and

ρ = ρcond +

√
2

π

∫ ∞

0

dk k2 1

exp(λ2k2/2 + A(ϕ̂γ(k)− ϕ̂γ(0)))− 1
,� (4.10)

where ρcond is now the dimensionless density of the condensate. One can first fix ρcond > 0 
and solve the integral equation (4.9) which gives the eective potential ϕ̂γ(q), and we 
then compute successively the total density

ρ = ρcond +

√
2

π

∫ ∞

0

dk k2 1

exp(λ2k2/2 + A(ϕ̂γ(k)− ϕ̂γ(0)))− 1
,� (4.11)

and the chemical potential by applying the ODLRO condition (4.8). Note that the den-
sity of the normal fluid, i.e. (ρ− ρcond), does not reduce to the critical density ργ,cri for 
finite values of γ, in contradistinction to the cases γ = 0 or γ = ∞.

4.2.  Isotherms for various potential-ranges

We have solved the above-formulated integral equations numerically, using a standard 

Neumann method with successive overrelaxation [20], i.e. constructing the series ϕ̂
(n)
γ  

with

ϕ̂(n+1)
γ = αLϕ̂(n)

γ + (1− α)ϕ̂(n)
γ� (4.12)

where L is the integral operator in the right hand side of integral equations (4.2), (4.6) 
or (4.9) depending on whether we are below, at, or above the critical point. As the 

starting point we take the Gaussian functions, ϕ̂
(0)
γ = Be−κ2k2, varying B  >  0 and κ to 
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confirm that dierent ϕ̂
(0)
γ  converge to the same point. The relaxation parameter, α 

was taken to be α = 1/32. The isotherms calculated for A  =  0.2 and λ = 1.0 are shown 
in figure 1.

The following important feature emerges from those results. As γ is reduced, we 
observe the critical point to move progressively towards larger densities up to the 
threshold γ0, where the critical point disappears. This is manifested by the lack of 
convergence of the equations (4.6) and (4.7), and by the fact that as we move along 
the isotherm, the ODLRO parameter decreases, but never vanishes. As illustrated in 
figure 2 this decrease is approximately exponential with µ. The disappearance of the 
critical behavior at small γ can, of course, only be supported, not proven, by numerical 
methods. In particular, one cannot rule out that the fixed point of equation (4.12) has a 
relatively small basin of attraction, and thus can only be reached starting from a very 

specific initial function ϕ̂
(0)
γ . Note that for γ > γ0, in the regions where a condensate is 

present, the isotherms indeed lie in the wedge defined by the straight lines ρ = µ/A and 
ρ = µ/(2A), as predicted in section 2.2 when v̂(k) is positive for any k.

4.3. Dependence of the threshold value γ0 on the temperature

As exposed in section  3, for a given potential with fixed amplitude and range, γ0 
is a function of T, γ0(T ). The numerical results displayed above were obtained for 
some reference temperature Tref such that A = Aref = 0.2 and λ = λref = 1. When the 
temperature is varied, the corresponding values of A and λ become A = ArefTref/T  
and λ = λref(Tref/T )

1/2. Accordingly, we compute the corresponding value of γ0(T ) 
within the numerical method described in section 4.2, for several values of the ratio 
β∗ = Tref/T . The results are shown in figure 3, where we also plot the function γ∗

0(β
∗) 

inferred from the simplified eective-mass version of the HF equations  as detailed 

Figure 1.  Isotherms obtained from the numerical solution of the HF equations for a 
Gaussian potential characterized by A  =  0.2, λ = 1 and γ = 0.4 (green), γ = γ0 ≈ 1.0 
(orange) and γ = 1.9 (brown). Additionally, the mean-field isotherm (γ = 0) is 
plotted (red) alongside with the isotherm of an ideal gas (blue). The black straight 
line is defined by the equation µ = 2Aρ satisfied by the γ = ∞ isotherm above the 
critical density. The critical points are marked by dots in the corresponding color.
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numerical solution of the full HF equations.

The computed values of γ0(T ) indeed increase with the temperature. Moreover the 
approximate value γ∗

0(T ) increases from 0 to ∞ when T varies from 0 to ∞ as shown in 
appendix C. These results are consistent with the prediction introduced in section 3.3, 
namely γ0(T ) is an increasing unbounded function of T. Thus, for a given potential with 
fixed amplitude and fixed range, let us say γ = 1, there should always exist a critical 
temperature Tc defined by the equation γ0(Tc) = 1. For T < Tc, the ODLRO emerges 
above some critical density ρcri(T ), while for T > Tc the ODLRO is fully destroyed at 
any density. At T = Tc, the ODLRO takes place above a critical density which is finite, 
and close to the eective-mass formula (C.10) with γ∗

0(Tc) = 1. The critical densities as 
a function of β∗ are plotted in figure 4. As observed, they are also increasing functions 
of the temperature.

Figure 2.  The ODLRO parameter Aρ+ Aϕ(0)− µ as a function of µ for A  =  0.2, 
λ = 1 and γ = 0.4.

Figure 3.  The threshold value of γ below which the condensation disappears as a 
function of the dimensionless temperature β∗ = Tref/T , where Tref is the temperature 
at which A(Tref) = 0.2 and λ(Tref) = 1. Green squares denote the results of the 
iterative solution of integral equation (4.6), whereas blue dots are the values γ∗

0 
obtained within the simplified eective-mass version of the HF equations presented 
in appendix C. The red line shows the results of the small-T leading term (C.11) 
of γ∗

0(T ) computed within that simplified version.
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5. Concluding remarks and comments

In this paper we have computed the small-γ leading corrections to the EOS of the 
mean-field model within the HF approximation. This asymptotic analysis shows that 
the ODLRO cannot occur in presence of suciently long-range two-body interactions. 
Such findings are confirmed by a numerical solution of the HF equations on the one 
hand, and by analytical calculations within a simplified eective-mass version of that 
approximation on the other hand. Note that a complete proof of the corresponding 
breakdown of the BE condensation for γ suciently small within the HF approx
imation is far beyond our scope and it remains a challenging task at the mathematical 
level. However, we provided here strong arguments in favor of this most interesting 
possibility.

An interesting byproduct of our analysis is the emergence of a critical temperature 
for a system with a given potential v(r) of pair interactions. This prediction follows 
from the existence of the threshold γ0 for the class of potentials Vγ(r) = γ3v(γr) asso-
ciated with the potential v(r) as explained in section (4.3). The corresponding critical 
temperature above which the BE condensation disappears for any density depends 
both on the potential range and its amplitude. Unsurprisingly, the critical temperature 
increases if the potential range and/or its amplitude decreases.

The status of our predictions beyond the HF approximation is of course question-
able. In fact, we notice that, even in the normal phase for µ < µ0,cri, the exact small-γ 
leading corrections to the EOS of the mean-field model are not entirely given by the HF 
theory. Indeed, the correlations (neglected by the HF approximation) provide correc-
tions of order γ3 like the HF approximation itself. They have been first computed via 
summations of Mayer graphs for the equivalent classical polymer gas [21, 22], and they 
were recovered within the hierarchy for the imaginary-time Green functions in [23]. 
Therefore, we expect that such correlations also contribute to the exact small-γ cor-
rections near or above the mean-field critical chemical potential µ0,cri, especially since 

Figure 4.  The critical densities ργ0,cri corresponding to the threshold values of γ 
presented in figure 3. Green squares denote the results of the iterative solution 

of equation (4.6), whereas blue dots are computed from formula (C.10) for ρ∗γ∗
0 ,cri

 

derived within the simplified eective-mass version of the HF equations. The red 

line shows the leading low-T term of ρ∗γ∗
0 ,cri

 obtained by combining formula (C.10) 
with the asymptotic behavior (C.11).
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the HF theory, which is a mean-field approximation, is unable to correctly describe the 
critical fluctuations in the vicinity of the critical point. However, in order to restore 
the BE condensation itself, there should exist an unlikely conspiracy induced by cor-
relations which counteracts the interplay between long-range interactions and critical 
tails, highlighted here within the HF theory5. Note that, beyond the predictions which 
might be inferred from asymptotic calculations of the exact leading small-γ corrections, 
it would remain to perform a rigorous analysis for small but finite values of γ [25]6.

For very short-range potentials with γ suciently large, the HF theory predicts 
the persistence of the BE condensation. No exact results are available at γ = ∞ and 
finite temperature where correlations cannot be neglected. Nevertheless, in this case 
numerical simulations [30] as well as theoretical calculations [31] strongly suggest the 
persistence of the BE condensation. Moreover, they provide systematic corrections to 
the critical HF quantities at low densities [3]. Hence, it is instructive to notice that 
the HF theory correctly predicts the BE condensation although it fails to describe the 
exact behavior of the quantities of interest. So, if the whole HF picture for 0 � γ � ∞ 
is not drastically aected by correlations, a critical temperature should truly emerge. 
Interestingly, this would mimic the behavior of Helium IV, keeping in mind that the 
link between superfluidity and BE condensation is still a matter of debate.

Eventually, let us recall that our HF analysis is restricted to finite temperatures, so 
it does not give access to the properties of the ground state. We mention that various 
important mathematical results at zero temperature are reviewed in the book [32]. If 
most of them concern both cases with or without a trapping potential, the considered 
particle interactions are always short-range.

Appendix A. Leading terms in the small-γ expansions

A.1. Below the critical chemical potential for the mean-field model

For µ < µ0,cri, in the limit γ → 0, ηγ(µ, β) tends to the finite value η0(µ, β) =

aρ0(µ, β)− µ > 0 obtained for the mean-field model. Then to leading order φ̂γ(q) is 
simply given by replacing nB

γ (k) by nB
0 (k) in the rhs of equation (3.4)

φ̂γ(q) ∼
γ3v(0)

exp[β(ε(q) + η0(µ, β))]− 1
� (A.1)

where the mean-field density is the solution of

ρ0(µ, β) =
1

(2π)3

∫
dk

1

exp[β(ε(k)− µ+ aρ0(µ, β))]− 1
.� (A.2)

5 The interplay between quantum statistics and long range interactions is well illustrated through the thermody-
namic equivalence between two-dimensional mean-field models describing fermions with attractive interactions on 
the one hand, and bosons with repulsive interactions on the other hand [24].
6 The sole available mathematical result concerns the limit γ → 0, for which it has been proved that the EOS 
becomes identical to that of the mean-field model [26]. This is reminiscent of the derivation of the van der Waals 
EOS for a classical fluid [27, 28] and its quantum version [29]. Note that in presence of an external potential, 
the thermodynamics in the limit γ → 0 is different from those obtained for the mean-field model as shown by de 
Smedt and Zagrebnov [33].
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Thus φ̂γ(q) is of order γ3. A simple algebraic equation  for the leading term in the 
dierence ργ(µ, β)− ρ0(µ, β) is then readily obtained by expanding nB

γ (k) around nB
0 (k) 

in powers of βa(ργ(µ, β)− ρ0(µ, β)) and βφ̂γ(q) in the rhs of equation (2.5). Using the 

leading behavior (A.1), we find that such dierence is also of order γ3, namely

ργ(µ, β)− ρ0(µ, β) ∼− γ3βv(0)

(2π)3[1 + aχ(id)(µ− aρ0(µ, β), β)]∫
dk

exp[β(ε(k) + η0(µ, β))]

[exp[β(ε(k) + η0(µ, β))]− 1]3
,

�

(A.3)

with

χ(id)(µ, β) =
∂ρ(id)

∂µ
� (A.4)

where ρ(id)(µ, β) is the ideal gas density.

A.2. Near the critical mean-field chemical potential

For µ = µ0,cri + ν and ργ(µ, β) = ρ
(id)
cri + nγ(ν, β), the definition (3.5) can be then rewrit-

ten as

ηγ(ν, β) = anγ(ν, β)− ν .� (A.5)

Here we study the leading terms in the HF quantities for both ν and γ small. The corre

sponding density ργ(µ0,cri + ν, β) is close to ρ0(µ0,cri, β) = ρ
(id)
cri , so the deviation nγ(ν, β) 

is small, as well as ηγ(ν, β). For small values of q the eective energy

Uγ(q) = ε(q) + ηγ(ν, β) + φ̂γ(q) ,� (A.6)

is also small, so the eective Bose distribution (3.2) behaves as

nB
γ (q) ∼

1

βUγ(q)
.� (A.7)

Hence, the local equation (3.4) becomes a simple second-order polynomial equation for 

the leading term in φ̂γ(q) yielding the formula

φ̂γ(q) ∼
1

2

[√
[ε(q) + ηγ(ν, β)]2 + 4γ3β−1v(0)− ε(q)− ηγ(ν, β)

]
,� (A.8)

where ηγ(ν, β) is given by equation (A.5). For finite values of q the kinetic energy ε(q) 

dominates all other contributions in Uγ(q), and the leading term in φ̂γ(q) takes the form 
similar to that given by (A.1), i.e.7

φ̂γ(q) ∼
γ3v(0)

exp[βε(q)]− 1
.� (A.9)

7 Interestingly, the behavior (A.9) also holds for small values of q such that ε(q) nevertheless dominate the contrib

utions of φ̂γ(q) and of ηγ(ν, β) in Uγ(q). Then this behavior becomes identical to that of the small-q expression 

(A.8). Hence formulae (A.8) and (A.9) perfectly match at leading order for small intermediate values of q, and 

they provide a complete description of φ̂γ(q) in the whole range 0 � q < ∞.
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Once the leading behavior of φ̂γ(q) has been determined, it remains to determine self-
consistently the deviation nγ(ν, β). For this purpose we first rewrite nγ(ν, β) as

nγ(ν, β) =
1

2π2

∫ ∞

0

dq q2
exp(βε(q))

[
1− exp(β(φ̂γ(q) + ηγ(ν, β))

]

(exp(Uγ(q))− 1)(exp(βε(q))− 1)
,� (A.10)

where we have used the formula

ρ
(id)
cri =

1

2π2

∫ ∞

0

dq q2
1

[exp(βε(q))− 1]� (A.11)

for the ideal gas critical density. In the integral (A.10), the leading contributions are 
expected to arise from the neighbourhood of q  =  0. Accordingly, the behavior of nγ(ν, β) 
to leading order reduces to

nγ(ν, β) ∼ − m

π2β�2

∫ ∞

0

dq
(φ̂γ(q) + ηγ(ν, β))

Uγ(q)
� (A.12)

which is obtained by expanding all Boltzmann factors involved in the integral (A.10) 
in powers of the small quantities ε(q), ηγ(ν, β), φ̂γ(q) and Uγ(q). Note that the integral 
(A.12) does converge when q → ∞ thanks to the presence of the kinetic energy ε(q) in 

Uγ(q). Inserting the expression (A.8) for φ̂γ(q) into the integral (A.12), and making the 
change of variable q → θ defined by

ε(q) + ηγ(ν, β) = 2
√

β−1v(0)γ3/2 sinh θ ,� (A.13)

we find

ϕ̂γ(θ) =
√

β−1v(0)γ3/2e−θ
� (A.14)

and

Uγ(θ) =
√
β−1v(0)γ3/2eθ ,� (A.15)

so the consistency equation for nγ(ν, β) becomes to leading order

nγ(ν, β) ∼
1

π2λ3
dB

[βv(0)]1/4γ3/4K(θ0)� (A.16)

with de Broglie thermal wavelength λdB = (β�2/m)1/2 and the dimensionless function 
K(θ0) defined by the convergent integral

K(θ0) = −
∫ ∞

θ0

dθ
cosh θ

(sinh θ − sinh θ0)1/2
(e−2θ + 2e−θ sinh θ0) ,� (A.17)

while θ0 is such that

ηγ(ν, β) = anγ(ν, β)− ν = 2
√

β−1v(0)γ3/2 sinh θ0 .� (A.18)

The function K(θ0) is a monotonously decaying function which varies from ∞ to 
−∞ when θ0 varies from −∞ to ∞. Hence its inverse K−1 exists and is well defined. 
Moreover, K(θ0) behaves as
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K(θ0) ∼
2
√
2

15
e−5θ0/2� (A.19)

when θ0 → −∞.
In order to solve self-consistently equation (A.16) for nγ(ν, β), it is useful to scale ν 

as a function of γ, typically as a power law. According to the presence of the multipli-
cative factor γ3/4 in the consistency equation (A.16), and since K(θ0) does not depend 
explicitly on γ, it is convenient to scale ν as ν = ν∗γ3/4. Within this scaling, we look 
for the power law behavior nγ(ν, β) ∼ n∗γs with s  >  0:

	•	 �If s was smaller than 3/4, ηγ(ν, β) would behave as an∗γs, so θ0 would diverge as 
cstγs−3/2 with the same sign as n∗: each side of the consistency equation (A.16) 
would then have opposite signs, so the powers s  <  3/4 are excluded.

	•	 �If s was larger than 3/4, ηγ(ν, β) would behave as −ν∗γ3/4, so θ0 would diverge 
as cstγ−3/4: the rhs of the consistency equation (A.16) would then become much 
larger than the lhs, so the powers s  >  3/4 are excluded.

Hence, the sole possible power law is s  =  3/4. Then, the consistency equation (A.16) 
becomes,

ν∗ =
a

π2λ3
dB

[βv(0)]1/4K(θ
(0)
0 )� (A.20)

with the finite θ
(0)
0 = limγ→0 θ0. Since the inverse K−1 exists, equation (A.20) has the 

unique solution θ
(0)
0 = K−1

(
π2λ3

dB[βv(0)]
−1/4ν∗/a

)
. Note that θ

(0)
0  is of order γ0, so 

ηγ(ν, β) = anγ(ν, β)− ν given by formula (A.18) is of order γ3/2. Hence we see that the 
consistency equation (A.16) not only determines the leading term of order γ3/4 in the 
small-γ expansion of nγ(ν, β) for ν = ν∗γ3/4, but also the first subleading correction of 
order γ3/2. This leads to formula (3.10).

A.3. Above the critical mean-field chemical potential

Now we fix µ > µ0,cri, and as above we still define ν = µ− µ0,cri and nγ(ν, β) =  

ργ(ν, β)− ρ
(0)
cri . In the integral (A.10), the leading contributions are again expected to 

arise from the neighbourhood of q  =  0, so after making the variable change (A.13), the 
consistency equation becomes

1

π2λ3
dB

[βv(0)]1/4 lim
γ→0

γ3/4K(θ0) = ν/a ,� (A.21)

since the deviation nγ(ν, β) goes to ν/a when γ → 0.
The consistency equation (A.21) now implies that K(θ0) goes to ∞ when γ → 0, so 

θ0 goes to −∞ in this limit. From equation (A.18), we infer that ηγ(ν, β) is negative 
and goes to 0 slower than γ3/2. Inserting into the lhs of equation (A.21) the asymptotic 
behavior (A.19), we eventually obtain
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ηγ(ν, β) ∼ −
(

15π2λ3
dBν

2
√
2β3/2v(0)3/2a

)2/5

v(0)γ6/5 .� (A.22)

Like in the vicinity of the critical point, the consistency equation (A.21) determines the 
first two terms in the small-γ expansion (3.13) of nγ(ν, β).

Appendix B. Subleading terms in the small-γ expansions

B.1. Decomposition of nγ(ν,β)

In order to separate the contributions to nγ(ν, β) of small values of q on the one hand, 
from those of finite values of q on the other hand, it is useful to introduce the exact 
decomposition

nγ(ν, β) = n(1)
γ (ν, β) + n(2)

γ (ν, β) ,� (B.1)

with

n(1)
γ (ν, β) = − m

π2β�2

∫ ∞

0

dq
(φ̂γ(q) + ηγ(ν, β))

Uγ(q)
� (B.2)

and

n(2)
γ (ν, β) =

1

2π2

∫ ∞

0

dq [q2
exp(βε(q))

[
1− exp(β(φ̂γ(q) + ηγ(ν, β)))

]

(exp(βUγ(q))− 1)(exp(βε(q))− 1)

+
2m

β�2
(φ̂γ(q) + ηγ(ν, β))

Uγ(q)
] .

�

(B.3)

The leading contributions of n
(1)
γ (ν, β) have been studied in appendix A. In the fol-

lowing we determine the corresponding subleading corrections, as well as the leading 

contribution of n
(2)
γ (ν, β).

B.2. Near the critical point

B.2.1. Corrections arising from n
(1)
γ (ν, β).  The various corrections to (A.16) arise from 

:

	•	 �(a) The variation

δηγ(ν, β) = ηγ(ν, β)− η(0)γ (ν, β)� (B.4)

where η
(0)
γ (ν, β) is the leading term of order γ3/2 in the small-γ expan-

sion of ηγ(ν, β), as well as the corresponding variation δθ0 of θ0 defined by 
equation (A.18),

δθ0 = θ0 − θ
(0)
0� (B.5)
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where θ
(0)
0  is independent of γ. This induces a correction to the leading behav-

ior of n
(1)
γ (ν, β) which behaves as

1

π2λ3
dB

[βv(0)]1/4K ′(θ
(0)
0 )γ3/4δθ0� (B.6)

with K ′(θ) = dK/dθ.

	•	 �(b) �The terms neglected in the replacement of nB
γ (q) by its asymptotic form (A.7) 

into the local equation (3.4). They are obtained by expanding nB
γ (q) in powers 

of βUγ(q), i.e.

nB
γ (q) =

1

βUγ(q)
− 1

2
+ ... .� (B.7)

The corresponding first correction δφ̂
(b)
γ (q) to the leading potential φ̂

(0)
γ (q) 

given by formula (A.8) is associated with the 1/2-term in expansion (B.7). It 
is readily expressed in terms of φ̂

(0)
γ (q) and η

(0)
γ (ν, β). The resulting contrib

ution to n
(1)
γ (ν, β) then is computed within the variable change (A.13) with 

ηγ(ν, β) replaced by η
(0)
γ (ν, β). It takes the following form

cst γ9/4K1(θ
(0)
0 ) ,� (B.8)

where the function K1(θ
(0)
0 ) does not depend on γ, and it is defined as a 

convergent integral over θ from θ
(0)
0  to ∞ similar to the one (A.17) defining 

K(θ
(0)
0 ).

	•	 �(c) �The terms neglected in the calculation of the integral (3.1) by keeping only the 

first term nB
γ (q) in the Taylor expansion

nB
γ (q+ γl) = nB

γ (q) + γ(l · ∇q)n
B
γ (q) +

γ2

2
(l · ∇q)

2nB
γ (q) + ...� (B.9)

The first correction beyond the leading term nB
γ (q) provides a vanishing 

contribution once it is integrated over l thanks to the spherical symmetry 

of the potential, i.e. v̂(l) = v̂(l). The first non-vanishing corrections to the 

eective potential φ̂γ(q) defined as the solution of equation  (3.4) are then 
smaller by a factor γ2/(γ3/4)2 = γ1/2 for small q’s of order γ3/4 on the one 
hand, and by a factor γ2/(γ0)2 = γ2 for finite q’s on the other hand. They are 

indeed small corrections because the leading eective potential φ̂
(0)
γ (q) does 

vary on larger scales than γ for any q. The resulting correction δφ̂
(c)
γ (q) is 

expressed in terms of φ̂
(0)
γ (q), dφ̂

(0)
γ (q)/dq, d2φ̂

(0)
γ (q)/dq2 and η

(0)
γ (ν, β), with an 

amplitude proportional to the finite second moment 
∫
dlv̂(l)l2 of the potential 

v̂ in Fourier space. The resulting contribution to n
(1)
γ (ν, β) is again computed 

within the variable change (A.13) with ηγ(ν, β) replaced by η
(0)
γ (ν, β). It reads

cst γ5/4K2(θ
(0)
0 ) ,� (B.10)
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where the function K2(θ
(0)
0 ) only depends on θ

(0)
0 , and it is defined by an int

egral representation similar to that (A.17) defining K(θ
(0)
0 ).

B.2.2. Corrections arising from n
(2)
γ (ν, β).  In the integral (B.3) we can replace, at lead-

ing order (1− exp(β(φ̂γ(q) + ηγ(ν, β)))) by −β(φ̂γ(q) + ηγ(ν, β)) since (φ̂γ(q) + ηγ(ν, β)) 

remains small for any q. Then, at leading order Uγ(q) can be replaced by ε(q), so 

n
(2)
γ (ν, β) behaves as

−β

2π2

∫ ∞

0

dq q2(φ̂γ(q) + ηγ(ν, β))

[
exp(βε(q))

(exp(βε(q))− 1)2
− 1

β2ε(q)2

]
.� (B.11)

Taking into account the expressions (A.8) and (A.9), we find that the contributions of 

φ̂γ(q) to the integral (B.11) are of order o(γ3/2). Since ηγ(ν, β) is of order γ3/2 within the 
scaling ν = ν∗γ3/4, the leading behavior of n

(2)
γ (ν, β) then reduces to

n(2)
γ (ν, β) ∼ −βη

(0)
γ (ν, β)

2π2

∫ ∞

0

dq q2
[

exp(βε(q))

(exp(βε(q))− 1)2
− 1

β2ε(q)2

]
,� (B.12)

where the remaining integral over q does converge and does not depend on γ. Hence 

n
(2)
γ (ν, β) is of order γ3/2.

B.2.3.  Subleading terms of order o(γ3/2) for nγ(ν, β).  Eventually, the lowest order cor-
rections to the leading term of order γ3/4 in the small-γ expansion of nγ(ν, β) are given 
by the sum of contributions (B.6), (B.8), (B.10), and (B.12). The consistency of the 
calculation imposes that the next correction to this γ3/4-term reduces to the γ3/2-term 
computed in formula (3.10). This implies that δθ0 is of order γ1/2,

δθ0 = cst γ1/2K2(θ
(0)
0 )/K ′(θ

(0)
0 ) +O(γ3/4)� (B.13)

(note that K ′(θ
(0)
0 ) never vanishes), by setting that contribution (B.6) cancels the 

contribution (B.10) of order γ5/4. In the expansion of δθ0, the next term is of order 
γ3/4, as shown by setting that its contribution of order γ3/2 in formula (B.6), plus that 
of contribution (B.12), does reduce to the γ3/2-term in formula (3.10). Hence, the next 
correction to this γ3/2-term in the small-γ expansion of nγ(ν, β) is of order γ2. It entirely 
arises from the corrections to the purely local equation (3.4) derived from the integral 
equation (3.1).

B.3. Above the critical point

The subleading corrections of order o(γ6/5) in the expansion (3.13) can be computed 

along similar lines as above. The leading contribution of n
(2)
γ (ν, β) is still given by form

ula (B.12) with now η
(0)
γ (ν, β) of order γ6/5. In order to compute the corrections due 

to the variation δθ0 in the expression of n
(1)
γ (ν, β), we now have to use the asymptotic 

behavior (A.19) of K(θ0), including subleading corrections proportional to e−θ0/2, since 
θ0 → −∞. Expression (B.6) is then replaced here by the sum of two terms, namely

cst γ−6/5δηγ(ν, β)� (B.14)
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which arises from the variation of the leading term proportional to e−5θ0/2 in K(θ0), 
plus the contribution of the subleading term proportional to e−θ0/2,

cst γ3/5 ,� (B.15)

computed with θ
(0)
0  in place of θ0. The contributions to n

(1)
γ (ν, β) of corrections (b) 

and (c) are still given by formulae (B.8) and (B.10). But now, similarly to K(θ0), both 
functions K1(θ0) and K2(θ0) diverge when θ0 → −∞, and they become proportional to 
e−3θ0/2. The resulting contributions behave as

cst γ9/5
� (B.16)

for the corrections (b), and

cst γ4/5
� (B.17)

for the corrections (c). The variation δηγ(ν, β) follows by imposing that the sum of 
contributions (B.12), (B.14)–(B.16) and (B.17), reduces to the first correction of order 
γ6/5 in the small-γ expansion (3.13) of nγ(ν, β). The next correction in this expansion is 
then found to be of order γ9/5, and is such that the contribution (B.15) is canceled by 
the leading behavior of the contribution (B.14). Note that the leading eective poten-

tial φ̂
(0)
γ (q) still varies on larger scales than γ, so the introduction of the purely local 

equation (3.4) is indeed justified at leading order. In fact the corresponding corrections 
in the small-γ expansion of nγ(ν, β) are of order γ2, and they follow by canceling the 
sum of contributions (B.17) and (B.14).

Appendix C. Simplified analysis of critical properties within an eective-mass 
approach

In this appendix we proceed to an estimation, within a simplified version of the HF 
equations, of the threshold γ0 for the Gaussian potential studied in section 4. Such a 
simplified version of HF relies on a very common approximation in condensed matter 
which takes the full account of interactions through an eective mass. Here, it involves 
expanding the eective potential ϕ̂γ(k) in powers of k and keeping only the k2-term. 

Denoting ϕ̂′′
γ(0) = ∂2ϕ̂γ/∂q

2(0), the BE distribution (4.4) is then replaced by

n∗
γ(k) =

1

exp((λ2 + Aϕ̂′′
γ(0))k

2/2 + Aϕ̂γ(0) + Aρ− µ)− 1
,� (C.1)

which can be interpreted as describing ideal bosons in a constant potential, while their 
eective mass m* is such that the corresponding dimensionless de Broglie wavelength 
reduces to

λ∗ = (λ2 + Aϕ̂′′
γ(0))

1/2 .� (C.2)

At the critical point, if it exists, the ODLRO condition (4.5) is satisfied, and the result-
ing critical BE distribution (C.1) reduces to

n∗
γ,cri(k) =

1

exp((λ2 + Aϕ̂′′
γ,cri(0))k

2/2)− 1
.� (C.3)
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If we insert this BE distribution into the exact expression of ϕ̂′′
γ(0), obtained by taking 

the second partial derivative with respect to q of the integral expression (4.6), we find 
the implicit equation

ϕ̂′′
γ,cri(0) = γ

√
2

π

∫ ∞

0

dk k2[−1 + k2/3]
exp(−k2/2)

exp(γ2(λ2 + Aϕ̂′′
γ,cri(0))k

2/2)− 1
.� (C.4)

After a standard and straightforward calculation, we can recast this equation as

ϕ̂′′
γ,cri(0) =

2γξ

3

dL

dξ� (C.5)

with ξ = γ2(λ2 + Aϕ̂′′
γ,cri(0)) and the function

L(ξ) =
∞∑
n=0

1

(1 + (n+ 1)ξ)3/2
,� (C.6)

or equivalently as

ξ − 2Aγ3

3
ξ
dL

dξ
= γ2λ2 .� (C.7)

Using the asymptotic behaviors L(ξ) ∼ 2/ξ when ξ → 0 and L(ξ) ∼ ζ(3/2)/ξ3/2 
when ξ → ∞, we find that the function

M(ξ) = ξ − 2Aγ3

3
ξ
dL

dξ
� (C.8)

decays from ∞ to some positive minimum M(ξ0) when ξ varies from 0 to some ξ0, while 
it increases from M(ξ0) to ∞ when ξ varies from ξ0 to ∞. For γ small, M(ξ0) behaves 
as 4A1/2γ3/2/

√
3, hence it is much larger than γ2λ2. Thus, for γ suciently small, the 

implicit equation (C.7) has no solutions, and the ODLRO cannot exist, in agreement 
with the analysis of section 3.

When γ increases, a solution of equation (C.7) appears at a value γ∗
0 such that

ξ0 −
2Aγ3

0

3
ξ0
dL

dξ
(ξ0) = (γ∗

0)
2λ2 ,� (C.9)

so for γ � γ∗
0, the ODLRO can exist. Note that the corresponding critical density is 

finite and reduces to

ρ∗γ∗
0 ,cri

=

√
2

π

∫ ∞

0

dk k2 1

exp(ξ0k2/(2(γ∗
0)

2))− 1
=

ζ(3/2)(γ∗
0)

3

ξ
3/2
0

.� (C.10)

It is larger than its ideal counterpart ρ
(id)
cri = ζ(3/2)/λ3, since (γ∗

0)
3/ξ

3/2
0 > 1/λ3 as inferred 

from equation  (C.9) and dL/dξ < 0. Like γ0 itself, its present approximate value γ∗
0 

depends on g (since A = gλ3) and λ. Therefore γ∗
0(g,λ) can be also viewed as a function of 

temperature, γ∗
0(T ), for a given Gaussian potential v(r). At finite temperatures, γ∗

0 is com-
puted numerically by plotting the function M(ξ) (see results in section 4.3). The analytical 
behavior of γ∗

0(T ) at low and high temperatures respectively can be determined as follows.
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At low temperatures, both A = gλ3 and λ diverge. The inspection of equation (C.9) 
shows then that both γ∗

0(T ) and ξ0 vanish. Using the small-ξ behavior of L(ξ), we find 
successively ξ0 ∼ 2g1/2λ3/2(γ∗

0)
3/2/

√
3 and

γ∗
0(T ) ∼

16g

3λ
∼ cst T when T → 0 ,� (C.11)

so ξ0 does vanish as T.
At high temperatures, both A = gλ3 and λ vanish. By a simple inspection of equa-

tion (C.9), we see that both γ∗
0(T ) and ξ0 diverge. Using the large-ξ behavior of L(ξ), we 

first find ξ0 ∼ (3ζ(3/2)/2)2/5A2/5(γ∗
0(T ))

6/5, which inserted into equation (C.9) gives

γ∗
0(T ) ∼ (5/3)5/4(3ζ(3/2)/2)1/2

g1/2

λ
∼ cst T 3/4 when T → ∞ .� (C.12)

Note that the corresponding ξ0 behaves as T1/2 and indeed diverges.
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