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Supporting Information Text

The Supporting Information contains notes on evaluating the elliptic integral in Eq. 11, a derivation of the axisymmetric
transport balance Eq. 4, and a more detailed derivation of the concentration field in Eq. 14.

Evaluating the elliptic integrals. From Eq. 10, the tangent slope of a steadily growing stalagmite is:

dz

dr
= − tan θ = −

√
u2 − (1 − (r/R)2)2

1 − (r/R)2 , [S1]

where u = U/U0 = Da−1. When u ≥ 1 tan θ is real for all r ∈ [0, R], but when u < 1 tan θ is only real in the range
R

√
1 − u ≤ r < R, which corresponds to the exterior region of a flat top stalagmite. The interior region is created by a

distribution of droplets, but outside of the source radius, tan θ is the same as for the point water source. Here we consider both
the full-range (0 ≤ r < R) solution when u ≥ 1 and the exterior solution (Rc ≤ r < R) when u < 1.

The integral of [S1] is an elliptic integral (1), which can be reduced to a linear combination of the canonical Legendre forms:

F (ϕ|m) =
∫ sin ϕ

0

1√
(1 − mt2)(1 − t2)

dt, [S2]

E(ϕ|m) =
∫ sin ϕ

0

1 − mt2√
(1 − mt2)(1 − t2)

dt, [S3]

Π(n; ϕ|m) =
∫ sin ϕ

0

1
(1 − nt2)

√
(1 − mt2)(1 − t2)

dt, [S4]

where the elliptic integrals have been expressed in terms of the amplitude ϕ and modulus m. There are general formulas for
the reduction of elliptic integrals (1), but these can lead to unnecessarily complex expressions for z(r). Instead we follow the
reduction algorithm, making use of the simplifications allowed by the functional form of tan θ.

Defining the polynomials P and Q in terms of r̂ = r/R,

P (r̂) = u2 − (1 − r̂2)2, Q(r̂) = 1 − r̂2, [S5]

the shape function can be found from the integral

z(r)
R

= −
∫

P

Q
√

P
dr̂ + C, [S6]

where C is to be chosen so that z(0) coincides with the apex of the stalagmite zapex. The ratio P/Q is reducible to a proper
rational function

P (r̂)
Q(r̂) = u2

1 − r̂2 − 1 + r̂2, [S7]

and P can be factored into quadratic terms,

P (r̂) =
(
u − 1 + r̂2) (

u + 1 − r̂2)
= (u2 − 1)

(
1 + r̂2

u − 1

) (
1 − r̂2

u + 1

)
. [S8]

We will choose the definition of the amplitude so that the angle remains real and in the range [0, π/2]:

t = sin ϕ = r̂/
√

u + 1, m = −u + 1
u − 1 ,

√
P (t) =

√
(u2 − 1)

√
(1 − mt2)(1 − t2). [S9]

However the parameter m is not necessarily bounded from above by m = 1 and the integrand becomes complex when mt2 > 1.
To connect the integral in [S6] to the canonical elliptic integrals [S2]–[S4], we define the auxiliary function

ζ(r) = zapex − z(r), [S10]

which is the vertical distance from the apex of the stalagmite to the point z(r). From the substitutions in [S9], we have

ζ(r)
R

=
√

1/(u − 1)
∫ sin ϕ

0

(
u2

1 − (u + 1)t2 + (u − 1)(1 − mt2) − u

)
dt√

(1 − mt2)(1 − t2)
, [S11]

where ϕ = arcsin(r/
√

u + 1). In some cases (u < 1, and r <
√

1 − u) ζ(r) is a complex function.
The terms in parentheses include the three Legendre forms of elliptic integrals:

ζ(r)
R

=
√

1/(u − 1)
[
u2Π (u + 1; ϕ|m) + (u − 1)E (ϕ|m) − uF (ϕ|m)

]
, [S12]

where the square root should be evaluated as written (rather than 1/
√

u − 1) to obtain the correct sign when u < 1.
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u > 1. For u > 1, ζ is real and the evolution of the invariant conical shape is

z(r, t) = zapex(t) − ζ(r/R), [S13]

where zapex(t) is the time-dependent position of the apex of the stalagmite. The elliptic integral Π(u + 1; ϕ, m) contains a
logarithmic divergence near r = R, which is the origin of the vertical outer boundary.

u = 1. We cannot write the solution for u = 1 in terms of elliptic integrals, since the modulus m → ∞. However, the
polynomial P simplifies to P (r̂) = r̂2(2 − r̂2), suggesting the substitution x =

√
2 − r̂2. The resulting integrand is a rational

function of x and can be integrated to give
ζ(x)
R

= −x − 1
2 log x − 1

x + 1 . [S14]

The invariant shape evolves as,
z(r, t) = zapex(t) − ζ(

√
2 − r̂2) + ζ(

√
2). [S15]

This function also has a logarithmic divergence near r = 1.

u < 1. The tangent slope becomes imaginary when r < R
√

1 − u, so solutions of the form of [S11] are not applicable. Outside
of the source region the equations are the same as for a point source, and the exterior shape (r > Rc) is then given by

z(r, t) = zapex(t) − ζ(r/R) + ζ(Rc/R). [S16]

Since ℑ(ζ) is constant in the region Rc <= r < R, z(r, t) is real and continuous at r = Rc.

Derivation of Eq. 4: axisymmetric transport balance. We consider a thin, well-mixed film flowing axisymmetrically over a surface
z(r) with local tangent angle θ(r). Under the fast cross-film diffusion (kh/D ≪ 1), the calcium concentration is uniform across
the film thickness and depends only on r: c = c(r). The depth-integrated volumetric flow around a circumference of radius r is
a constant Q, while the depth-integrated flux of Ca2+ is Q c(r).

Consider an annular control volume between radii r and r + dr. The net decrease of solute flux through the annulus equals
the precipitation sink on the rock surface within the annulus:

∂r(Qc) dr = − J(c) dAsurf , [S17]

where J(c) is the precipitation rate per unit surface area (mol m−2 s−1), and dAsurf is the wetted rock area. Geometry gives
dAsurf = 2πrds = 2πrdr/ cos θ, because the surface arc length ds = dr/ cos θ for a slope θ.

With linear kinetics J(c) = k (c − csat), and dividing [S17] by 2πrdr yields Eq. 4 in the main text,

1
2πr

∂r(Qc) = − k (c − csat)
cos θ

, [S18]

The boundary condition is c(0) = c0.

Concentration field under a distributed source. The distribution of droplets coupled with their impact-based spreading (2)
suggests that the water source can be described as a uniform dripping over a circle of radius Rc, with the dripping rate
P = Q/(πR2

c). A mass balance within an annular region 2πrdr (r < Rc) is similar to [S18],

1
2πr

∂r (Qc) = −k(c − csat)
cos θ

+ P c0, [S19]

but with two important differences. First, the volumetric flow is now r-dependent,

Q(r) = πr2P. [S20]

Second, there is an extra source term P c0 arising from the dripping of oversaturated solution bringing additional calcium ions.
For an invariantly growing stalagmite, the first term on the RHS can be replaced by −U/νM,

1
2πr

∂r

(
πr2P c

)
= − U

νM
+ P c0. [S21]

Equation (S21) can be readily integrated to show that the concentration under a uniformly distributed source is constant:

c = c0 − U

P νM
. [S22]

The integration constant from [S19] must vanish to prevent the concentration diverging at the origin.
Constant concentration implies that the tangent slope (θ) will also be constant, as a condition for invariant propagation:

cos θ(r) = kνM

U
(c − csat) = kνM

U
(c0 − csat) − k

P
[S23]

Piotr Szymczak, Anthony J.C. Ladd, Matej Lipar, Dean Pekarovič 3 of 4



For a flat surface (θ(r) = 0), the propagation velocity is determined by the ratio of the reaction rate constant to the dripping
rate P ,

U = kνM(c0 − csat)
1 + k/P

= U0

1 + k/P
. [S24]

The outer radius of the stalagmite is determined by conservation of calcium ions in the growing stalagmite,

πR2U/vM = Q(Rc)(c0 − csat), [S25]

and the stalagmite radius is then related to the radius of the wetting

R = Rc

√
1 + P/k. [S26]

The constant concentration field in the flat region [S22] connects continuously to the outer region (Eq. 6),

c(r > Rc) = c0 − πr2U

Q(Rc)νM
= c0 − (c0 − csat)

r2

R2 , [S27]

where the last equality follows from [S25].
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