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Critical dynamics and tree-like spatiotemporal patterns in exciton-polariton condensates
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We study the nonresonantly pumped exciton-polariton system in the vicinity of the dynamical instability
threshold. We find that the system exhibits unique and rich dynamics, which leads to spatiotemporal pattern
formation. The patterns have a tree-like structure and are reminiscent of structures that appear in a variety of
soft-matter systems. Within the approximation of slow and fast time scales, we show that the polariton model
exhibits a self-replication point in analogy to reaction-diffusion systems.
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I. INTRODUCTION

Semiconductor exciton-polaritons are quantum quasiparti-
cles that exist in structures where strong light-matter coupling
overcomes decoherence [1]. Properties of microcavity polari-
tons, which combine the extremely low effective mass of
confined photons with strong interactions of excitons, makes
them an ideal candidate for studying quantum fluids of light
[2]. Rapid progress in studies of these systems has led to ob-
servations of remarkable phenomena, such as nonequilibrium
Bose-Einstein condensation [3,4], quantum vortices [5–8],
superfluidity [9], and Berezinskii-Kosterlitz-Thouless phase
transition [10,11].

Several recent experiments provided evidence of dynam-
ical instability in exciton-polariton condensates in the case
of nonresonant pumping [12–14]. This instability is an inher-
ent property of the open-dissipative Gross-Pitaevskii model,
widely used for describing the dynamics of these systems
[15]. Signatures of instability were observed both in the case
of organic microcavities [12], as well as inorganic GaAs
microcavities pumped continuously [14] and with ultrashort
pulses [13].

Despite these experimental observations, most studies of
polariton fluids to date have focused on the stable regime of
condensation. In particular, properties of the system close to
the instability threshold have not been a topic of a detailed
study. This is of practical importance, since both stable and
unstable regimes of condensation have been demonstrated
experimentally [11–14]. It was pointed out that this regime
can be characterized by interesting chaotic dynamics with
unusual momentum distribution of fluctuations [16]. Note that
chaotic evolution has been recently predicted to occur also in
a polariton model with resonant plane wave driving [17,18].

Spatial pattern formation in polariton systems has been
studied in a number of different configurations both theo-
retically and experimentally [19–33]. In this work, we in-
vestigate dynamical behavior close to the instability thresh-
old in detail, and predict spatiotemporal pattern formation.
We find that the dynamics results in tree-like structures

in space-time coordinates, which exhibit branching or self-
replication. The behavior of the system becomes very similar
to that occurring in certain soft-matter systems, including
combustion [34], bacterial growth [35], chemical reactions
[36], wetting films [37], and self-replicating pattern formation
in general diffusion-reaction models [38]. We describe the
physical mechanism responsible for branching, resulting from
phase separation into condensed and uncondensed regions.
In analogy to reaction-diffusion systems, the existence of
two time scales, corresponding to slow evolution and fast
splitting dynamics, allows us to understand the occurrence
of self-replication and determine the threshold for its oc-
currence. As a result, we find that polariton systems in the
critical regime display rich dynamics that is very different
from superfluid behavior observed in the stable regime. We
also provide an analogy to extensively studied soft-matter
systems.

We discuss the experimental observation of splitting dy-
namics. We point out that while direct detection of branching
would be difficult in experiment due to the chaotic nature
of the process and the picosecond time scales involved, it is
possible to observe signatures of branching in second-order
spatiotemporal correlation functions. This method allows us
to perform time-averaged experiments in which many branch-
ing events occurring in a condensate over a long acquisition
time contribute to a nontrivial pattern of spatiotemporal corre-
lations, which can be considered a smoking gun of branching
dynamics.

II. MODEL

We model evolution of an exciton-polariton condensate us-
ing the open-dissipative Gross-Pitaevskii equation (ODGPE)
for the wave function ψ , coupled to the rate equation for
the density of exciton reservoir nR. In our work, we will
focus mainly on the one-dimensional (1D) case, when the
condensate is trapped in a 1D microwire [14,39]. Results in
the two-dimensional case are briefly discussed in Appendix B.

2469-9950/2019/99(20)/205301(8) 205301-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.205301&domain=pdf&date_stamp=2019-05-06
https://doi.org/10.1103/PhysRevB.99.205301


NATALIYA BOBROVSKA et al. PHYSICAL REVIEW B 99, 205301 (2019)

The 1D evolution equations read [15]

ih̄
∂ψ

∂t
= − h̄2D

2m∗
∂2ψ

∂x2
+ gC |ψ |2ψ + gRnRψ

+ i
h̄

2
(RnR − γC )ψ,

∂nR

∂t
= P(x) − (γR + R|ψ |2)nR, (1)

where P(x) is the exciton creation rate determined by the
pumping profile, m∗ is the effective mass of lower polaritons,
D = 1 − iA where A is a dimensionless constant accounting
for kinetic energy relaxation, γC = τ−1

C and γR = τ−1
R are the

polariton and exciton loss rates related to their lifetimes τC,R,
and (R, gi ) = (R2D, g2D

i )/
√

2πd2 are the rates of stimulated
scattering into the condensate and the interaction coefficients,
rescaled in the one-dimensional case [40], where d is of the
order of the microwire width.

In a model without noise, a nonzero homogeneous sta-
tionary solution of the above model can be found in the
form ψ (x, t ) = ψ0e−iμ0t , nR(x, t ) = n0

R. This solution exists
above threshold pumping P > Pth = γCγR/R and is given by
|ψ0|2 = (P/γC ) − (γR/R), n0

R = γC/R, and μ0 = gC |ψ0|2 +
gRn0

R. This homogeneous solution becomes dynamically un-
stable (via Benjamin-Feir instability) in a certain parameter
range, as predicted [15,40,41] and recently observed experi-
mentally [12–14]. The criterion for linear stability in the case
A = 0 was derived in [41,42]

P

Pth
>

gR

gC

γC

γR
. (2)

In the case when A �= 0 linear stability can be determined by
solving the Bogoliubov eigenvalue problem numerically.

We note that the dynamics predicted in this paper appear to
be quite general and not limited to the model described above.
As we demonstrate in Appendix A, the physics described
occurs as well in a model of polaritons in a semimagnetic
microcavity. This model does not include a reservoir explic-
itly, and the second degree of freedom is provided by the
magnetization of magnetic ions.

III. RESULTS

Figures 1(a)–1(c) present examples of numerical dynamics
of the ODGPE model [Eq. (1)]: (a) in the stable regime, (b)
in the critical-unstable regime close to the stability threshold
of Eq. (2), and (c) in the deep unstable regime. We assume
a small white noise in the polariton and reservoir fields at
t = 0, and a constant homogeneous pumping P > Pth for
t > 0. In Figure 1(a) typical behavior expected for the stable
regime is visible, where initial condensate density fluctuation
decays over time. In Fig. 1(c), an apparently random pattern
of high-density peaks is formed, as could be also expected
in the unstable case. On the other hand, in the intermediate
case, Fig. 1(b), the instability apparently leads to pattern
formation and spatiotemporal chaos, which takes the form of
tree-like branching of domains which are characterized by low
condensate density. We verified that such patterns appear in a
relatively wide region of parameter space in the vicinity of
the critical threshold. However, the estimation of exact limits

FIG. 1. Spatiotemporal pattern formation. Upper panels show
evolution of condensate density in (a) the stable regime, (b) the
critical regime, close to instability threshold, and (c) the deep un-
stable regime, as indicated in the lower stability diagram. Panel
(b) reveals spontaneous formation of the tree-like spatiotemporal
patterns. The grey star in the stability diagram corresponds to the case
where phase turbulence is observed [43]. Purple stars correspond
to cases with clear tree-like branching evolution. Parameters are
m∗ = 3.5 × 10−5m0

e , τR = 1000 ps, τ (a)
C = 76.92 ps, τ (b)

C = 62.01 ps,
τ

(c)
C = 9.95 ps, d = 4 μm, g1D

C = 1.08 μeV μm2, g1D
R = 4g1D

C , R1D =
4.3 × 10−3 μm

ps , A = 0.9.

of this region is a nontrivial task which will be postponed
for a future study. The tree-like patterns are reminiscent of
those occurring in certain soft-matter systems [34–38]. Be-
low we draw an analogy between diffusion-reaction systems
and critical dynamics of the polariton model. We note that
somewhat similar patterns were recently predicted to occur
in a complex Ginzburg-Landau equation (CGLE) polariton
model, incorporating a carefully engineered complex periodic
potential [44]. However, this regime appears to resemble a
spatiotemporal intermittency regime of the CGLE [45] rather
than dynamics of diffusion-reaction systems.

To investigate the dynamics of branching in more detail, we
plot the evolution of condensate density and phase, together
with the reservoir density for a single branching “event”
in Fig. 2. The correspondence between the regions of low
condensate density and high reservoir density is a signature
of phase separation, resulting from the repulsive polariton-
reservoir interaction term gR in Eqs. (1). Phase separation
is the driving force of dynamical instability in a polariton
system [16,40]. Here, it leads to the formation of well-defined
regions of high condensate density, separated from regions of
high reservoir density, and the formation of separate branches
visible in Fig. 2. At the same time, it does not lead to a
complete decay of the condensate into small lumps, as in the
deep unstable regime of Fig. 1(c), since rather wide regions
of almost homogeneous condensate can still be distinguished
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FIG. 2. Example of (a) condensate density, (b) reservoir density,
(c) condensate wave-function phase, and (d) condensate density cur-
rent. These figures correspond to a single branching event, selected
from Fig. 1(b) (marked with a white dashed box).

between the branches. The existence of such two qualitatively
different “phases” of low and high condensate density, corre-
sponding to the branches and the regions between them, can
be justified by the existence of two stationary homogeneous
solutions of Eqs. (1):

(a) |ψ |2 = 0, nR = P

γR
,

(b) |ψ |2 = P

γC
− γR

R
, nR = γC

R
, (3)

i.e., the zero solution and the nonzero stationary solution.
While both these (spatially infinite) solutions are not stable
in the unstable regime of condensation, the dynamics of the
system appears to locally follow the form of either (a) or
(b). This is confirmed by the magnitude of condensate and
reservoir density in the branches and between them, which
are close to values given by (a) and (b), respectively.

The corresponding phase φ of the condensate wave func-
tion ψ = |ψ |eiφ is shown in Fig. 2(c). Notice that the phase
gradient in the time direction is different on the left- and
right-hand sides of the branch, as follows from the different
frequency of 2π rotations of the phase along the time axis.
This evidences the lack of phase coherence between the
condensate regions on the two sides. In other words, the
condensates which exist between the branches form uncorre-
lated condensate islands with no mutual phase coherence, but
with coherence within each condensate. The branches, on the
other hand, are regions where there is almost no condensate
density and no phase coherence, which is visible as multiple
phase discontinuities (spatiotemporal vortices) appearing in
Fig. 2(c).

The above observations, together with phase gradients in
the x direction shown in Fig. 2, allow the understanding of
the physical mechanism of branching. The density current
of polaritons can be calculated from the standard formula
j = −ih̄/2m∗(ψ∗∂ψ/∂x − c.c.), and is plotted in Fig. 2(d).

FIG. 3. Schematic illustration of the physical mechanism leading
to branch splitting. (a) The repulsive potential generated by the
reservoir-dominated branch leads to expulsion of polaritons from
the branch, as well as growth of its dimensions. (b) When the
branch becomes wide enough, the region in its center with a flat
section of the potential becomes a seed for a new condensate island.
(c) Condensate density quickly grows, leading to separation of the
two new branches.

A single branch before splitting is characterized by the flux
of polaritons from inside the branch to the outside regions,
as shown schematically in Fig. 3 (left). This results from
the repulsive potential gRnR in Eq. (1), created by the in-
creased reservoir density in the (a) phase inside the branch.
Indeed, above threshold P > Pth reservoir density is always
higher in phase (a) than in phase (b). In the stable regime,
this repulsive potential is screened by the lower condensate
density, which acts through the condensate self-interaction
term gC |ψ |2. However, as we enter the unstable regime, the
reservoir-induced repulsive potential begins to dominate, and
leads to outflow of condensate density from the regions of
increased reservoir density, resulting in phase separation.

The outside directed flow of polaritons from inside the
branch results in the gradual increase of the spatial extent of
the branch, as shown in the middle panels of Fig. 3, which is
also visible as a widening of the branch in time in Fig. 2(a).
However, the spatial extent cannot increase indefinitely, since
the (a) phase inside the branch is not a stable state. When the
branch becomes wide enough, dynamical instability sets in,
leading to splitting of the branch into two. The stability of
the branch below a certain spatial extent of the branch and
instability above this extent is a crucial property which makes
the tree-like dynamics possible. When the branch splits, it
develops a small high condensate density area in its center,
which grows quickly thanks to the spontaneous scattering
from the reservoir to the condensate. This is possible as the
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reservoir density is locally high, and the outflow of polaritons
is suppressed locally because of the flattening of the effective
potential as shown in Fig. 3 (middle). The fast growth of
condensate density leads to the formation of two separate
branches as depicted in Fig. 3 (right).

To describe the physics of splitting more quantitatively, we
employ the time-scale separation method, introduced in the
study of dynamics of self-replicating patterns in diffusion-
reaction systems [38]. This approach is based on the assump-
tion that the evolution occurs on two different time scales.
The slow movement of branches is occasionally interrupted by
fast dynamics of splitting, or self-replication. Within this ap-
proach, the solutions in the slow phase of motion can be found
approximately by assuming a steady state which consists of a
chain of identical branches or a single branch within a finite
box with periodic boundary conditions [38]. The threshold of
splitting can be determined from stability properties of this
periodic solution. Such an approximation, although clearly
not adequate to exactly describe the dynamics of a nonpe-
riodic arrangement of branches as in Fig. 1(b), allows us to
gain insight into the main mechanism driving the branching
dynamics and determine the approximate threshold.

As obtaining an exact analytical solution is not viable in
our nonlinear system, we employ a numerical method based
on the evolution of Eq. (1) in a box of length L with periodic
boundary conditions. After sufficiently long time of evolution,
we obtain a stationary stable solution. To minimize transient
effects and avoid possible effects of multistability, we perform
the simulations adiabatically, by feeding the result of one
simulation as a starting point of another, with a slightly mod-
ified extent of the box L. This allows us to follow one stable
branch of solutions, and by changing L in both directions
we can detect the possible effects of bistability. We show the
results of our investigation in Fig. 4. In Fig. 4(a) the range of
investigated box sizes is shown on the vertical axis, with the
solid line showing the positions of either a single minimum or
two minima of the solution. The splitting of the minimum into
two occurs when the box size is equal to about Lth ≈ 7.8 μm.
The examples of solutions with a single and two minima are
shown in Figs. 4(b) and 4(c). These solutions resemble closely
the density profiles obtained previously in a large system.
The obtained threshold size of a branch before self-replication
Lth is also in good agreement with typical spatial scales on
which branching occurs in full simulations. At the same time,
we did not observe any region in which the two kinds of
solutions shown in Figs. 4(b) and 4(c) would be stable for the
same L.

IV. DETECTION OF BRANCHING VIA CORRELATIONS

Direct observation of branching shown in Fig. 1(b) would
be a challenging task due to the short (picosecond) time scale
of the dynamics. Although streak cameras can be used to
observe polariton dynamics on such time scales, they usu-
ally require averaging over many repeated realizations of the
experiment or over a relatively long acquisition time. Such
methods would not provide evidence of branching because
of the chaotic character of the process, in which patterns
are expected to vary rapidly and from shot to shot. We pro-
pose to circumvent this problem by measuring second-order

FIG. 4. Self-replication transition occurring when the finite sys-
tem size is increased. Due to the periodic boundary conditions,
this corresponds to increasing the distance between neighboring
branches. Solid line in panel (a) shows the position of a minimum
(or two minima) of condensate density in a steady state, calculated
in a box of size L. This corresponds to a chain of equally spaced
branches separated by a distance L. Two representative states shown
in panels (b) and (c) correspond to dashed lines in panel (a). The split-
ting occurs as the distance to neighboring branches becomes larger
than Lth ≈ 7.8 μm. Parameters are g1D

C = 0.76 μeV μm, g1D
R = 2g1D

C ,
τC = 4 ps, τR = 3.42 ps, R1D = 0.19 μm

ps , d = 2 μm, P/Pth = 1.5,
A = 0.05.

spatiotemporal correlations instead of emission intensity. The
reasoning behind such an approach is that even if branching
occurs at random positions and times, we can still recover
its characteristic features in integrated correlation functions,
since all branching events will contribute to it in a similar way.
Second-order correlation function is defined as

g(2)(d, τ ) =
∫ |ψ (x, t )|2|ψ (x + d, t + τ )|2dx dt

(
∫ |ψ (x, t )|2dx dt )2

, (4)

where the spatial integral is taken over the size of the system.
Time integration starts from the instant when the system
achieves a quasistationary distribution, in which there are
strong fluctuations, but observables have reached a steady
state in a statistical sense. In practice, such a state is estab-
lished after several hundred picoseconds of evolution, when
the average density saturates.

In Fig. 5 we visualize correlation functions corresponding
to the three cases from Fig. 1. Clearly, stable, critical, and
deep unstable cases are characterized by qualitatively different
correlation functions. The characteristic horn-like shape of
g(2) in Fig. 5(b) is an indication of the branching occurring
in Fig. 1(b). Note that the horns are directed in both positive
and negative time directions, since g(2)(d, τ ) as defined above
is a time- and space-symmetric function in the limit of infinite
integration time. It is important to note that only the critical
case Fig. 5(b) is characterized by nontrivial spatiotemporal
correlations. In both Figs. 5(a) and 5(c) correlations can be
approximately factorized into spatial and temporal functions,
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FIG. 5. Second-order correlation function g(2)(d, τ ) is depicted for the (a) stable, (b) critical, and (c) unstable cases of Fig. 1. The critical
case (b) with branching density patterns is characterized by nontrivial spatiotemporal correlations which cannot be factorized into independent
spatial and temporal parts. The characteristic “horn” features are signatures of branching in density evolution from Fig. 1(b). In (d), cross
sections of g(2)(d, τ ) in the case (b) are plotted for τ = 0, 1000, and 1500 ps. Note that g(2)(0, 0) is approximately equal to unity in (a) and
equal to 2 in (c), which correspond to a coherent state and a classical random state (or thermal state), respectively.

i.e., g(2)(d, τ ) ≈ g(2)
x (d )g(2)

t (τ ), while such factorization is not
possible in the case of Fig. 5(b). This is clearly shown in
Fig. 5(d), where cross sections of the correlation function at
three different values of τ are shown. On the other hand,
we note that in the unstable case of Fig. 5(c) temporal
correlations g(2)

t (τ ) also have a nontrivial (non-Gaussian)
character.

V. CONCLUSIONS

In conclusion, we demonstrated that nonresonantly
pumped exciton-polariton condensates at the threshold of
instability possess unique and rich dynamics, reminiscent
of self-replicating patterns encountered in many soft-matter
systems. We believe that these results provide an interesting
link between quantum coherent wave systems and soft-matter
diffusion-reaction systems, which may stimulate further inter-
action between these areas of physics.
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APPENDIX A: BRANCHING IN DILUTED MAGNETIC
SEMICONDUCTOR MODEL

We now discuss the generality of the observed effects. We
find that branching appears not only in the open-dissipative
Gross-Pitaevskii model with a reservoir, but also in a model
of semimagnetic exciton-polaritons in which the reservoir is
absent. The role of the reservoir is played by the collective
magnetization of manganese ions coupled to the condensate.

Recently, experimental investigations of semimagnetic mi-
crocavities (Cd1−xMnxTe) were performed [46,47] in which
quantum wells were doped with magnetic ions. In these cavi-
ties, phenomena such as giant Zeeman splitting and polariton
lasing were observed [48,49]. Magnetization of a diluted
magnetic semiconductor is given by the Brillouin function BJ

[50]

〈M(x, t )〉 = nMgMμBJ BJ

(
gMμBJBeff

kBT

)
, (A1)

where nM is the magnetic ion concentration, gM is their g
factor, J is the manganese total angular momentum equal to
5/2, μB is the Bohr magneton, kB is the Boltzmann’s constant,
T is the temperature of manganese ions, and Beff = (λ/2)|ψ |2
is the effective magnetic field resulting from the presence of
an exciton-polariton condensate [51], with the strength of the
ion-polariton coupling denoted as λ.
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FIG. 6. Example of branching evolution in the model of semi-
magnetic exciton-polaritons in which the second degree of free-
dom is due to the collective magnetization of manganese ions
rather than the reservoir. Parameters are τM = 1.5 × 10−14 s, g1 =
1.2 × 10−9 meV m, nM = 3.6 × 1012 m−1, B = 0 T, T = 0.1 K, P −
1
2 γL = 6.6 × 10−2 meV, γNL = 9.6 × 10−12 meV m, m∗ = 10−5 mE,
Rabi splitting 	R = 5 meV.

Within the description in terms of the complex Ginzburg-
Landau equation, which can be obtained from the full open-
dissipative Gross-Pitaevskii model within the adiabatic ap-
proximation [16], there is an additional effective potential
caused by the ion-exciton interaction [51,52]:

ih̄
∂ψ

∂t
= − h̄2

2m∗
∂2ψ

∂x2
+ g1|ψ |2ψ + iPψ

− i
1

2
γLψ − iγNL|ψ |2ψ − λMψ, (A2)

where the interaction between the polaritons with g1, external
pumping with P and losses (linear and nonlinear) with γL and
γNL. We assume that circular pumping is homogeneous and
the condensate remains circularly polarized; however, the ion
polarization is free to evolve. Moreover, we introduce the spin
relaxation time (τM) for magnetic ions. Then, the polariton
evolution equation couples to the equation for manganese
magnetization relaxation:

∂M(x, t )

∂t
= 〈M(x, t )〉 − M(x, t )

τM
. (A3)

We found that within this model, there exists a large region in
parameter space in which tree-like branching occurs, and an
example is shown in Fig. 6.

APPENDIX B: TWO-DIMENSIONAL CASE

To investigate whether dimensionality is an important fac-
tor in the occurrence of branching, we perform a series of
numerical simulations in the two-dimensional extension of the

FIG. 7. Example of branching evolution in the two-dimensional
model. (a) Spatial pattern of the density of the condensate at tfinal =
103 ps. (b) Cross section of the density evolution at y = 0, demon-
strating branching patterns emerging from the initial state. Param-
eters in physical units are m∗ = 5.5 × 10−5m0

e , τR = 10 ps, τC = 9

ps, gC = 3.4 μeV μm2, gR = 6.8 μeV μm2, R = 5.1 × 10−3 μm2

ps ,
L = 204 μm, A = 0.

model (1)

ih̄
∂ψ

∂t
= − h̄2D

2m∗ ∇2ψ + gC |ψ |2ψ + gRnRψ

+ i
h̄

2
(RnR − γC )ψ,

∂nR

∂t
= P(x) − (γR + R|ψ |2)nR, (B1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2, and initial conditions for the
fields ψ and nR are the same as before. We found that for
a similar range of parameters as in the 1D case, one can
observe branching solutions as shown in Fig. 7. In Fig. 7(a),
we show the density of the polariton condensate at a given
time tfinal. The dynamics of branching is visible in Fig. 7(b),
where a cross section for y = 0 is shown, demonstrating the
formation of spatiotemporal patterns similar as in previous
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sections. The parameters of the simulation are given in the
figure caption. The lower quality of the figures is due to the

increased numerical mesh spacing in the 2D case, which was
necessary because of the limited computational resources.
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