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Reactive-infiltration instability in radial geometry: From dissolution fingers to star patterns
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We consider the process of chemical erosion of a porous medium infiltrated by a reactive fluid in a thin-front
limit, in which the width of the reactive front is negligible with respect to the diffusive length. We show that
in the radial geometry the advancing front becomes unstable only if the flow rate in the system is sufficiently
high. The existence of such a stable region in parameter space is in contrast to the Saffman-Taylor instability
in radial geometry, where for a given flow rate the front always eventually becomes unstable, after reaching a
certain critical radius. We also examine the similarities between the reactive-infiltration instability and the similar
instability in the heat transfer, which is driving the formation of star-like patterns on frozen lakes.
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I. INTRODUCTION

A planar dissolution front propagating through a homo-
geneous porous matrix is unstable with respect to small
variations in local permeability; regions of high permeability
dissolve faster because of enhanced transport of reactants,
which leads to increased rippling of the front. This phe-
nomenon, usually referred to as reactive-infiltration instability
[1,2], is an important mechanism for pattern development
in geology, with a range of morphologies and scales, from
cave systems running for hundreds of miles to laboratory
acidization on the scale of centimeters [3–14]. In general,
this instability is characterized by two length scales [15]:
the diffusive length (D/v) and the reactant penetration length
(v/κs), where v is the Darcy velocity, D is the diffusion
constant, κ is the dissolution rate, and s is the specific reactive
area. If the latter scale is much smaller than the former, then
one can adopt the so-called thin front limit, where the interface
is treated as a discontinuity in porosity, with a completely
dissolved phase on one side and an undissolved phase on the
other. Linear stability analysis for this case has been carried
out by Chadam et al. [1], and the corresponding dispersion
relation shows that long wavelengths are unstable, whereas
short wavelengths are stabilized by diffusion.

In their derivation, Chadam et al. have considered rect-
angular geometry with a pressure gradient applied along the
length of the system. However, in many cases (e.g., in the
acidization of oil reservoirs) the reactive fluids are injected
through a well and thus the relevant geometry is radial rather
than rectangular [3,13,16–20]. Motivated by this, here we
carry out the linear stability analysis of the reactive-infiltration
problem in radial geometry, with the fluid injection at the
center of the system. We stay within the thin-front limit and
derive the corresponding dispersion relation, ω(k) which links
the growth rate of the instability (ω) with the wave number
of the perturbation (k). The dispersion relation shows stable
regions for both the long-wavelength and short-wavelength
modes, and the unstable region in between. Next, we study
how the instability growth rate depends on the Péclet number
(Pe) and permeability contrast between the undissolved and

dissolved phase (�). We find that, in contrast to the rectangular
case, there is a region in the (Pe, �) space where the system is
absolutely stable [ω(k) < 0 for all k]. Next, we draw parallels
between the dissolving porous media system and Saffman-
Taylor instability [21]. In both cases the more mobile phase
invades a less mobile one. In the Saffman-Taylor system, the
mobility contrast is due to the lower viscosity of an invading
fluid, whereas in reactive-infiltration the higher mobility of the
invading (dissolved) phase is due to its increased porosity with
respect to the undissolved system. In rectangular geometry,
these similarities are manifested in the identical form of ω(k)
relation for small wave vectors (i.e., long waves); however,
the short-wave part of the dispersion relation is different,
reflecting different short-scale stabilization mechanisms: sur-
face tension in the case of Saffman-Taylor problem versus
diffusion for the reactive-infiltration.

In the radial geometry, the differences between the two
instabilities become more pronounced. One of them is the
existence of a stable region in (Pe, �) space for the reactive-
infiltration instability. This is in contrast to the Saffman-
Taylor instability in radial geometry [22], where for a given
flow rate the front always becomes eventually unstable, after
reaching a certain critical radius R.

The paper is organized as follows. In Sec. II the general
equations governing the dynamics of the dissolving porous
rock are introduced. Then, in Secs. III–V we describe approx-
imations introduced in the analysis: the small acid capacity
limit and the thin-front limit. Next, in Secs. VI and VII
we derive the dispersion relation of the reactive-infiltration
instability in radial geometry and analyze the stability of the
system in (Pe, �) space. The results are discussed in Sec. VIII,
where we also examine the similarities between the reactive-
infiltration instability and the similar instability in the heat
transfer which leads to the formation of star-like patterns on
frozen lakes. Finally, the conclusions are drawn in Sec. IX.

II. THE GOVERNING EQUATIONS

When a porous matrix is infiltrated by an incoming flux of
reactive fluid, a front develops once all the soluble material
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FIG. 1. Geometry of the system. (a) Rectangular geometry: a reactive fluid is injected from the left side and dissolves the porous matrix
through chemical reactions. As the dissolution progresses, the reaction front ζ (y), shown by the solid line, advances into the matrix, separating
the fully dissolved, upstream domain (�) of porosity ϕ1 from the undissolved medium of initial porosity ϕ0. (b) Radial geometry: the reactive
fluid is injected at the center of the system and dissolves the surrounding matrix. The reaction front, R(θ ) advances outwards.

at the inlet has been dissolved. This front propagates into the
matrix as illustrated in Fig. 1, which shows the position of the
front (solid line) some time later. Upstream of the front, all
the soluble material has dissolved and the porosity is constant,
ϕ = ϕ1. Ahead of the front the porosity decays gradually to its
value in the undissolved matrix, ϕ = ϕ0.

On scales large compared with the pore size, the ve-
locity of the fluid is proportional to the pressure gradient
(Darcy’s law),

v = −K (ϕ)

μ
∇p, (1)

where v is the Darcy velocity, ϕ is the porosity and K (ϕ)
is the permeability, which we will assume to be isotropic.
When there are chemical reactions leading to the porosity
change, the velocity field is no longer divergence free, and
the continuity equation is of the form

∂tϕ + ∇ · v = 0. (2)

The transport of reactants and products is described by a
convection-diffusion-reaction equation,

∂t (ϕc) + ∇ · (vc) − ∇ · (Dϕ∇c) = −
, (3)

where D is the diffusion constant and 
—the reaction rate.
For simplicity we will assume a linear kinetic equation for

the reaction rate,


(c) = κscθ (ϕ1 − ϕ), (4)

where κ is the rate constant and s is the reactive surface
area per unit volume. However, our results will turn out to
be independent of the exact form of 
(c) assumed. The
Heaviside step function in Eq. (4), θ (ϕ1 − ϕ), guarantees
that the reaction term vanishes in the region where all of
the soluble material has dissolved (which corresponds to the
porosity ϕ = ϕ1).

Dissolution of the matrix by the reactive fluid gives rise to
a time-dependent porosity field,

νcsol∂tϕ = 
(c), (5)

where csol is the concentration of the solid species, and ν

accounts for the stoichiometry of the reaction.

III. SMALL ACID CAPACITY LIMIT

The acid capacity number γa = cin/νcsol is defined as the
ratio between volume of rock (of molar concentration csol) to
the volume of reactant (of molar concentration cin) needed to
fully dissolve it. In typical geophysical systems the reactant
is dilute (cin � csol) and therefore γa � 1; for example, when
calcite is dissolved by aqueous CO2, γa ∼ 10−4. Whenever
γa � 1 the velocity and concentration fields will reach steady
state well before any significant change in porosity. This can
be formalized by the following change of coordinates and
rescaling of the fields:

t ′ = t/t, x′ = x/l, y′ = y/l (6)

c′ = c/cin, s′ = s/s0, v′ = v/v0, ϕ′ = ϕ/ϕ0, (7)

with

t = 1

γaκs0
, l = Dϕ0

v0
. (8)

where s0 is the specific reactive surface of the undissolved
matrix and v0 is a characteristic flow rate. For example,
in rectangular geometry of Fig. 1(a) v0 corresponds to the
velocity of the incoming solution (as x → −∞).

In these variables the equations take the form:

γaH
∂ϕ

∂t ′ + ∇′ · v = 0, (9)

γaH
∂ (ϕc′)

∂t
+ ∇′ · (c′v) = ∇ · (ϕ∇c) − Hs′c′, (10)

∂ϕ′

∂t ′ = s′c′θ (ϕ′
1 − ϕ′), (11)

where

H = Dϕ0κs0

v2
0

. (12)

In the limit γa → 0 the flow and transport equations become
stationary and read

∇′ · v = 0, (13)

∇′ · (c′v) = ∇ · (ϕ∇c) − Hs′c′, (14)
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FIG. 2. Concentration and porosity profiles. The concentration profile decays with different length scales, lu and ld , in the upstream [x <

ζ (t )] and downstream [x > ζ (t )] regions, with ζ (t ) marking the position of a reaction front. Right panel illustrates the thin-front limit, in which
lu � ld .

whereas the last equation describes porosity evolution over a
longer timescale,

∂ϕ′

∂t ′ = s′c′θ (ϕ′
1 − ϕ′). (15)

This is the limit that we adopt from now on. Coming back to
the original variables we thus have

∇ · v = 0, (16)

∇ · (vc) − ∇ · (Dϕ∇c) = −κscθ (ϕ1 − ϕ), (17)

and

νcsol∂tϕ = κscθ (ϕ1 − ϕ). (18)

IV. UPSTREAM AND DOWNSTREAM
PENETRATION LENGTH

Let us for a moment consider a situation, in which the
reaction front in Fig. 1 is planar, i.e., the region x < ζ (t ) is
completely dissolved (ϕ = ϕ1). In such a case, the flow is
uniform, v = v0êx and the transport equation reduces to the
1D form,

v0∂xc − ∂x(Dϕ∂xc) = −κscθ (ϕ1 − ϕ), (19)

which has the following solution in the region x < ζ , where
the reaction term vanishes (since ϕ = ϕ1 there),

c(x) = cin

(
1 − Ae

x−ζ
lu

)
, x < ζ, (20)

where cin is the reactant concentration in the inflowing solu-
tion and lu is the upstream penetration length

lu = Dϕ1

v0
. (21)

The solution downstream is more complicated, since porosity
is in general a function of x there, but for large x, where
ϕ(x) → ϕ0 we get asymptotically

c(x) = Be−x/ld , x → ∞, (22)

with the downstream penetration length of the form

ld = Dϕ0

v0

2√
1 + 4H − 1

, (23)

as illustrated in Fig. 2. The upstream penetration length is
of a diffusive character, whereas the downstream length is
determined by the interplay of transport and reaction.

V. THIN FRONT LIMIT

The ratio of the downstream and upstream penetration
lengths,

ld/lu = ϕ0

ϕ1

2√
1 + 4H − 1

, (24)

is determined by the parameter H . In particular,

ld/lu → 0 as H → ∞ (25)

defines so called thin-front limit, with the downstream reactive
length negligible in comparison to the upstream diffusive
length [1,2,15,23]. In that limit one can assume that the
reaction takes place instantaneously with the reactants fully
consumed at the dissolution front, as shown in the right panel
of Fig. 2. A more detailed discussion of the small acid capacity
limit, thin front limit, and their applicability to the physical
problems can be found in Ref. [24].

As a consequence, we obtain a Stefan-like problem in
which the space is divided into two domains: the dissolved,
upstream domain (�) of porosity ϕ1 and the undissolved,
downstream domain (�̄) of porosity ϕ0, complementary to �

(cf. Fig. 1).
Geometry of the system is then fully described by the curve

ζ (y) corresponding to the reaction front, which advances with
velocity proportional to the flux of the reactant at a given point

Un = − γa

cin(ϕ1 − ϕ0)
Dϕ1(∇c)n, r ∈ ∂�(t ), (26)

where subscript n represents the component normal to the in-
terface. Only the diffusive flux is present in Eq. (26), since the
concentration at the front vanishes, and so does the convective
contribution to the flux. Since the porosities in each phase are
constant, the pressure obeys Laplace equation in both domains

∇2 pu = 0, ∇2 pd = 0, (27)

whereas the concentration field is governed by the convection-
diffusion equation

∇ · (vcu) − Dϕ1∇2cu = 0, (28)
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in the upstream region. In the downstream region, cd = 0.
Additionally, both the pressure and the normal component of
the Darcy velocity need to be continuous across the reaction
front ∂�:

pu|ζ (y) = pd |ζ (y), (29)

vun|ζ (y) = vdn|ζ (y). (30)

VI. RADIAL GEOMETRY

Let us now consider dissolution in the radial geometry. A
schematic of the system is presented in Fig. 1(b)—the fluid is
injected at the origin of coordinates with a constant rate Q (in
m2/s). In cylindrical coordinate system, the front becomes a
function R(θ, t ). The boundary conditions are given by

lim
r→∞ rvd = Q

2π
êr, (31)

c(r = 0) = cin, (32)

c[R(θ )] = 0, (33)

pu|R(θ ) = pd |R(θ ), (34)

vun|R(θ ) = vdn|R(θ ). (35)

Let us first consider a uniform case where the solution
depends on r only. The reactive front is then a circle of radius
R0(t ), increasing in time. The radially symmetric solutions of
Eqs. (27) and (28) are then

p0
u = − μQ

2πKu
log

r

R0(t )
, p0

d = − μQ

2πKd
log

r

R0(t )
, (36)

vu
0 = vd

0 = Q

2πr
êr, (37)

where Ku and Kd are the permeabilities of the upstream
(downstream) domain and the pressure gauge is chosen such
as to guarantee that p vanishes at the reaction front.

Convection-diffusion equation for radially symmetric case
reduces to

Dϕ1
1

r

∂

∂r

(
r
∂c0

∂r

)
= Q

2πr

∂c0

∂r
, (38)

with the solution of the form

c0 = cin

[
1 −

(
r

R0(t )

)Pe
]

r < R0, (39)

where

Pe = Q

2πDϕ1
(40)

is the Péclet number measuring the ratio of convective and
diffusive effects in the system. Equation (26) gives then the
front velocity of the form

U0 = γa

ϕ1 − ϕ0

Q

2πR0
êr . (41)

Since U0 = dR0

dt we can solve for R0(t ), getting

R0(t ) =
√

R2
0 + γa

ϕ1 − ϕ0

Q

π
t, (42)

where R0 = R0(t = 0).

VII. LINEAR STABILITY ANALYSIS
FOR THE RADIAL CASE

Let us now introduce infinitesimal perturbations of the
front position as well as of the pressure, velocity, and con-
centration fields:

R → R0(t ) + δR, (43)

pu → p0
u + δpu, (44)

vu → v0
u + δvu, (45)

cu → c0
u + δcu, (46)

and analogously for the downstream part. The form of the
perturbation can be arbitrary, but due to the linearity of the
equations allows us to consider individual Fourier compo-
nents, e.g.,

δR = εF (t ) sin(nθ ), (47)

where θ is the polar angle [Fig. 1(b)] and n ∈ N is the wave
number of the perturbation. Note that, since the base state
[Eq. (42)] is time-dependent, the function F (t ) will not, in
general, be the exponential function of time, as it is the case
for the time-independent base states.

The pressure perturbation obeys the Laplace equation

1

r

∂

∂r

(
r
∂δpi

∂r

)
+ 1

r2

∂2δpi

∂θ2
= 0, (48)

where i = d, u. The velocity perturbation can then be calcu-
lated as

δvi = −K

μ
∇δpi, (49)

with the boundary conditions

δpu(r = 0) = 0, lim
r→∞ rδvd = 0,

(
p0

d − p0
u

)
R0 + (δpd − δpu)R0 + δR

(
∂ p0

d

∂x
− ∂ p0

u

∂x

)
R0

= 0,

δvdr

∣∣∣∣
R0

+ δR
∂v0

dr

∂r

∣∣∣∣
R0

= δvur

∣∣∣∣
R0

+ δR
∂v0

ur

∂r

∣∣∣∣
R0

.

The first two relations come from the fact that both the
pressure at the center and the overall flow rate is fixed. The
last two are obtained by linearizing the continuity condition,
Eq. (29) at the perturbed front. The solution to the above is

δpu = −εF (t )
μQ

2πR0

(R0)−n

Ku

1 − �

1 + �
rn sin(nθ ), (50)

δpd = εF (t )
μQ

2πR0

(R0)n

Kd

1 − �

1 + �
r−n sin(nθ ), (51)

where � = Kd/Ku is the permeability ratio between the down-
stream and upstream part. The Darcy law can now be used to
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calculate vu:

δvu = εF (t )
Q

2πR0
(R0)−nn

1 − �

1 + �
rn−1 sin(nθ )êr. (52)

Next we solve for the concentration perturbation. The lin-
earized convection-diffusion equation can be put in the form

1

r

∂

∂r

(
r
∂δc

∂r

)
+ 1

r2

∂2δc

∂θ2

= Pe

r

∂δc

∂r
+ εF (t )cinnPe2 1 − �

1 + �

rPe+n−2

(R0)Pe+n+1
sin(nθ ),

(53)

with Pe given by Eq. (40). The solution of this equation
vanishing at r = 0 is

δc = ε

[
Crλ − Peεcin

R0

1 − �

1 + �

(
r

R0

)Pe+n]
sin(nθ )F (t ),

(54)

where

λ = Pe

2

(
1 +

√
1 + 4

(
n

Pe

)2)
. (55)

The constant in Eq. (54) can be obtained from the requirement
that the perturbation of concentration vanishes at the front

c0(R0) + δR
∂c0

∂r

∣∣∣∣
R0

+ δc|R0 = 0, (56)

which leads to C = 2
1+�

cinPe(R0)−λ−1, thus finally

δc = PeεF (t )cin

R0(1 + �)

[
2

(
r

R0

)λ

− (1 − �)

(
r

R0

)Pe+n]
sin(nθ ).

(57)

Finally, the growth rate of the perturbations can be obtained
from δc using Eq. (26) for the front velocity, which, after
linearization, yields

∂δR

∂t
= − Dϕ1γa

cin(ϕ1 − ϕ0)

(
δR

∂2c0

∂r2

∣∣∣∣
R0

+ ∂δc

∂r

∣∣∣∣
R0

)
, (58)

which leads to the generalized growth rate [22,25] of the
form

ω(n) = Ḟ (t )

F (t )
= ξ (n)

[R0(t )]2
, (59)

with

ξ (n) = Dϕ1γaPe2

(ϕ1 − ϕ0)(1 + �)

[
1 −

√
1 + 4

(
n

Pe

)2

+
(

n

Pe

)
(1 − �) − 1

Pe
(1 + �)

]
. (60)

As shown in Eq. (42) the dependence of (R0)2 on t is linear,
[R0(t )]2 = R2

0 + βt , with β = γa

ϕ1−ϕ0

Q
π

. For a such a simple

form of R0(t ), Eq. (59) can be integrated to yield

F (t ) =
(

1 + βt

R2
0

) ξ (n)
β

. (61)

0.2 0.4 0.6 0.8

− 0.1

− 0.05

0

0.05

0.1

0.15

FIG. 3. Dispersion relation in radial geometry for Pe = 100,
� = 0 (solid line); Pe = 100, � = 0.2 (dashed); Pe = 14, � = 0.2
(dotted).

This shows that even though the time-dependence of the
modes is not a simple exponential, still the fastest growing
modes are those with the largest ω(n) [or ξ (n)].

VIII. DISCUSSION

Using Eq. (41) we can rewrite Eq. (59) in the form

ω(n) = U0

lu(1 + �)

[
1 −

√
1 + 4

(
n

Pe

)2

+
(

n

Pe

)
(1 − �) − 1

Pe
(1 + �)

]
. (62)

As expected, the natural lengthscale for this problem is the
upstream penetration length,

lu = Dϕ1

v0
= Dϕ1

Q
2πR0

, (63)

whereas the natural timescale is

τ = lu/U0, (64)

i.e., the time over which the dissolution front moves over the
length lu. Next, the natural scaling for the wave number is

ñ = n/Pe. (65)

With these scalings,

ω̃(ñ) ≡ τω = 1

1 + �
[1 −

√
1 + 4ñ2 + ñ(1 − �)] − 1

Pe
.

(66)

The dispersion relations corresponding to different values
of Pe and � are shown in Fig. 3. The region ñ > 0 can be
divided in three subintervals: (0; ñ1) which is characterized
by stable growth; (ñ1; ñ2), unstable; and ñ > ñ2, stable again.
The threshold values ñ1,2 are given by

ñ1,2 = [(1 + �)/Pe − 1](1 − �)

4 − (1 − �)2

×
⎛
⎝1∓

√
1 − [(1 − �)2 − 4]{[(1 + �)/Pe − 1]2 − 1}

[(1 + �)/Pe − 1]2(1 − �)2

⎞
⎠.
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FIG. 4. The threshold Péclet number Pethr as a function of the
permeability ratio, �.

On the other hand, the most unstable mode is given by

ñc = 1 − �

2
√

4 − (1 − �)2
, (67)

which determines the wavelength of the most unstable mode,

λc = 2πR0

ñcPe
= 4πR0

√
4 − (1 − �)2

(1 − �)Pe
. (68)

As we see, the most unstable wavelength decreases as the
flow velocities (and hence Pe) increase. Importantly, λc will
increase in time as the radial extent of the front R0 grows.
The dispersion relation depends on two parameters only—Pe
and �. Let us now find the region in Pe–� space in which all
perturbations are stable, i.e., ω̃(ñc) � 0. For given � the stable
region corresponds to Pe < Pethr with

Pethr(�) = 2(1 + �)

2 −
√

4 − (1 − �)2
, (69)

as shown in Fig. 4. Importantly, Pe (for a given volumetric
flow Q) does not depend on the radial extent of the front, R0.
Consequently, we can find the range of Q such that the front
will remain stable during its entire evolution.

A. Relation to the rectangular case

The linear stability analysis of the dissolution front in the
rectangular geometry has been carried out in Refs. [1,2,24]. In
this case the perturbations of the front are of the form

δζ = εeωt sin(ky), (70)

where y is the coordinate perpendicular to the flow (cf. Fig. 1).
Dispersion relation in this case reads

ω̃(k̃) = 1

1 + �
[(1 − �)k̃ + 1 −

√
1 + 4k̃2], (71)

with k̃ = klu, where, as before, lu = Dϕ1

v0
is the upstream

diffusive length. The corresponding timescale, τ = lu/U0, has
been used here to rescale time.

The largest unstable wave vector (corresponding to the
shortest unstable wavelength) is given by

k̃0 = 2(1 − �)

4 − (1 − �)2
. (72)

The maximum of the dispersion relation corresponds to

k̃c = 1 − �

2
√

4 − (1 − �)2
, (73)

which determines the wavelength λc = 2πDϕ1/k̃cv0 of the
most unstable mode. Note that Eq. (73) is fully analogous to
Eq. (67) in the radial case.

We note that the dispersion relation for the rectangular
geometry, Eq. (71), can be obtained from its radial counter-
part, Eq. (66), in the limit, R0 → ∞, v0 = Q/2πR0 = const.
(which implies Q → ∞). In this limit ñ → k̃, and Pe → ∞,
and we recover Eq. (71).

In fact, this limiting procedure leads to the elimination of
the last term (1/Pe) in the right-hand side of Eq. (66), which
shifts the entire dispersion curve downwards and results in the
appearance of the stable region in the phase diagram of Fig. 4.

Next, let us comment on the differences between the radial
and rectangular case. At first sight, it would seem that the
key difference between these two cases is the presence of
stable region in the Pe–� space in the radial growth. However,
we need to keep in mind that Eq. (71) was derived for a
system of an infinite lateral extent. If, instead, we consider
a system of a finite width, W , then only the perturbations
with λ < W are permissible in the linear stability analysis
(assuming periodic boundary conditions along y). For small
enough W all admissible perturbations fall into the stable
region of the dispersion relation, with ω(k) < 0. Taking into
account Eq. (72), the rectangular system will remain stable if

v0W

2πDϕ1
<

2π [4 − (1 − �)2]

2(1 − �)
. (74)

Noting that v0W is the total flow in the system, Q, and keeping
in mind the definition of the Péclet number Eq. (40), we
observe that Eq. (74) is again of the form Pe < Pethr(�). The
functional form of Pethr(�) in the rectangular case is different
from that in the radial case, Eq. (69), but the stable region does
exist in both geometries.

B. Relation to the Saffman-Taylor instability

The reactive-infiltration instability is an example of a
broader class of processes in which a more mobile phase
invades a less mobile one [26]. A paradigm problem of this
kind is viscous fingering (Saffman-Taylor problem), where
the less viscous fluid displaces the more viscous one in
a Hele-Shaw cell. The dispersion relation for such a case
reads [21]

ω̃ = μd − μu

μd + μu
k̃ − Ca

k̃3

12(1 + μd/μu)
, (75)

where k has been rescaled by the depth of the Hele-Shaw
cell, b, and ω has been scaled by the corresponding timescale,
τ = b/U0, where U0 is the front velocity as before. Finally,
μu,d are the viscosities of the invading and receding fluid and
Ca = U0μu/γ is the capillary number, with γ —the interfacial
tension.

033108-6



REACTIVE-INFILTRATION INSTABILITY IN RADIAL … PHYSICAL REVIEW E 100, 033108 (2019)

The respective relation for the radial geometry reads [22]

ω̃ = μd − μu

μs + μu
ñ − Ca

(
ñ3 − ñ

(
b
R

)2)
12(1 + μd/μu)

− b

R
. (76)

Comparison of these expressions with the respective dis-
persion relations for the reactive-infiltration instability leads
to the following conclusions:

(1) As expected, the long-wavelength part of the Saffman-
Taylor dispersion relation Eq. (75) is determined by the
mobility contrast between the phases. Note that in viscous
fingering the mobility contrast between the phases is related
to the difference in viscosities between the invading (less
viscous) phase and displaced (more viscous) phase, thus
ω̃(k̃) ∼ μd −μu

μd +μu
k̃. In reactive-infiltration instability [Eq. (71)]

we get ω̃(k̃) ≈ Ku−Kd
Kd +Ku

k̃, which corresponds to the permeability
contrast between more porous dissolved phase and the less
porous undissolved one, but the general mechanism remains
the same: a more mobile phase is invading a less mobile one.

(2) The short-wave parts of the dispersion relations are
different, reflecting different short-scale stabilization mecha-
nisms: surface tension in the case of Saffman-Taylor problem
versus diffusion for the reactive-infiltration

(3) In radial geometry, both in reactive-infiltration instabil-
ity and in the Saffman-Taylor problem, extra terms appear in
the dispersion relation [compare Eqs. (66) and (76)]: −1/Pe
in the former case versus −b/R and ñ( b

R )
2

in the latter. These
terms shift the dispersion curve downwards, allowing for a
stable displacement. Note, however, that the radial extent of
the front, R(t ) is a function of time, which means that both b/R

and ñ( b
R )

2
approach zero in the long-time limit. This means

that, eventually, the front always becomes unstable at a certain
critical radius, as observed by Paterson [22]. Contrastingly, in
the reactive infiltration, the negative term (−1/Pe) does not
depend on time thus the displacement remains stable. This
leads to the appearance of the absolute regions of stability in
Fig. 4. This difference is again due to the different stabilizing
mechanisms in both cases. In Saffman-Taylor instability, the
stabilizing factor is the surface tension, the effects of which
depend linearly on the curvature. As the front advances, its
radius increases, and thus the surface tension effects become
weaker, unable to keep the system from becoming unstable.
On the other hand, in the reactive-infiltration instability, the
stabilization is due to diffusion, the effects of which are
independent of the radius of curvature of the front.

C. Comparison with numerical simulations

A relatively large number of numerical simulations of
the dissolution process have been performed over the years
[6,12,13,27–29], in various setups and geometries. For the
present study, the most relevant are the studies in radial
geometry [13,18,19,30]. Most of these studies, however, are
performed for relatively large heterogeneities of the medium,
which makes it harder to observe the initial wavelengths of
the instability (for the discussion of the interplay of hetero-
geneities in the initial conditions and instability mechanism,
see Ref. [31]). Additionally, the flow velocities used are
usually rather large, which places the system well in the
unstable region in Pe-� space and makes it hard to observe

the stability-instability transition. In this respect, the most
relevant simulations are those of Cohen [32], who performed
2D radial simulations of dissolution for relatively uniform
initial medium in large range of flow rates (cf. Fig. 4.13
in Ref. [32]). The simulations there were performed at the
flow rates Q = 1.8 × 10−4 cm2/s–18 cm2/s, corresponding
to Pe in the range of 2.9–2.9 × 105 (note that Ref. [32]
uses a different definition of the Péclet from the one used
here). The permeability ratio was very close to zero, � =
3 × 10−8. The simulations at the lowest flow rate (Pe =
2.9) show stable displacement whereas those at Pe = 8.7 are
already unstable, which is in agreement with Eq. (69) which
gives Pethr = 2/(2 − √

3) ≈ 7.46 at � = 0. Importantly, in
this range of flow rates, the parameter H (12) remains large
(103–104), thus the thin-front limit, adopted in the present
work, holds.

D. Relation to the star patterns on ice

Equations (27)–(30) describing the dissolution of the
porous medium share a lot of features with a process of
melting of snow slush by the flowing water. The field driving
the phase change is then different (temperature and not the
concentration) but the positive feedback mechanism is the
same: a small bump on an advancing interface between melted
and unmelted regions will focus the flow and thus lead to
the increased melting in its vicinity. This instability leads
to the formation of star-like patterns on frozen lakes and
rivers (Fig. 5)—whenever a hole forms in the ice cover,
relatively warm (at 4◦ C) water flows to the surface and
melts the snow layer [33,34]. In the photographs in Fig. 5
the flow lines of the water are also beautifully marked on
the ice, which clearly shows the focusing of the flow at the
tips of the fingers. Tsai and Wettlaufer [34,35] proposed a
mathematical model of the advancing melting front which
is essentially equivalent to Eqs. (27)–(30) with the only
difference that an infinite permeability of the upstream part
has been assumed. The dispersion relation for this model
can then be obtained directly by applying Eq. (66) with
� = 0, i.e.,

ω̃(ñ) ≡ τω = [1 −
√

1 + 4ñ2 + ñ] − 1

Pe
, (77)

where this time Pe is the thermal Péclet number,

Pe = Q

2πα
, (78)

where α is the thermal diffusivity and ϕ1 was assumed to be 1.
Note that this is different from the dispersion relation reported
in Refs. [34,35] due to a rather subtle point, which seems
to be overlooked in these works. Namely, the driving force
for the instability is the temperature profile in the upstream
phase, which is a solution of the convection-diffusion Eq. (53).
The flow field in this equation given by Eq. (52) can only
be obtained assuming nonzero permeability contrast and only
then carrying the limit � → 0. Instead, in Ref. [35] the infinite
permeability of the upstream part of the flow is assumed from
the beginning and the upstream velocity perturbations are then
obtained by an ansatz, which does not lead to a correct form
of the upstream flow.
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FIG. 5. Starlike patterns on a frozen lake. The photos are courtesy of Martin Mecnarowski (www.photomecan.eu).

To predict the instability wavelength, we need an estimate
of the flow rate through the initial holes in the ice cover. A
well-documented measurement of this value was not reported.
The rough estimates [33] lead to the value of flow velocities
around the circular hole of the order of 2 × 10−3 cm/s. The
diameter of the holes if of the order of 10–40 cm [36]. This
gives Q ≈ 2 − 8 × 10−2 cm2/s, which combined with α =
10−3cm2/s [34] yields Pe ≈ 20–80. Finally, Eq. (67) with
� = 0 gives nc ≈ 5–20. This is compatible with the observa-
tions from Fig. 5—the patterns there have on average about
10 branches emanating from the main circle, some of them
very short. The differences in lengths between the branches
are natural in the context of unstable growth processes, as they
reflect strong competition between neighboring fingers—the
flow focuses in longer ones and recedes from the shorter ones.
Additionally, the inner circle slowly expands, wiping out the
traces of short, dead branches. These phenomena make it hard
to estimate the original number of branches based on the fully
grown, nonlinear pattern.

IX. SUMMARY

We have carried out the stability analysis of the front
between the dissolved and undissolved medium in the radial

geometry, when the reactive fluid is injected centrally into a
porous block. We have adopted a thin front limit, in which
the thickness of the front is small in comparison to the
diffusive length. Linear stability analysis for the radial flow
problem yields the dispersion relation ω(k), which shows that
both long and short waves are unstable. The position of the
maximum of ω(k) depends on both the Péclet number (Pe) and
permeability contrast between the undissolved and dissolved
phase (�). In particular, there is a range of (�, Pe) parameters
in which the system is (linearly) stable, irrespectively of the
radial extent of the front. This is in contrast to the Saffman-
Taylor instability where the system is always unstable when
the critical radius is reached. We also pointed out the similari-
ties between the reactive-infiltration instability and the similar
instability in the heat transfer, which is driving the formation
of star-like patterns on frozen lakes.
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