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Estimating near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules
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We developed a computationally efficient approach to approximate near-wall diffusion coefficients of ar-
bitrarily shaped rigid macromolecules. The proposed method relies on extremum principles for Stokes flows
produced by the motion of rigid bodies. In the presence of the wall, the rate of energy dissipation is decreased
relative to the unbounded fluid. In our approach, the position- and orientation-dependent mobility matrix of a
body suspended near a no-slip plane is calculated numerically using a coarse-grained molecular model and the
Rotne-Prager-Yamakawa description of hydrodynamics. Effects of the boundary are accounted for via Blake’s
image construction. The matrix components are scaled using ratios of the corresponding bulk values evaluated
for the detailed representation of the molecule and its coarse-grained model, leading to accurate values of the
near-wall diffusion coefficients. We assess the performance of the approach for two biomolecules at different
levels of coarse-graining.
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I. INTRODUCTION

Diffusion of macromolecules near confining surfaces is
of fundamental importance in many research areas includ-
ing physics and biophysics, chemistry, and nanotechnology
[1–14]. Hydrodynamic interactions with boundaries intro-
duce an additional, anisotropic drag acting on molecules
[15–18]. Consequently, diffusion coefficients of arbitrarily
shaped bodies become complicated functions of their po-
sition and orientation relative to boundaries [15,16,19–27].
Although analytic (and usually somewhat approximate) forms
of mobility functions are available for cases such as an
isotropic [15,16,28] or an axisymmetric [23] object suspended
near a planar wall, more complicated shapes and boundary
conditions require the application of numerical approaches:
the boundary integral [29], finite element [24], and fluctuat-
ing hydrodynamics [30,31] methods, mesoscopic molecular
dynamics [32], or methods in which complex shapes of
molecules are composed of rigidly connected spherical com-
ponents [33,34]. These are often costly in terms of computing
resources. Cost can be lowered by coarse-graining repre-
sentations of molecules. Simplified models neglect details
of molecular shapes to benefit from simplicity and compu-
tational efficiency. Inevitably, they also introduce errors in
calculated mobility functions.

We developed an approach that results in accurate approx-
imations to the near-wall diffusion coefficients of arbitrarily
shaped molecules, while using coarse-grained representations
of their shapes. Our method is based on the work of Hill and
Power [35]. These authors proved a pair of complementary
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extremum principles, which define upper and lower bounds on
the total energy dissipation rate for the Stokes flow produced
by the motion of a rigid body. They showed how these can
be used to obtain the drag on a body translated and rotated
in a fluid. Moreover, we draw from the results presented
by Kim and Karilla [36], who applied the theorems estab-
lished by Hill and Power, to energy dissipation in mobility
problems. In our method, a low-resolution, coarse-grained
model of the molecule, consisting of only a few spherical
subunits, is placed near a no-slip plane, in a given position
and orientation. The mobility matrix is calculated using the
Rotne-Prager-Yamakawa tensor [37,38] and Blake’s image
construction [39]. Accurate values of mobilities are obtained
by appropriately scaling matrix components. We derive scal-
ing factors from the components of the bulk mobility matrix
obtained for a detailed model of the molecule (in our case,
its shell model [34,40–42]) and the components of the bulk
mobility matrix obtained for its coarse-grained model. Only a
single calculation of bulk mobilities is required as the result-
ing scaling factors can be used to obtain near-wall mobilities
for any position and orientation of the molecule relative to the
wall.

The remainder of the paper is structured as follows. We
begin by presenting some concepts regarding evaluation of
the near-wall mobility matrix of an arbitrarily shaped body,
modelled as a conglomerate of spheres. Then we introduce
and justify, using energy dissipation arguments, the scaling
approach to approximate near-wall mobilities. Finally, we il-
lustrate the performance of the method for two biomolecules:
a typical globular protein hen egg-white lysozyme (HEWL,
Fig. 1) and a 20 bp B-DNA duplex (DNA, Fig. 2), and evaluate
its range of validity.
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FIG. 1. Left: hen egg-white lysozyme (cartoon representation,
PDB ID 6LYZ [60]) and its van der Waals surface (mesh). Cen-
ter: one-bead-per-residue (medium size spheres) and shell (small
spheres) models of HEWL. Right: coarse-grained dumbbell model
of HEWL (large spheres). The drawings were done using the UCSF
Chimera package [61].

II. HYDRODYNAMIC INTERACTIONS

The following relation holds for a rigid body of an arbitrary
shape, suspended in an incompressible fluid, provided that
the Reynolds number is low and the creeping flow equa-
tions [43,44] are applicable:(

V
�

)
=

(
μtt μtr

μrt μrr

)
·
(

F
T

)
, (1)

where V and � denote, respectively, translational and rota-
tional velocities, F and T are the forces and torques that
act on the body, and the 6×6 matrix represents the mobility

FIG. 2. Top: 20 bp DNA B-helix (cartoon representation) and
its van der Waals surface (mesh). Center: one-bead-per-residue
(medium-size spheres) and shell (small spheres) models of DNA.
Bottom: coarse-grained four-sphere DNA model (large spheres). The
drawings were made using the UCSF Chimera package [61].

tensor [44] of the body, μ. Its four blocks correspond to the
body translations (tt) and rotations (rr), and their couplings
(tr and rt , with μrt being the transpose of μtr). Assuming that
the system is at thermodynamic equilibrium, the fluctuation-
dissipation theorem [45] relates the mobility tensor and the
diffusion tensor, D (kB is the Boltzmann constant and T is the
temperature):

D =
(

Dtt Dtr

Drt Drr

)
= kBT

(
μtt μtr

μrt μrr

)
= kBT μ. (2)

Usabiaga et al. [33] described a technique and provided
codes (RigidMultiBlobsWall package) for numerically solv-
ing the mobility problem for suspensions of rigid bodies of
complex shapes in Stokes flow, in unconfined, partially con-
fined, and fully confined geometries. What follows is the basic
concept of mobility calculations for the general case of a
macromolecule of an arbitrary shape suspended either in an
unbounded solvent or near a no-slip planar boundary.

Similarly to the previous approaches [34,40,41,46–51], the
authors of Ref. [33] construct the molecules as rigid con-
glomerates of spherical subunits. For N such subunits of
hydrodynamic radius a, suspended in an unbounded medium,
the authors evaluate the hydrodynamic interactions using the
3N×3N Rotne-Prager-Yamakawa (RPY) translational mobil-
ity tensor, M [37,38], the 3×3 blocks of which are given by

Mii = 1

6πηa
I, (3)

and for i �= j,

Mi j

=
⎧⎨
⎩

1
6πηa

[(
3a

4ri j
+ a3

2r3
i j

)
I + (

3a
4ri j

− 3a3

2r3
i j

) ri j⊗ri j

r2
i j

]
ri j > 2a,

1
6πηa

[(
1 − 9ri j

32a

)
I + ( 3ri j

32a

) ri j⊗ri j

r2
i j

]
ri j � 2a.

(4)

In the above equations, indices i and j run over spheres, η is
the viscosity of the surrounding medium, ri j is the distance
vector between spheres i and j, I is the 3×3 identity matrix,
and ⊗ denotes the dyadic product. In the presence of a single
no-slip boundary, analytic corrections derived in Ref. [52]
based on Blake image construction [39] are added to Mii

and Mi j . These corrections account for contributions to the
mobility tensor due to the hydrodynamic interactions of the
spheres with the wall. For example, corrected self mobilities
of the ith sphere, in directions parallel (‖) and perpendicular
(⊥) to the no-slip planar boundary, are given with the follow-
ing functions of the sphere-wall distance, h [52]:

Mii,‖(h) = 1

6πηa

(
1 − 9a

16h
+ a3

8h3
− a5

16h5

)
, (5)

Mii,⊥(h) = 1

6πηa

(
1 − 9a

8h
+ a3

2h3
− a5

8h5

)
. (6)

The reader may compare these functions to an exact analytical
solution derived by Brenner [16] [Eq. (A1)] and approxima-
tions proposed by Delong et al. [53] [Eqs. (A2) and (A3)]. Due
to the axial symmetry of the sphere with its image system, all
but the diagonal elements of the sphere self mobility matrix
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vanish. The expression for the correction to Mi j is quite
lengthy, and we choose not to present it here. It can be found
in either Ref. [52] or Ref. [54].

The spherical subunits that make up the rigid body are con-
strained to move rigidly according to the following condition
[33]:

vi = V + � × (ri − r), (7)

where the index i runs over the subunits, vi is the veloc-
ity of the ith subunit, ri = (xi, yi, zi ) is the position of the
ith subunit, r(x, y, z) is the position of the chosen reference
point within the rigid body. In the current work the refer-
ence point is chosen to be the mobility center of the rigid
body [44,55–57], in which the long-time translational self-
diffusion coefficient is uniquely determined by the trace of
the translational-translational block of the mobility matrix
[56,57], and in which the rt block of the mobility matrix, μ,
is symmetric. Its position can be found once all components
of μ in any coordinate system are known [44,55].

The above equation can be written as⎛
⎝v1

...

vN

⎞
⎠ = K ·

(
V
�

)
, (8)

where the 3N×6 matrix K is defined as

K =
⎛
⎝ I (r − ri )×

... ...

I (r − rN )×

⎞
⎠, (9)

with

(r − ri )× =
⎛
⎝ 0 −(z − zi ) y − yi

z − zi 0 −(x − xi )
−(y − yi ) x − xi 0

⎞
⎠. (10)

K projects from translational and rotational velocities of the
rigid body to the translational velocities of the spherical sub-
units that constitute the body [33,58]. The rigid body mobility
tensor, μ [Eq. (1)], is calculated from M as

μ = (KT · M−1 · K)−1. (11)

III. SCALING APPROACH TO APPROXIMATE
NEAR-WALL MOBILITY FUNCTIONS OF AN

ARBITRARILY SHAPED BODY

The scaling approach to approximate near-wall mobilities
of arbitrarily-shaped bodies proposed in the current work re-
lies on theorems established by Hill and Power [35], and their
application to energy dissipation in mobility problems by Kim
and Karilla [36].

We start by considering two scenarios: a molecule sus-
pended in an unbounded fluid and the same molecule
suspended in a fluid bounded by a planar wall. Dissipation
rates due to the motion of the molecule caused by an external
force F, satisfy [35,36]

E = F · V � E0 = F · V 0, (12)

where E0 and E denote, respectively, dissipation rates in an
unbounded fluid and in the fluid limited to a half space by
a planar wall, V 0 = μtt

0 · F is the translational velocity in an

unbounded fluid and V = μtt · F is the velocity near a planar
boundary, μtt

0 is the translational block of the mobility tensor
in an unbounded fluid, whereas μtt is the translational block of
the near-wall mobility tensor. The above inequality signifies
that the presence of the wall results in a decrease in energy
dissipation [35,36]. As the force acting on the molecule is
arbitrarily chosen, one may conclude that for a force acting
in the direction êi, i ∈ {x, y, z} the following relation holds for
diagonal elements of translational blocks:

μtt
ii � μtt

0,ii. (13)

For a molecule suspended either in an unbounded fluid or
near a planar wall, under the influence of a nonzero external
torque, T , the following relation holds [35,36]:

E = T · � � E0 = T · �0. (14)

�0 = μrr
0 · T denotes the angular velocity in an unbounded

fluid and � = μrr · T is the angular velocity near a planar
boundary, μrr

0 is the rotational block of the mobility tensor
in an unbounded fluid whereas μrr is the rotational block of
the near-wall mobility tensor. Consequently, we have

μrr
ii � μrr

0,ii. (15)

Let us now consider two representations of the same
molecule: the detailed shell model, (s), and the coarse-grained
model, for which fine details are lost at the benefit of compu-
tational efficiency (cg). We will use μ

γ,(s)
0,ii (φ) and μ

γ,(cg)
0,ii (φ),

γ ∈ {tt, rr} to denote bulk mobility coefficients of, respec-
tively, the shell and the coarse-grained model. The index i
corresponds to a particular direction, êi, i ∈ {x, y, z}, in the
laboratory frame. φ is the orientation of the models, h is
the distance to the boundary measured from the mobility
center of the model. For orientation- and position-dependent
near-wall mobility coefficients, we will use μ

γ,(s)
ii (h; φ) and

μ
γ,(cg)
ii (h; φ). It is important to keep in mind that bulk coeffi-

cients, μ
γ

0,ii(φ) are also limiting values of near-wall mobility
functions, when molecule-wall separation tends to infinity

μ
γ

ii (h; φ) → μ
γ

0,ii(φ) for h → ∞. (16)

Mobilities μ
γ,(m)
ii (h; φ), m ∈ {s, cg} can be written as

μ
γ,(m)
ii (h; φ) = μ

γ,(m)
0,ii (φ)

[
1 − δ

γ ,(m)
ii (h; φ)

]
, (17)

where δ
γ ,(m)
ii (h; φ) denotes the contribution resulting from the

presence of the planar boundary which introduces an addi-
tional energy dissipation in the system; δ

γ ,(m)
ii (h; φ) � 0. We

may thus write

μ
γ,(s)
ii (h; φ)

μ
γ,(s)
0,ii (φ)

= μ
γ,(cg)
ii (h; φ)

μ
γ,(cg)
0,ii (φ)

×
[

1 − δ
γ ,(s)
ii (h; φ) − δ

γ ,(cg)
ii (h; φ)

1 − δ
γ ,(cg)
ii (h; φ)

]
. (18)

If the molecule is sufficiently far from the wall so that lubri-
cation effects play no role, then 1 − δ

γ ,(cg)
ii (h; φ) is not close

to zero and Eq. (18) is well-defined. Performing multipole
expansion (B4) of the Blake tensor (B5) in the vicinity of
the wall, we note that if the distance of the molecule from
the wall is larger than its size, the presence of the image
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molecule (located behind the wall) will affect only the lowest
multipoles. These depend on the shape, size, and symmetry of
the molecule [23] and can be tuned by appropriately choosing
the coarse-grained model. We may thus expect that factors
δ

γ ,(cg)
ii (h; φ) and δ

γ ,(s)
ii (h; φ) do not deviate significantly. As

both quantities are positive, |δγ ,(cg)
ii (h; φ) − δ

γ ,(s)
ii (h; φ)| is at

least an order of magnitude smaller than either δ
γ ,(cg)
ii (h; φ) or

δ
γ ,(s)
ii (h; φ). This leads to the relation

μ
γ,(s)
ii (h; φ)

μ
γ,(s)
0,ii (φ)

≈ μ
γ,(cg)
ii (h; φ)

μ
γ,(cg)
0,ii (φ)

(19)

and the conclusion that the ratio μ
γ,(m)
ii (h; φ)/μγ ,(m)

0,ii (φ) is
much less sensitive to details of the molecular shape than
μ

γ,(m)
ii (h; φ) itself.

As a supplement to the above reasoning, we consider a
capsule-like (i.e., shaped as a cylinder with hemispherical
ends) molecule. Its shell and coarse-grained representations
are shown in Fig. S2 [59]. Comparison of their bulk transla-
tional mobility coefficients (evaluated in body-fixed frames)
gives μ

tt,(s)
0,11 /μ

tt,(cg)
0,11 = μ

tt,(s)
0,22 /μ

tt,(cg)
0,2 = μ

tt,(s)
0,33 /μ

tt,(cg)
0,33 = 0.93.

In terms of re-creating mobility coefficients, the coarse-
grained model is thus of a rather low quality. In Fig. S3 [59]
we examine contributions to translational mobilities of both
models resulting from the presence of the planar boundary,
δ

tt,(m)
ii (h; φ), m ∈ {s, cg} [Eq. (17)]. As observed, for h > L,

where L is the capsule long axis, the quantity |δtt,(cg)
ii (h; φ) −

δ
tt,(s)
ii (h; φ)| is over an order of magnitude smaller than both

δ
tt,(cg)
ii (h; φ) and δ

tt,(s)
ii (h; φ), thus the approximation [19] is

justified.
In practical applications, Eq. (19) can be used to approxi-

mate near-wall position- and orientation-dependent mobilities
of an arbitrarily shaped molecule, μ

γ,(s)
ii (h; φ), using a very

coarse, low-resolution representation of its shape, without the
need to perform complicated calculations, simply by scaling
the coarse-grained model mobility function, μ

γ,(cg)
ii (h; φ), as

μ
γ,(s)
ii (h; φ) ≈ μ

γ,(s)
0,ii (φ)

μ
γ,(cg)
0,ii (φ)

μ
γ,(cg)
ii (h; φ). (20)

The only requirement is that the bulk mobility tensor of the
molecule, calculated accurately using a detailed model, is
known. Mobility coefficients in an unbounded fluid, μ

γ,(s)
0,ii

and μ
γ,(cg)
0,ii , do not need to be recalculated each time the

orientation is changed. One only needs to know μ
(s)
0 and μ

(cg)
0

either for a particular orientation in the laboratory frame or
in the body-fixed frame, and then simply use an appropriate
transformation matrix to obtain bulk mobilities for any φ.

As presented above, the scaling method can be applied
directly to diagonal elements of the mobility matrix. How-
ever, approximation of the off-diagonal elements can also
be achieved, although not directly. For instance, if one is
interested in elements μtt

i j, i �= j, scaling could be applied to
elements

μtt
+ = 1√

2
(êi + ê j )

T · μtt · 1√
2

(êi + ê j )

= 1

2

(
μtt

ii + 2μtt
i j + μtt

j j

)
(21)

TABLE I. Bulk translational mobility coefficients of HEWL and
DNA. Indices 11, 22, and 33 correspond to the directions of the axes
of body-fixed frames (see Fig. 3). μ

t,(s)
0 is the isotropic translational

mobility coefficient calculated as μ
t,(s)
0 = 1

3 Tr(μtt,(s)
0 ).

μ
tt,(s)
0,11 /μ

t,(s)
0 μ

tt,(s)
0,22 /μ

t,(s)
0 μ

tt,(s)
0,33 /μt

0

HEWL 0.97 0.98 1.05
DNA 0.92 0.92 1.16

and

μtt
− = 1√

2
(êi − ê j )

T · μtt · 1√
2

(êi − ê j )

= 1

2

(
μtt

ii − 2μtt
i j + μtt

j j

)
, (22)

as 1
2 (μtt

+ − μtt
−) = μtt

i j .
In a similar fashion, approximations to elements of the μtr

block can be obtained starting with a general relation for a
molecule under the influence of both external force and torque
[35,36]:

E = F · V + T · � � E0 = F · V 0 + T · �0 (23)

or(
F
T

)T

·
(

μtt μtr

μrt μrr

)
·
(

F
T

)
�

(
F
T

)T

·
(

μtt
0 μtr

0
μrt

0 μrr
0

)
·
(

F
T

)
.

(24)

Any element of the μtr block can be obtained using the
procedure outlined in the case of μtt

i j , using a proper linear
combinations of six-component vectors.

IV. APPLICATIONS—HEWL AND DNA

In this section, we demonstrate the application of the scal-
ing approach to the calculation of diagonal elements of the
near-wall mobility tensor. We consider two biomolecules: a
typical globular protein hen egg-white lysozyme (HEWL,
Fig. 1) and a 20 bp B-DNA duplex (DNA, Fig. 2). We also
indirectly test the scaling hypothesis for off-diagonal elements
by considering different orientations of molecules relative to
the wall.

A. Hydrodynamic models

Two kinds of hydrodynamic representations of a molecular
shape are used: a shell model, which consists of numerous
spherical subunits and accounts for fine details of molecular
shapes, and a coarse-grained model, in which the shape of the
molecule is approximated with only a few spheres. The shell
and coarse-grained models of HEWL and DNA are shown in
Figs. 1 and S1 (HEWL) [59] and Fig. 2 (DNA). A detailed
description of these models is given in the Appendices C and
D. In all calculations, solvent viscosity was set to 0.89 mPa s.

B. Definition of the laboratory coordinate system

Except for the data presented in Tables I, II and Fig. S1
[59], mobility matrices were evaluated in the laboratory frame
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TABLE II. Comparison of bulk mobilities obtained for shell (s)
and coarse-grained (cg) models of HEWL and DNA. Indices 11, 22,
and 33 correspond to the directions of the axes of body-fixed frames
(see Fig. 3).

μ
tt,(s)
0,11 /μ

tt,(cg)
0,11 μ

tt,(s)
0,22 /μ

tt,(cg)
0,22 μ

tt,(s)
0,33 /μ

tt,(cg)
0,33

HEWL 1.02 1.01 1.03
DNA 0.99 0.99 1.00

consisting of three unit vectors {ê‖1 , ê‖2 , ê⊥}, with the bound-
ary in the plane spanned by ê‖1 and ê‖2 (see Fig. 3). The
distance to the wall of a molecule is measured from its center
of mobility.

The values presented in Tables I, II and Fig. S1 [59] cor-
respond to the body-fixed frame, defined using the principal
axes of the rotational block of the model mobility tensor.

The diagonal elements of the mobility matrices define the
mobility coefficients with respect to the axes of the laboratory
coordinate system. The bulk matrices and coefficients are
denoted, respectively, by μ0 and μ

γ

0,‖1
, μ

γ

0,‖2
and μ

γ

0,⊥, with
γ ∈ {tt, rr}, whereas μ, μ

γ

‖1
, μ

γ

‖2
and μ

γ

⊥ are used for their
near-wall counterparts.

C. Hydrodynamic calculations

Near-wall mobility tensors for shell and coarse-grained
models, for different positions and orientations of molecules
relative to the planar boundary, as well as bulk mobilities,
were calculated numerically, using the RigidMultiBlobsWall
package. In all calculations, and for both types of models, we
consider only these molecule-wall configurations, for which
the surface points of the model do not cross the wall. For shell
models, the minimal gap between the model’s surface and the
bounding plane was roughly 3 Å.

Orientation-averaged mobilities were evaluated, for a given
value of the molecule-wall distance, over an ensemble of 350

FIG. 3. Mobility coefficients of a given molecule, represented
either with the shell (filled silhouette) or the coarse-grained model
(empty circles) are calculated in the laboratory coordinate frame
consisting of three unit vectors {ê‖1 , ê‖2 , ê⊥}, with the boundary in
the plane spanned by ê‖1 and ê‖2 . Unit vectors {ê1, ê2, ê3} correspond
to principal axes of the rotational block of the model mobility ten-
sor and define the body-fixed frame. The distance to the wall of a
molecule (h) is measured from its center of mobility.

orientations in the HEWL case, and over an ensemble of
500 orientations in the case of DNA. The orientations were
generated using uniformly distributed random rotation ma-
trices [62]. For each orientation of the molecule, a mobility
tensor in the laboratory coordinate frame was calculated, and
then all matrices were averaged over the orientations (error
bars in the figures presented below correspond to standard
deviations). Diagonal elements of the average matrix, μ̄tt ,

μ̄tt = μ̄tt
⊥ê⊥ ⊗ ê⊥ + μ̄tt

‖ (I − ê⊥ ⊗ ê⊥), (25)

give the average translational mobility coefficients with re-
spect to the axes of the laboratory coordinate system, μ̄tt

‖1
=

μ̄tt
‖2

= μ̄tt
‖ and μ̄tt

⊥. The average mobilities depend on the
position of the molecule relative to the wall.

D. Bulk mobility coefficients of HEWL and DNA

Translational mobility coefficients of HEWL and DNA in
an unbounded fluid, calculated using the shell models, are
given in Table I. We do not focus here on the determination
of exact values of their bulk diffusion coefficients. Rather,
we would like to demonstrate the link between the bulk
and wall region mobilities. Precise calculations of the bulk
mobilities might require the shell models to be constructed
based on more detailed molecular representations than the
one-bead-per-residue models that we use here, as well as
accounting for specific and nonspecific hydration patterns
[63–65]. Nevertheless, translational diffusion coefficients re-
sulting from our calculations are in reasonable agreement
with values reported in the literature. For HEWL our calcu-
lations result in a translational diffusion coefficient of roughly
12.6×10−7 cm2/s that falls within the (adjusted for temper-
ature) range of 11.5−14.9×10−7 cm2/s reported in literature
[66]. For the 20 bp DNA oligomer our calculations give the
value of 12.9×10−7 cm2/s that agrees with the experimentally
determined value of 12.0×10−7 cm2/s [67].

The comparison of the bulk mobility coefficients of HEWL
and DNA, calculated for the shell and coarse-grained mod-
els (the dumbbell and the four-sphere model, respectively) is
given in Table II. Although the HEWL dumbbell and the DNA
four-sphere model are created solely based on very general
geometric features of molecules, they perform quite well with
regard to reproducing bulk mobilities obtained with detailed
shell models. In the case of HEWL, mobility values obtained
for the coarse-grained model are within 3% of the values
calculated for the shell model. The corresponding number
for DNA is 1%. Additionally, in Table S1 [59] we present a
similar comparison for three-, six-, and nine-sphere models of
HEWL. One may argue that these models do a better job at
re-creating the complicated shape of HEWL, but their overall
performance, considering bulk hydrodynamic properties, is
worse than that of the dumbbell.

E. Near-wall orientation-averaged translational mobilities

Figures 4 and 5 show the comparison of the mobilities
based on the orientation of the near wall of HEWL and DNA
with the mobility functions of their equivalent spheres.

Both molecules and equivalent spheres are represented us-
ing shell models. As the hydrodynamic radius (R) of a given
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FIG. 4. Orientation-averaged translational mobility coefficients
for HEWL, for motions in directions parallel and perpendicular to
the wall, as functions of the HEWL-wall distance, compared with
corresponding mobility coefficients of an equivalent sphere. Error
bars correspond to standard deviations calculated over an ensemble
of different orientations. For a comparison, we also show results
(denoted theory) obtained using Eqs. (A1)–(A3).

object is related to its isotropic translational bulk mobility
coefficient (μt

0) via

μt
0 = 1

3 Tr
(
μtt

0

) = (6πηR)−1, (26)

the bulk orientation-averaged mobility coefficient of a given
molecule and the mobility coefficient of its equivalent sphere
are equal. One may ask whether this equality of bulk mobil-
ities results in a similar near-wall behavior of both objects,
i.e., whether orientation-averaged mobilities of an anisotropic
object can be effectively approximated by mobility functions

FIG. 5. Orientation-averaged translational mobility coefficients
for DNA, for motions in directions parallel and perpendicular to
the wall, as functions of the DNA-wall distance, compared with
corresponding mobility coefficients of an equivalent sphere. Error
bars correspond to standard deviations calculated over an ensemble
of different orientations.

of a spherical particle. The answer to this question is not
obvious, as hydrodynamic interactions between an anisotropic
object and the boundary are not only position- but also
orientation-dependent, and thus results of averaging over dif-
ferent orientations cannot be straightforwardly predicted. For
both HEWL (Fig. 4) and DNA (Fig. 5) there is a perfect
agreement of near-wall orientation-averaged mobilities with
mobilities of equivalent spheres, at all molecule-wall separa-
tions for which molecules are free to rotate without the steric
impediment of the wall. It thus appears that as far as the
orientation-averaged mobilities are considered, the shape of
the molecule does not matter. However, once steric interac-
tions come into play and some orientations of molecules are
prohibited, the mobilities diverge. In particular, close to the
plane, steric interactions preclude these orientations in which
long molecular axes are perpendicular to the wall.

The results shown in Figs. 4 and 5 conform to the following
relation:

μtt,(molecule)
α (h)

μ
t,(molecule)
0

≈ μ
tt,(sphere)
α (h)

μ
t,(sphere)
0

for α ∈ {‖,⊥}, (27)

where α denotes the direction relative to the wall. Obviously,
the above expression does not hold close to the boundary
because of orientational constraints imposed by the wall.
Moreover, there are scenarios where the spherical approxima-
tion would not be really useful. One example is the diffusion
of an elongated object (such as the DNA oligomer) under
confinement. Another possible example is a molecule char-
acterized by an anisotropic charge distribution, forced into a
particular orientation relative to the boundary by an external
electric field. In such scenarios, the molecule is not able
to rotate freely and thus the complete orientation averaging
of its translational mobilities cannot be achieved, rendering
the spherical approximation useless. All this could perhaps
be remedied by replacing the sphere with an object that is
better suited to represent an actual molecular shape yet is
still simple enough for efficient numerical, or even analyt-
ical calculations, such as one of the coarse-grained models
presented in Figs. 1, 2, and S1 [59]. We will explore and
test this idea in the next section, where we benchmark ap-
proximate near-wall mobility functions of HEWL and DNA
calculated according to Eq. (20) against the results of the shell
models.

F. Approximation for near-wall mobility functions
of arbitrarily shaped molecules

With an axial ratio of roughly 1.5 (Table III) HEWL
has a moderately elongated shape, and as a consequence its
near-wall mobilities depend not only on its position but also
on its orientation. Consequently, results of a direct (i.e., not
involving scaling) comparison of perpendicular and parallel
mobilities of differently oriented HEWL with mobility func-
tions of a sphere with the same hydrodynamic radius are not
very encouraging. For example, in Figs. 6 (left panel) and S4
[59] mobility functions of HEWL oriented either perpendicu-
lar or parallel to the wall are plotted against the mobilities of
a sphere. Hydrodynamic anisotropy of the protein is clearly
visible, and it appears that the equivalent sphere is a rather
poor approximation of HEWL shape. However, if we consider
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TABLE III. Details of HEWL and DNA hydrodynamic models. R - hydrodynamic radius of the molecule resulting from calculations
performed for its shell model; hydrodynamic radius calculated for the spherical shell representing the equivalent sphere is given within
parentheses. L, maximal dimension along the long axis of the molecule (calculated for its bead model). d , diameter of the molecule (calculated
for its bead model). N (s), number of elements in the shell model. r (s), radius of spherical elements in the shell model; radius of spherical subunits
in the equivalent sphere model is given within parentheses. r (cg), radius of spherical subunits in the coarse-grained model of the molecule.

R [Å] L [Å] d [Å] N (s) r (s) [Å] r (cg) [Å]

HEWL 19.42 (19.43) 52.92 34.18 18 213 0.29 (0.33) 17.09
DNA 19.03 (19.02) 74.60 20.1 14 618 0.33 (0.32) 10.05

the sphere as a coarse-grained model of HEWL and scale the
sphere mobility functions according to expression 20, then
they agree much better with accurate (i.e., calculated using
the shell model) HEWL mobilities (right panel of Figs. 6
and S5 [59]), particularly for protein-wall distances greater
than roughly three times the HEWL hydrodynamic radius.
Below this threshold, scaled mobility functions progressively
deviate from these calculated for the fine model. The largest
deviations are observed for parallel components of mobilities
and for HEWL oriented either parallel or perpendicular to the
wall, whereas the approximation 20 works best for HEWL
tilted toward the wall.

A much better representation of the anisotropic HEWL
shape is achieved with a dumbbell (Fig. 1). Consequently,
apart from relatively small molecule-wall distances at which
fine details of HEWL molecular shape and lubrication effects
come into play, scaled dumbbell mobility functions are in an
almost perfect agreement with HEWL mobilities, regardless
of the molecule orientation (Fig. 7).

The results obtained for the three-, six-, and nine-sphere
HEWL models are presented in Figs. S6, S7, and S8 [59].
One may expect, that as the number of spheres in the model
increases and, at the same time, spheres get smaller (see the
caption for Fig. S1 [59]) the scaling approach should perform
better at smaller distances from the wall. Indeed, close to
the wall, the best agreement of scaled mobilities with those

calculated for the shell model is obtained with the nine-sphere
model. For the comparison sake, in Fig. S9 [59] we show
nonscaled translational mobilities of the nine-sphere model
against mobilities of the shell model. Clearly, without the
scaling, the nine-sphere model performs rather poorly.

In the case of the 20 bp DNA oligomer, whose coarse-
grained model consists of four overlapping spheres (Fig. 2)
the scaling approach performs very well, again failing only at
very small molecule-wall separations (Fig. 8).

The approach based on approximation (20) can also be
applied to evaluate rotational mobility functions of arbitrarily
shaped objects, with a small subtlety, as discussed below.
Consider the axisymmetric coarse-grained models of HEWL
and DNA utilized in the current work. Because their mobility
tensors are derived from the 3N×3N translational part of the
RPY tensor [Eqs. (3), (4), and (11)], mobility coefficients for
rotations about their long axes are not properly defined. Only
the spheres positioned off the rotation axis give rise to the
rotations of the rigid body. There are two ways to remedy
this problem. The first is to use the 6N×6N RPY tensor that
includes the rotations of the spheres that make up the bodies
and the couplings between their translations and rotations
[38,68]. The second, less optimal from the point of view of
computational efficiency, is to consider coarse-grained models
consisting of a larger number of subunits, such as the three-,
six-, and nine-sphere HEWL models (Fig. S1 [59]).

FIG. 6. Left panel: Translational mobilities calculated for the HEWL shell model, for motions in directions parallel and perpendicular to
the wall, compared with mobilities of an equivalent sphere. Right panel: HEWL translational mobilities, for motions in directions parallel
and perpendicular to the wall, compared with scaled mobilities of an equivalent sphere. Data presented in both panels is for HEWL long axis
oriented parallel to the wall.

014407-7



DŁUGOSZ, CICHOCKI, AND SZYMCZAK PHYSICAL REVIEW E 106, 014407 (2022)

(a) (b)

(c) (d)

FIG. 7. Translational mobilities calculated for the HEWL shell model, for motions in directions parallel and perpendicular to the wall,
as functions of the HEWL-wall distance, compared with scaled mobilities of a dumbbell. (a) HEWL long axis perpendicular to the wall. (b)
HEWL long axis parallel to the wall (the molecule is rotated around the first principal axis of the rotational diffusion tensor, perpendicular to
the long axis). (c) HEWL long axis parallel to the wall (the molecule is rotated around the second principal axis of the rotational diffusion
tensor, perpendicular to the long axis). (d) HEWL long axis inclined at 45 degrees angle to the wall.

In Figs. 9 and 10 we show, respectively, the scaled
rotational mobility functions of the HEWL dumbbell and
the DNA four-sphere model, compared with the mobility
functions of the shell models. We consider molecule-plane
configurations in which the long axis of the molecule is either
perpendicular or parallel to the plane and evaluate, where
possible, rotations about directions {ê‖1 , ê‖2 , and ê⊥} (Fig. 3).
For both molecules, the scaling approach performs to our
satisfaction, especially considering that coarse-grained mod-
els rather poorly reproduce the bulk rotational diffusivities
of shell models (the relative difference is roughly 20% for
HEWL and roughly 10% for DNA).

As mentioned above, all HEWL rigid-body rotations can
be resolved with three-, six-, and nine-sphere coarse-grained
models. Their scaled rotational mobility functions are shown
in Figs. S10, S11, and S12 [59], whereas their performance
with regard to re-creating bulk rotational diffusivities of shell
models can be judged based on data given in Table S1 [59].
Again, close to the wall, the scaled mobility functions of the
nine-sphere model are in the best agreement with correspond-
ing functions of the shell model.

G. Range of validity

We used data obtained for different coarse-grained HEWL
models (i.e., the dumbbell and three-, six-, and nine-sphere
models) to estimate the range of validity of the scaling ap-
proach when applied to evaluate near-wall translational and
rotational mobilities. For that, we calculated the relative dif-
ferences between the mobility functions of the shell model
and the scaled functions of the coarse-grained models. These
differences are shown in Figs. S13 (translations) and S14
(rotations) [59] as functions of the molecule-wall distance. It
is apparent that for both translational and rotational motions,
the scaling approach performs very well for distances between
the center of the molecule and the wall greater than the HEWL
diameter (which is actually rather close to the wall in terms
of the surface-surface distance; the reader may recall that
the axial ratio of lysozyme is 1.5). The differences between
accurate and approximate functions are no greater than 10%,
which is perfectly adequate given other approximations which
are usually incurred in hydrodynamic modeling (e.g., a sim-
plified representation of the hydration layer). As expected, the
larger the molecule-wall distance, the smaller the difference.
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(a) (b)

(c)

FIG. 8. Translational mobilities calculated for the DNA shell model, for motions in directions parallel and perpendicular to the wall, as
functions of the DNA-wall distance, compared with scaled mobilities of the four-sphere model. (a) DNA long axis perpendicular to the wall.
(b) DNA long axis parallel to the wall. (c) DNA long axis inclined at 45 degrees angle to the wall.

FIG. 9. Rotational mobility functions calculated for the HEWL shell model, for rotations about axes parallel and perpendicular to the
wall, compared with scaled rotational mobility functions of the dumbbell. Left panel: HEWL long axis perpendicular to the wall. Right panel:
HEWL long axis parallel to the wall. μr

0 is the bulk rotational mobility coefficient of HEWL calculated based on its hydrodynamic radius, R,
as μr

0 = (8πηR3)−1.
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FIG. 10. Rotational mobility functions calculated for the DNA shell model, for rotations about axes parallel and perpendicular to the wall,
compared with scaled rotational mobility functions of the four-sphere model. Left panel: DNA long axis perpendicular to the wall. Right panel:
DNA long axis parallel to the wall. μr

0 is the bulk rotational mobility coefficient of DNA calculated based on its hydrodynamic radius, R, as
μr

0 = (8πηR3)−1.

For molecule-wall distances below the molecule diameter, the
agreement rapidly becomes worse. There are two reasons for
this. The first is related to the lack of fine molecular details
in the coarse-grained models. The second is related to the
lubrication effects, which are not accounted for in the coarse-
grained models. For the shell model, this problem is somewhat
alleviated by using small spheres.

Note that the failure of the scalings in the immediate
vicinity of the wall is not necessarily a detriment since these
length scales are beyond the range of applicability of coarse-
grained models anyway. Dynamics in this regime should be
investigated using an atomistic rather than coarse-grained de-
scription of the molecule-wall system.

V. CONCLUSION

Based on the extremum principles for Stokes flows pro-
duced by the motion of rigid bodies, we have developed a
scaling method that can be used to construct approximate
mobility functions of arbitrarily shaped rigid molecules near a
planar wall. In our approach, molecular shapes are constructed
from a few spheres and hydrodynamic interactions are evalu-
ated using the Rotne-Prager-Yamakawa tensor corrected for
system boundaries. Low resolution of the models, together
with the RPY-level description of hydrodynamic interactions,
make the approach very efficient from the computational
standpoint. Consequently, it can be utilized in dynamical
simulations in which repetitive, on-the-fly calculations of
position- and orientation-dependent mobilities are necessary.
The computational efficiency of the model is demonstrated in

Fig. S15 [59] showing how the time needed to evaluate the
mobility tenor matrix scales with the number of subunits in
the hydrodynamic model. The benefit of using low-resolution
models, in terms of calculation time, is substantial. Despite
the relative simplicity od the models and low-level descrip-
tion of hydrodynamic interactions, the presented approach is
still accurate enough to capture the dynamics of molecules
suspended close to the planar boundary. We presume that
the described method can be applied to more complicated
geometries. For that, one needs to use a generalization of the
RPY tensor applicable for a given confinement geometry [38]
and choose a proper reference point. Here, we used a point
located at an infinite distance from the plane. In a general case,
one should simply select as the reference the point in space
in which the effect of boundaries is minimal. For example,
for the molecule moving between two planar walls, the proper
choice would be the position in the middle between them [69].
This issue will be the subject of a future investigation.
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APPENDIX A: NEAR-WALL MOBILITY OF A SPHERE

Brenner derived an exact solution for the drag acting on a
sphere moving in the direction perpendicular to the wall [16],
resulting in the following formula for the sphere translational
mobility coefficient as a function of the sphere-wall distance

μtt
⊥(h) = 1

6πηa

(
4

3
sinh(α)

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

{
2 sinh[(2n + 1)α] + (2n + 1) sinh(2α)

4 sinh2
[(

n + 1
2

)
α
] − (2n + 1)2 sinh2(α)

− 1

})−1

, (A1)

where α = cosh−1( h
a ).
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For motion in the direction parallel to the wall, numeri-
cal representations of the mobility function, accurate at all
sphere-wall separations, are available [70,71]. Delong et al.
[53] obtained an approximate form of μ‖(h) by combining the
near-wall expression derived by Goldman and Brenner [15]

μtt
‖ (h) ≈ 1

6πηa

2
[
ln

(
h
a − 1

) − 0.9543
]

[
ln

(
h
a − 1

)]2 − 4.325 ln
(

h
a − 1

) + 1.951

for
h

a
� 1.03, (A2)

with a power series expansion in the inverse of h, truncated to
the fifth order [28]

μtt
‖ (h) ≈ 1

6πηa

(
1 − 9a

16h
+ a3

8h3
− 45a4

256h4
− a5

16h5

)

for
h

a
> 1.03. (A3)

APPENDIX B: MULTIPOLE EXPANSION

In an unbounded space, due to the linearity of the Stokes
equations, the relation between the flow disturbance created
by a moving biomolecule and induced force density localized
on the molecule surface can be written as [72]

v(r) = −
∫

T (r − r′) · f (r′)d3r′, (B1)

where f (r′) is the density of hydrodynamic drag forces acting
on a molecule. The hydrodynamic Green function, T , is given
by the Oseen tensor

T (r) = 1

8πηr
(1 + r̂r̂). (B2)

At large distances from a biomolecule Eq. (B1) simplifies to

v(r) = −T (r) · F, (B3)

where F is the total hydrodynamic drag on a molecule and
r is calculated with respect to the origin located inside the
molecule. The above relation is analogous to electrostatics,
where an electric field generated by a distribution of charges
reduces at large distances to that of a point charge. Similarly,
in Eq. (B3) the flow field at large distances becomes indepen-
dent of the details of the particle shape. In a similar vein to the
electrostatic problem, one can now introduce the multipole
expansion by expanding T (r − r′) into a Taylor series in r′
around r′ = 0 [44]:

T (r − r′) =
∞∑

n=1

(−1)n

n!
(r′ · ∇)nT . (B4)

Inserting the expansion into Eq. (B1) leads to the represen-
tation of the flow field as a series in 1

r , analogous to the
multipole expansion in electrostatics. At large distances from
the molecule, only the lowest multipoles (which depend on
its shape, size, and symmetry) play a role in determining the
flow field: a monopole term, called the Stokeslet, that decays
as r−1, as well as a force dipole term (Stokes doublet) that
decays as r−2. The dipole term can be split into a symmetric
part (stresslet) and an antisymmetric part (rotlet).

In the presence of the bounding wall, the Green function
needs to be modified, by adding an extra term, T im(r, r̃′) with
the additional force multipoles located at r′—the mirror image
position of r̃ on the other side of the boundary. As derived by
Blake [39],

T B(r, r′) = T (r − r′) + T im(r, r̃′). (B5)

The image system involves a Stokeslet with an opposite sign,
as well as the stresslet and the sourcelet [39]. The flow
field can then again be calculated by a relation analogous to
Eq. (B1), this time involving T B(r, r′).

APPENDIX C: SHELL MODELS OF HEWL AND DNA

The procedure applied to construct shell models of
molecules follows the general approach outlined by de la
Torre et al. [41], in which one starts with atomic coordinates
of molecules and replace either atoms or groups of atoms
(residues) with spherical elements/beads of fixed radius. The
resulting primary model is in turn represented by a shell
model. Primary models constructed in the current work are
of the one-bead-per-residue variety [73–75].

Hen egg-white lysozyme shell model was created based
on atomic coordinates stored in the Protein Data Bank [76]
under the accession code 6LYZ [60] (Fig. 1) according to the
following procedure.

First, a bead representation of HEWL was built, with spher-
ical elements (beads) positioned at geometric centers of its
amino acids. Each bead was assigned a radius computed as
the mean maximal distance of any heavy atom of a given
amino acid from the center of its bead, increased by the
radius of a water molecule (1.4 Å). The resulting model of
HEWL consists of 129 beads with radii of 4.24 Å (Fig. 1).
In the second step, each bead in the model was replaced
with a spherical shell, of the same radius, whose surface is
covered with 642 small spheres, distributed according to the
algorithm described by Usabiaga et al. [33], that we describe
here only briefly. The authors start with 12 small spheres
assigned to vertices of an isosahedron, which results in a
uniform triangulation of a sphere by 20 faces. Next, they
place a new sphere at the center of each edge and recursively
subdivide each triangle into four smaller triangles, projecting
the vertices back to the surface of the spherical shell along
the way. After each subdivision, the number of vertices is
approximately quadrupled and after the fourth subdivision the
number of spheres is 642 [33]. The radius of small spheres
on the surface of each spherical shell is set to the half of
the minimal spacing between any two of them. Small spheres
that are not accessible from the outside of the molecule are
removed from its final shell model (Fig. 1, Table III).

An equivalent sphere of lysozyme, i.e., a sphere having the
same hydrodynamic radius as the HEWL shell model, consist
of 10 242 spherical subunits distributed on the surface of a
sphere with the radius (resulting from an iterative optimization
procedure) of 19.32 Å. Again, the radius of small spheres is
set to the half of the minimal spacing between any two of
them.

The shell model of the 20 bp DNA B-helix (Fig. 2) was
created based on atomic coordinates generated with the Am-
berTools suite [77,78] using the same procedure as the one
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applied to the HEWL molecule. In the bead model spherical
subunits are positioned at geometric centers of nucleotides
and their radius is calculated as the mean maximal distance
of any heavy atom of a given nucleotide, from the center of
its bead, increased by the radius of a water molecule. The
resulting model of DNA consisted of 40 beads with radii
of 4.42 Å. Each bead was replaced with a spherical shell
covered with 642 spherical subunits, from which only the ones
accessible from the outside of the molecule are retained in the
final shell model (Fig. 2, Table III).

An equivalent sphere of DNA consist of 10 242 spherical
subunits distributed on the surface of a sphere with the radius
of 18.91 Å.

Coordinates of the spheres that constitute the shell model
of a given molecule were transformed to the body-fixed frame
with the origin located at the mobility center, using equa-
tions given in Refs. [55,79], whose axes coincide with the
principal axes of the rotational block of the model mobility
tensor. Coordinate manipulations were performed using an
in-house software.

Spherical shells covered with different numbers of spher-
ical subunits were generated using tools provided with the
RigidMultiBlobsWall package. Shell models of HEWL and
DNA were created using an in-house software.

APPENDIX D: COARSE-GRAINED MODELS
OF HEWL AND DNA

Coarse-grained models of molecules are not uniquely de-
fined, and different approaches can be taken to build them.
Ideally, the level of details of the molecular shape in the
coarse-grained model should be as low as possible to max-
imize the speed of hydrodynamic calculations. The features
of a molecule that one should consider creating its coarse-
grained model are the size, shape, and symmetry.

Both HEWL and DNA are aspherical molecules. HEWL
shape is the more complicated of the two. HEWL is rather
globular yet fully anisotropic (Fig. 1) and contains a large
cavity able to accommodate quite sizable ligands [80]. How-
ever, the elongated shape of the 20 bp DNA oligomer is

quite regular, with two grooves, minor and mayor, forming
helical paths along the long axis of the molecule and giving
rise to the rotational pseudosymmetry. In the first (and very
crude) approximation, both HEWL and DNA can be treated as
axially symmetric bodies whose sizes can be estimated from
appropriate bounding boxes enclosing their molecular shapes.
Hence, the coarse-grained HEWL model consists of two over-
lapping spheres that form a dumbbell (Fig. 1, Table III).
The radius of spheres and the distance between their centers
are chosen in such a manner that the length of the dumb-
bell and its diameter correspond to maximal dimensions of
the shell HEWL model along directions of principal axes
of the rotational block of the mobility tensor (the diame-
ter of the dumbbell is calculated as an average of maximal
dimensions of HEWL along directions perpendicular to its
long axis). Similarly, the coarse-grained model of the 20 bp
DNA oligomer consists of four, equally spaced, overlapping
spheres (Fig. 2, Table III) whose positions and dimensions
are derived from the dimensions of the shell model of the
molecule.

As we have stated above, there is a latitude in the def-
inition of a coarse-grained model. To expand on this issue
and at the same time to show that the process of building a
coarse-grained model can be automated, in the HEWL case
we considered three additional coarse-grained models created
based on the shape-based coarse-graining (SBCG) algorithm
authored by Arkhipov, Fredolino and Schulten [81] imple-
mented in the VMD package [82]. These models consist of
three, six, and nine spheres (Fig. S1 [59]). Positions of spheres
within each model are calculated based on the PDB structure
of HEWL [60] using the SBCG algorithm. For each model,
identical radii of spheres are chosen in such a way that the
dimensions of the coarse-grained and the shell model along
the direction of the longest principal axis of the rotational
block of the mobility tensor are equal.

As in the case of shell models, coordinates of all coarse-
grained models were transformed to the body-fixed frame,
whose axes are the principal axes of the rotational block of
the mobility tensor and origin coincides with the mobility
center.
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