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We study the dynamics of knotted deformable closed chains sedimenting in a viscous fluid. We show
experimentally that trefoil and other torus knots often attain a remarkably regular horizontal toroidal
structure while sedimenting, with a number of intertwined loops, oscillating periodically around each other.
We then recover this motion numerically and find out that it is accompanied by a very slow rotation around
the vertical symmetry axis. We analyze the dependence of the characteristic timescales on the chain
flexibility and aspect ratio. It is observed in the experiments that this oscillating mode of the dynamics can
spontaneously form even when starting from a qualitatively different initial configuration. In numerical
simulations, the oscillating modes are usually present as transients or final stages of the evolution,
depending on chain aspect ratio and flexibility, and the number of loops.
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Long and flexible strings tend to get knotted [1–4], a fact
known to anyone who has taken earphones out of the
pocket only to find them hopelessly tangled. The same is
true also at the microscale—one finds knots in polymer
chains [5], DNA [6], and proteins [7]. Nevertheless, the
relation between the topological constraints and dynamics
and function of biomolecules remains elusive [8].
There are many examples when the presence of a knot

affects local properties of the polymer chain. Knotting was
shown to locally weaken the chain, so that it breaks when
pulled at the site of the knot, no matter if we deal with
polymer chains [9], ropes [10], or spaghetti [11]. In a
similar vein, tight knots on DNA and proteins increase the
local width of the chain, which can lead to jamming of
the nanopores [12] and mitochondrial pores [13], when the
pulling force is sufficiently high.
Much more subtle are the connections between the

topological constraints and the global properties of the
chain. In this respect, it has been hypothesized that knots in
proteins provide extra stability needed to maintain the
global fold and function under harsh conditions [14].
Indeed, both experiments [15] as well as numerical
simulations [16] suggest that knotted structures have an
increased thermal stability when compared with unknotted
ones, which can potentially explain why the knotted
structures are encountered in thermophilic bacteria [17].
Another manifestation of the impact of topology on the
global properties of the chain is the correlation between the
knot type of the DNA loops and their electrophoretic
mobility [18,19]. The latter turns out to be linearly

dependent on the average crossing number of the knot.
Thus, electrophoresis can be used for the separation of
DNA topoisomers. A similar linear relationship holds for
sedimentation of DNA knots [20], as well as macroscopic
rigid knots [21].
In this Letter, we investigate shapes and dynamics of

sedimenting flexible knotted loops. In our experiments,
knotted chains made of millimeter-sized steel balls settle
in a viscous oil, and might also serve as a model of
microscale filaments moving in a water-based environment.
Surprisingly, we observe that trefoil and other torus knots
often attain remarkably regular, thin, wide, and relatively flat
horizontal toroidal structures, with a number of intertwined
loops that perform an oscillatory periodic motion. This
characteristic motion is often visible even if starting from
different initial configurations. Interestingly, a similar motion
has been reported previously in a completely different
context of knotted vortices in ideal fluid [22–24].
We then study this motion in detail using Stokesian

dynamics simulations of a flexible bead-spring chain
moving under gravity. For torus knots, we numerically
find translating periodic solutions analogous to those seen
in the experiments, and we detect that they slowly rotate
along the vertical symmetry axis. We analyze the depend-
ence of the characteristic timescales on the chain flexibility
and aspect ratio.
The results are important for elucidating the link between

topology and dynamics of filamentous objects, necessary,
e.g., for a correct interpretation of ultracentrifugation or
sedimentation data [25–27]. The usual assumption adopted
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in interpretation of the ultracentrifugation data is that the
polymer settles in a globular form, whereas our studies of
relatively short closed chains show that it does not need to
be so. Toruslike forms have different sedimentation veloc-
ities from the globules made of the same length of polymer,
which needs to be taken into account while interpreting the
ultracentrifugation data.
Moreover, the existence of periodic solutions for flexible

knotted chains is essential for such general features of the
dynamics as bifurcations, instabilities, and transition to
chaos, which can be further analyzed in analogy to previous
studies performed for simple model systems [28–32] of
many particles settling under gravity in a viscous fluid, with
a striking coexistence of both periodic oscillations and
chaotic trajectories [28,32].
The present study is an important extension of previous

investigatons of flexible open filaments settling in a
gravitational field [33–36] and of knotted filaments in
the shear flow [37–39], which show that an interplay
between elastic and hydrodynamic forces can lead to a
remarkably rich dynamical behavior.
Experiments.—Chains made of 50 stainless steel spheri-

cal beads of diameter 4.5 mm connected with 2 mm linkers
were joined end to end using a stainless-steel clip, in such a
way that knotted loops were formed. Knots of different
types were studied, including 31, 41, 51, 52, 61, 71. The
experiments were conducted in highly viscous (1000cSt)
silicone oil that filled the cylinder 2 m high and 0.5 m in
diameter. The chains were dropped into oil, with the total
number of 350 trials and typical Reynolds number of the
order of 1–10 (based on characteristic radius of the
sedimenting structure). The mean sedimentation velocity
V was measured and videos of the sedimenting chains
were recorded.
We observed different behaviors of the sedimenting knots,

depending on the knot type and initial configuration [see an
example in Figs. 1(a) and 1(b)]. In many trials the chains
tended to regular or almost regular sequences of shapes,
although in some cases they settled as a compact coiled
structure, sometimes staying in the same initial configuration
until the end of the experiment. The torus knots 31, 51, 71, 91
had a tendency to converge onto a horizontal, flat, and wide
toroidal shape with a circular hole at the center and a number
of tightly intertwined loops, which swirled around each other
periodically (or almost periodically). This characteristic
attracting configuration is in this Letter called T p;q, with
the indices referring to p loops, each making q turns around
the centerline of the torus.
The simplest torus knot, trefoil (31), often evolved

towards oscillating shape T 2;3 (see Fig. 2 and movie 1),
with the radius ρ0 ¼ 2.6 cm and performed about 5
swirling oscillations over the 1.6 m distance of the observed
motion [40]. The experimental data allow us to estimate
that for the T 2;3 shape, the typical ratio of the swirling and
sedimentation timescales, τswirl and τsed ≡ 2ρ0=V, is of the

order of 6. To demonstrate the swirling motion, we colored
one of the beads in a video recording, and added it as
movie 7 to the Supplemental Material [41]. For certain
initial conditions of a trefoil, another configuration T 3;2
was formed and the swirling motion appeared (see movie 2
and Figs. 1–2 in the Supplemental Material [41]).
More complicated torus knots studied in the experiments

in many cases also formed analogous toroidal structures,
e.g., T 2;7 (see movie 3) or T 2;5, with a corresponding
periodic motion of the loops around each other. However,
the experimental data do not allow for a thorough charac-
terization of the periodic orbits. This has motivated us to
search for such dynamical modes of torus knots numeri-
cally, as detailed below.
Theoretical model.—The elastic loop is modeled as a

chain of N spherical beads of diameter d connected by
harmonic springs. The stretching potential is thus given by
Eb ¼

P
iBðli − l0Þ2=2, where li is the distance between

centers of beads i and iþ 1. The equilibrium distance is
chosen to be l0 ¼ 0.6d (the beads overlap to prevent fluid
motion between them [43]). With this choice, N ¼ 120
corresponds to the same aspect ratio as for the chains used
in the experiments (for completeness, we analyze numeri-
cally also motion of shorter loops). The spring constant is
set at B ¼ 50F0=d, where F0 is a gravitational force acting

FIG. 1. Examples of structures evolving to regular configura-
tions T 2;3: (a),(b) experiments, (c) simulations, (d) the notation
used in this Letter, with ωrot ¼ 2π=τrot and ωswirl ¼ 2π=τswirl. In
all images gravity points downwards.

FIG. 2. Snapshots of sedimenting T 2;3 knots from experiments
(left) and simulations (right).
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on each of the beads. A relatively high value of B assures
that the length of the chain is almost constant in time.
We introduce also a harmonic bending potential,

Ea ¼
P

iAðϕi − ϕ0Þ2=2, where ϕi is the angle between
the bonds ði − 1; iÞ and ði; iþ 1Þ. A moderate bending
stiffness A ¼ 5F0d is assumed, whereas the chosen equi-
librium value of the angle, ϕ0 ¼ π, corresponds to a straight
chain. Additionally, a truncated Lennard-Jones potential
Erep ¼ ε½ðσ=rijÞ12 − ðσ=rijÞ6�, rij < 21=6σ is used to re-
present steric constraints between the nonconsecutive
beads, with σ ¼ 0.5d and ε ¼ 0.25dF0.
To follow the dynamics of the system, one needs to find

the fluid flow produced by the sedimenting chain. For
macroscopic objects, this task is hard in general due to the
nonlinearity of the Navier-Stokes equations. However, our
ultimate goal is to understand the sedimentation process of
microscopic knotted loops. Therefore, to make the problem
tractable, and applicable to microscale systems, we assume
that the motion takes place at very low Reynolds number.
The inertial term in the Navier-Stokes equations can then be
neglected and the relation between the bead velocities and
the forces acting on them becomes linear

_ri ¼
XN
j¼1

μij · Fj; ð1Þ

where ri is the position of the center of bead i, μij are
translational-translational mobility matrices and Fi is the
total external force acting on bead i (i.e., the sum of
the gravitational force F0 and the forces resulting from the
interparticle potentials described above).
For the mobility, we adopt the Rotne-Prager approxi-

mation [44–46], which for i ≠ j gives μij=μ0 ¼
ð3d=8rijÞf½1þ ðd2=6r2ijÞ�I þ ½1 − ðd2=2r2ijÞ�r̂ijr̂ijg for the
nonoverlapping beads (rij ≡ jri − rjj ≥ d) and μij=μ0 ¼
½1 − ð9rij=16dÞ�I þ ð3rij=16dÞr̂ijr̂ij for the overlapping
beads (rij < d). Finally, the self-term is given by
μii ¼ μ0I. Here, I is the 3 × 3 unit matrix, μ0 ¼
ð3πηdÞ−1 is the single bead mobility coefficient, and η is
the fluid viscosity.
Numerical results and discussion.—In our simulations,

we focused on the evolution of torus knots, starting from
toroidal structures with the symmetry axis parallel to
gravity. Some of the initial configurations [an example is
shown in Fig. 1(c)] were chosen on surfaces of horizontal
tori with different values of the major and minor radii, r0
and a, respectively, with the bead centers located along the
line which in cylindrical coordinates is given by

ρðαÞ ¼ r0 þ a sin

�
q
p
α

�
; zðαÞ ¼ a cos

�
q
p
α

�
; ð2Þ

with the angle α ∈ ð0; 2pπÞ, the number of loops p, and the
number of turns in poloidal direction q.

The initial structures given by Eq. (2) later often
increased their major radius up to ρ0 ≈ Nl0=ð2πpÞ,
decreased the minor radius, and acquired the swirling
T p;q shape, akin to that observed in the experiments
(see movies 4–6 in the Supplemental Material), and lasting
for a shorter or longer time, depending on the knot type,
fiber length N, and bending stiffness A. In the following,
we focus on analyzing the longest and the most regular
swirling motion of the T 2;3 structure. Snapshots from the
simulations are presented in Fig. 2 along those from the
measurements, clearly showing the similarity of the exper-
imental and numerical shapes, also visible by comparing
movies 1 and 4.
In our simulations, we were able to follow the sed-

imentation process over a much longer time than in the
experiments—such that the distance traveled by a torus
knot T p;q of radius ρ0 was at least ∼2 × 103ρ0. Such a long
time frame allowed us to observe several features of the
dynamics which are hard to perceive in the experiments. In
particular, we note that the swirling motion of the strands
around each other (shown in Fig. 2) is accompanied by a
much slower rotation of the entire system around the
vertical symmetry axis. The direction of rotation depends
on the handedness of the knot. The simulation shows
that the right-handed trefoil rotates clockwise and left-
handed—anticlockwise, looking from the top. (A knot is
called right-handed if its writhe is positive and left-handed
otherwise [47]). This stays in accordance with experimental
results reported for rigid knots [21].
On the other hand, the direction of the swirling motion

of the strands is always the same, independent of chirality
of the knot. The outer strand (i.e., the one positioned
further from the center of the torus) lags behind the inner
one. Then, the strands swap places and the process
repeats itself. This dynamics can be understood by noting
that the beads in the inner strand are on average closer to
all the other beads than the beads in the outer strand.
Closer beads exhibit stronger hydrodynamic interactions,
which results in faster sedimentation and overtaking
of the slower strand. Actually, the same mechanism of
hydrodynamic interactions induced by gravity is respon-
sible for swirling motions of many rigid particle systems
settling under gravity [28–32], and also swirling motions
of two elastic filaments [33], and two elastic dumb-
bells [36].
Thus, in our simulations there emerge three characteristic

timescales: period τrot of the system rotation, period τswirl
of the swirling oscillations, and sedimentation time
τsed ¼ 2ρ0=V, i.e., the time needed for a chain to sediment
over its diameter. The corresponding frequencies are
determined from the Fourier transform of the bead posi-
tions, and the sedimentation velocity V by averaging the
center-of-mass speed.
Ratios of the characteristic timescales for T 2;3 are plotted

in Fig. 3. Here, τd ¼ d=ðμ0F0Þ is the time needed by a
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single bead falling under the gravitational force F0 to move
over the distance equal to its diameter d.
The essential observation is the separation of timescales,

τsed ≪ τswirl ≪ τrot in the simulations. The simulation data
in Fig. 3 give the numerical ratio τswirl=τsed ≈ 10—of the
same order of magnitude as in experiments. On the other
hand, a very long period of rotation around the vertical axis
makes the rotation difficult to be observed in experiments.
Moreover, the separation of timescales still holds, even if
the bending stiffness A is changed by 4 orders of magnitude
(see Fig. 11 in the Supplemental Material [41]).
Flat, thin, and wide toroidal shape T 2;3 closely resembles

an equilibrium configuration of an elastic trefoil made of
springy wire, as reported in Refs. [48–51], without gravity
or fluid involved. These configurations are found by
minimizing the bending energy of the knotted loop.
Such flat toroidal shapes T p;q will be equilibrium con-
figurations for all the knots with the bridge index equal to
the braid index [49], which is a fairly large class of knotted
structures, including (but not limited to) torus knots. On the
other hand, the swirling motion of the strands around each
other is very similar to the toroidal vortex knot solutions in
inviscid fluid [22,23]. The latter, for large aspect ratio of the
chain, lie on an elliptic torus of eccentricity q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ

p
and swirl around each other periodically. This has moti-
vated us to ask whether the T 2;3 solutions of the sedi-
menting knots can be described by the same mathematical
expressions as in the case of vortex knots. Therefore, we
check if all the beads move along the same trajectory

ρðαÞ ¼ ρ0 þ ρ0ϵ sin

�
q
p
α

�
;

zðαÞ ¼ ρ0ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
q

cos

�
q
p
α

�
; ð3Þ

on the surface of an elliptic torus, and if their cylindrical
coordinates change in time according to the analogous
formula [23,24],

ρðtÞ ¼ ρ0 þ C sin

�
2πt
τswirl

�
;

αðtÞ ¼ C
p
qρ0

cos

�
2πt
τswirl

�
þ 2πt

τrot
;

zðtÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ

p
q

cos
�
2πt
τswirl

�
þ Vt: ð4Þ

where ρ, z, α should be referred to discrete positions of
consecutive bead centers (we focus on p ¼ 2 loops and
q ¼ 3 turns). Here, ρ0 corresponds to the major radius of
the torus, and C ≪ ρ0 is the shorter radius of the elliptic
cross section. It is worth emphasizing here that Eq. (4)
includes three contributions to the overall motion: swirling
of the loops with a period τswirl, sedimentation with a
velocity V, and rotation of the system around vertical axis
with a period τrot. Both ρ0 and C are evaluated from fitting
to the simulation data. The results are shown in Fig. 4 for
the chain aspect ratio N ¼ 90 and in the Supplemental
Material [41] for N ¼ 40 and 120. One should note, that
for the case of the T 2;3 knot and the sizes considered
here, fitted ρ0 is smaller by less than 1% from the
simple geometric estimate, ρ0 ¼ Nl0=ð2πpÞ. The scaled
coordinates used in these figures correspond to ρ̃ðtÞ ¼
C−1½ρðtÞ − ρ0�, α̃ðtÞ ¼ ðqρ0=pÞC−1½αðtÞ − ð2πt=τrotÞ�,
z̃ðtÞ ¼ ðq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
ÞC−1½zðtÞ − Vt�, and the time coordi-

nate is scaled by the swirling period of the chain, τswirlðNÞ.
It is evident that the fitting works rather well.
For 40 ≤ N ≤ 120, we obtain practically the same

value C=d ¼ 0.28� 0.01. For this range of aspect ratios,
1.91 ≤ ρ0=d ≤ 5.73 and therefore C=ρ0 ≪ 1, consistently
with the range of validity of the expressions for vortex
knots [23,24].
Figures 1–4 present the data for T 2;3 structure. A natural

question to ask is whether the motion of other toroidal
structures, with different p and q, exhibit similar features.
Several of them have been studied within this work and
some of the results are given in the Supplemental Material
[41]. Briefly, the T 3;2 motion is almost periodic with a
reasonably well-defined swirling frequency and very

FIG. 4. Swirling motion of a single bead of the T 2;3 chain with
N ¼ 90, in scaled cylindrical coordinates ρ̃, α̃, z̃ (see text)
represented with squares, circles, and triangles, respectively. Solid
lines are fits to the simulation data (seeSupplementalMaterial [41]).

FIG. 3. Ratios of timescales for swirling, rotation, and sed-
imentation of T 2;3 loops vs the number of beads N (numerical
results).
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irregular amplitudes, see Fig. 2 in the Supplemental
Material. On the other hand, the T 2;5, T 2;7, and T 2;9 knots
yield regular, periodic motion as in the case of T 2;3 (see
Figs. 4–6 in the Supplemental Material), though are less
stable, in the sense of the distance traveled. The above
mentioned stability, and the applicability of Eq. (4) would
also dependon the sizeN or bending stiffnessA, of the chain.
The particles oscillating around nearly circular poloidal

orbits have also been observed (numerically and analyti-
cally) for systems of two rings of particles without elastic
constraints, sedimenting very close to each other under a
perpendicular constant force [31]. The poloidal swirling of
particles in a toroidal configuration is the inherent feature
of hydrodynamic interactions generated by the external
force parallel to the symmetry axis of the torus. Knotted
flexible chains can keep the toroidal T p;q configuration for
a long time, and therefore for such systems the swirling
motion might be significant for practical applications.
Importantly, even in the presence of a fair amount of
Brownian motion (characterized by the Peclet number
Pe ¼ dF0=kT ≳ 2) both the swirling motion persists and
the toroidal shape is still present, although from time to
time it flips over due to the thermal noise (see movie 8 with
Pe ¼ 2 in the Supplemental Material [41]).
In summary, our experiments have shown that knotted

loops made of ball chain, when sedimenting, can attain
a flat, wide, and thin toroidal form, with a number of
intertwined loops oriented perpendicularly to gravity. Such
a structure moves in a highly coordinated fashion, with the
individual loops swirling periodically around each other. In
numerical simulations of Stokesian dynamics of elastic
fibers, a family of oscillating motions has been found, with
a striking similarity to those seen in the experiments.
Additionally, the periodic solutions obtained in the simu-
lations resemble the stable solutions of knotted vortex
filaments evolution equations in an ideal fluid.
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