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Stokesian dynamics of sedimenting elastic rings†

Magdalena Gruziel-Słomka,a Paweł Kondratiuk,b Piotr Szymczak b and
Maria L. Ekiel-Jeżewska *a

We consider elastic microfilaments which form closed loops. We investigate how the loops change

shape and orientation while settling under gravity in a viscous fluid. Loops are circular at the equilibrium.

Their dynamics are investigated numerically based on the Stokes equations for the fluid motion and the

bead–spring model of the microfilament. The Rotne–Prager approximation for the bead mobility is used.

We demonstrate that the relevant dimensionless parameter is the ratio of the bending resistance of the

filament to the gravitation force corrected for buoyancy. The inverse of this ratio, called the elasto-

gravitation number B, is widely used in the literature for sedimenting elastic linear filaments. We assume

that B is of the order of 104–106, which corresponds to easily deformable loops. We find out that initially

tilted circles evolve towards different sedimentation modes, depending on B. Very stiff or stiff rings

attain almost planar, oval shapes, which are vertical or tilted, respectively. More flexible loops deform

significantly and converge towards one of several characteristic periodic motions. These sedimentation

modes are also detected when starting from various shapes, and for different loop lengths. In general,

multi-stability is observed: an elastic ring converges to one of several sedimentation modes, depending

on the initial conditions. This effect is pronounced for very elastic loops. The surprising diversity of long-

lasting periodic motions and shapes of elastic rings found in this work gives a new perspective for the

dynamics of more complex deformable objects at micrometer and nanometer scales, sedimenting

under gravity or rotating in a centrifuge, such as red blood cells, ring polymers or circular DNA.

1 Introduction

At micrometer and nanometer scales, there appear a variety of
elastic, deformable objects moving in a fluid environment,
such as proteins, DNA, algae, bacteria, vesicles or red blood
cells. Therefore, there is growing interest in theoretical and
numerical modeling of the dynamics of such systems, sedi-
menting under gravitational or centrifugal forces, entrained by
external fluid flows, or swimming, with or without a significant
influence of the Brownian displacements.

Motion of elongated elastic linear filaments has already
been extensively studied.1–10 However, it is also of great interest
to investigate the dynamics and characteristic shapes attained
by elastic circular filaments. Such loops are often formed by
proteins, DNA,11–19 or ring polymers,20–24 which are usually
much longer than they are thick. The dynamics of ring-like
filaments of a relatively short length is also of great interest as a
simple model of more complex objects, such as e.g. red blood

cells, vesicles or capsules.25–31 An interesting problem which
attracts a lot of attention is how the topology of such loops – the
type of knots tied on the elastic filaments – affects the dynamics
and other mechanical properties.32–44 Such knotted structures
are often found in nature and biotechnology, in connection
with specific biological functions.45–48 The dynamics of
unknotted loops is also interesting as a reference. Surprisingly,
until now the dynamics of a single elastic ring sedimenting
under gravity in a viscous fluid in the Stokesian regime has not
been studied. The aim of this work is to contribute towards
filling this gap.

The plan of the paper is the following. Section 2 is devoted to
a brief description of the bead–spring model of the elastic ring
and its Stokesian dynamics. Normalization and dimensionless
parameters are introduced. The most important quantity is the
ratio of bending to hydrodynamic forces acting on the ring,
called the bending stiffness.

This description is followed in Section 3 by the results of
simulations of rings made of sixty beads, starting from a tilted
circle. The tilt is introduced as the simplest perturbation of
the circular shape in horizontal orientation (which does not
change while settling). This subtle modification of the initial
condition leads to fascinating results: tilted rings yield various
stationary configurations or periodic motions dependent only
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on the bending stiffness of the ring (and not on the initial tilt
angle).

Further on, in Section 4, the generality of the previous
observations is demonstrated. This is done through the analysis
of simulations of sedimenting elastic rings with various numbers
of beads. Also, for rings made of sixty beads, a series of simulations
is performed which start from various initial configurations
and, as previously, for different values of the bending stiffness.
The latter simulations lead to observation of multi-stability of
the studied systems: at certain values of the bending stiffness,
several attracting sedimentation modes are available: stable
configurations or periodic oscillations. Section 5 contains the
final conclusions.

2 Model
2.1 Mechanical model of loops

A model ring consists of N identical beads of diameters d whose
virtual bonds (a link between two consecutive overlapping
beads) and bond angles (an angle between two consecutive
bonds) are constrained by Hookean springs. The stretching
potential energy for a single bond of length li is given by Ei,b =
B*(li � l0)2/2, with a large spring constant B* = 50F0/d, where
F0 is a gravitational force, corrected for buoyancy, acting on
each of the beads, and l0 = 0.6d – the equilibrium bond length.
The value of B* was selected in such a way that it corresponds to
a practically non-extensible filament. In our model the beads
are free to rotate. However, the equilibrium distance l0 between
the bead centers was chosen much smaller than their diameter
in order to hinder their rotation. The influence of free rotation
on the dynamics of close non-overlapping beads with lubrication
interactions was discussed in ref. 49.

The bending potential energy for a single angle fi between
consecutive bonds is given by Ei,a = A*(fi � f0)2/(2l0), where A*
and f0 = p are the bending stiffness and the equilibrium bond
angle, respectively.

To prevent complete overlapping of beads and thus chain
self-crossing, a truncated Lennard-Jones potential energy
Ei,rep = e*((s*/rij*)12 � (s*/rij*)6), rij* o 21/6s*, is used to
represent steric constraints between non-consecutive beads i,
j, with s* = 0.5d and e* = 0.25dF0. These three potential energies
lead to stretching, bending and repulsive forces acting on
each bead, i.e. Fi,b, Fi,a, and Fi,rep, respectively, for the ith bead.
Additionally, gravity is applied as a constant external force along
the z-axis, i.e. Fi,g = (0, 0, F0), for a single, ith bead.

Thus, the total external force acting on a single bead becomes:

Fi = Fi,b + Fi,a + Fi,rep + Fi,g (1)

2.2 Stokesian dynamics

The total force (eqn (1)) is then included in the equations of
motion for the i-th bead within a Stokesian dynamics scheme
as in ref. 50–60.

ri
� t� þ Dt�ð Þ ¼ ri

� t�ð Þ þ
X
j

lij
� � FjDt� (2)

The mobility matrix is represented by the Rotne–Prager–
Yamakawa approximation,61,62 ‡ allowing for overlapping beads
i a j:
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with rij* = |rj* � ri*| and 3 � 3 identity matrix I. The self term is
given by lii* = m0I, and m0 = 1/(3pZd) is the mobility of a single
spherical bead moving in a fluid of viscosity Z.

2.3 Non-dimensional variables

As a reference velocity, v0, we take the velocity of a spherical
bead of diameter d, moving under gravity in a fluid of
viscosity Z:

v0 ¼
1

3pZd
F0 (4)

The lengths and velocities are scaled as r = r*/d, and v = v*/v0,
respectively. The time is scaled by the time td = d/v0 needed for
a bead of velocity v0 to travel the length of its diameter, t = t*/td.
The force constants for stretching, B*, and repulsion, e*,
in dimensionless form become B = B*d/F0 and e = e*/(dF0).
The most important dimensionless parameter governing the

dynamics of the system is the ratio A ¼ A�

F0N3l02
of bending to

hydrodynamic forces acting on the chain. Its inverse, some-
times called the elasto-gravitational number,1–5,7,8 is widely
used in the literature as the standard parameter in dynamics of
sedimenting elastic linear filaments.1–9 For small deformations,
the dynamics of an elastic thin filament depends on its bending
stiffness and length only through the elasto-gravitation number.64

In this paper, we focus on very elastic loops, in the range
A { 1, with the most interesting dynamics observed for A of the
order of 10�4 or even smaller. Therefore, owing to the very
small values of A involved, we find it convenient to introduce an
additional scaling factor of 6 � 104 so that finally the dimen-
sionless bending stiffness is

~A ¼ 6� 104 � A�

F0N3l02
: (5)

In the literature, sedimentation of elastic fibers with open ends
has been studied for a wide range of the elasto-gravitational
number. Simulations and experiments were performed for
A { 1,1–5,7,8,65 with the interesting sedimentation modes appear-
ing for A of the order of 10�2–10�4. Typically, for the gravitational
settling of actin, diatoms and microfibers, A can be as small as
around 10�2, as discussed in ref. 7 and 65. However, in fast
ultracentrifugation, the corresponding values of A will be several
orders of magnitude smaller.

‡ See also the generalization in ref. 63.
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3 Sedimentation modes

It is natural to start our considerations with the initial condi-
tions of the simplest form, corresponding to a circular ring.
When the settling is initiated from the horizontal orientation,
the loop always remains a horizontal circle, regardless of the
value of the bending stiffness parameter Ã. Therefore, we
initiate the simulations with a circular ring slightly tilted with
respect to the horizontal plane, as sketched in the inset of
Fig. 1. The tilt angle, denoted as b, is defined as the angle
between the plane of the circular loop and the horizontal plane.
It is thus equal to e.g. 01 or 901 for the horizontal and vertical
orientations, respectively. The initial tilt angle is varied from 01
up to about b0 = 161.

In this section, the number of beads in the chain is set to
N = 60 and b0 = 161. The bending stiffness is varied in a wide
range of values, 0.2 t Ã t 2.8.

The dynamics reveals a diversity of fascinating stationary
configurations or periodic orbits, which are superposed with
translations. Such motions will be further called sedimentation
modes. They are reached after a certain relaxation time and
continue until the end of the simulation. Their basic features
will be described in the following subsections.

3.1 Relatively stiff chains, Ã \ 1

As it has turned out, the most stiff rings (Ã Z A1 E 2.1) have an
increasing tilt angle in the course of evolution up to vertical
orientation, whereas slightly less stiff rings (Ã o A1) have an
increasing tilt angle up to a certain final bfin o 901 at which
they remain till the end of the simulation. In the latter case, the
vertical settling of the loop is accompanied by a steady drift
in the horizontal direction. This effect is analogous to the
horizontal drift of two identical spherical particles with the line
of the centers inclined with respect to gravity or the horizontal
drift of a sedimenting inclined rod.66 The final tilt angle bfin is
plotted in Fig. 1 as a function of bending stiffness Ã. Importantly,
the value of the final tilt angle is the same for a given Ã, regardless
of the initial b0, although the stationary state will be reached
earlier for larger initial tilt angles. See also Movie 1 provided in
the ESI,† showing 3 chains with different values Ã = 1.4, 1.9 and
2.8, reaching different tilt angles bfin (including 901).

Interestingly, the final ring shape is slightly deformed from
the circular one, as illustrated in Fig. 2. A reference circle of the same
length L = Nl0 (and radius R0 = L/(2p)) is drawn for comparison.

The shape of the settling ring is then oval, with the largest curvature
at the bottom, slightly smaller at the top and two curvature minima
at both sides.

This is illustrated in Fig. 3 where the curvature k(s) along the
chain is plotted as a function of the arc length s. The curvature
is normalized with the curvature k0 = 2p/L of the reference
circle.

The oval shape resembles a post-buckling deformation of an
elastic ring under hydrostatic pressure.67,68 Interestingly, as seen in
Fig. 4, the dependence of the curvature at the top and bottom of
the sedimenting ring on the bending stiffness Ã is non-monotonic,
with a sharp maximum at Ã = A1, i.e. at the point where the final tilt
of the ring becomes 901. This is then the point at which the
sedimenting rings attain the most deformed shape.

Actually, the rings are not flat – they are also deformed out of
plane. In Fig. 1, the final tilt angle bfin has been determined as

Fig. 1 The dependence of the final tilt angle bfin on bending stiffness Ã.

Fig. 2 Oval shapes of exemplary tilted and vertical structures (color lines)
and a reference circle of radius R0 (dashed black line). Here ŷ and ẑ denote
coordinates in the plane determined by the tilt angle bfin. The colors are
the same as in Fig. 3. The chosen ovals correspond to the extreme cases
in the top and bottom panels of Fig. 3.

Fig. 3 Relative curvature k(s)/k0 along the chain as a function of the arc
length s, for vertical (top, solid lines) and tilted (bottom, dashed lines)
sedimentation modes with several values of bending stiffness Ã (as
indicated by the color bar).

Soft Matter Paper



This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 7262--7274 | 7265

the average taken over triplets of beads and over time. The ‘error
bars’ in the plot correspond to deviations from the average,
evaluated in the same way as the standard deviation.

The existence of a stable tilt angle for a sedimenting elastic
ring, found here, is very interesting, especially when compared
with the rigid case. The rigid ring settles without changing the
initial orientation. This is a consequence of the reflectional
symmetry of the ring, superposed with time reversal. An
analogous result is known for two identical particles in a tilted
configuration. Interestingly, the conclusion that the orientation
of disc-like objects in sedimentation depends on their stiffness
is consistent with experiments on red blood cells. In ref. 25 it is
shown that red blood cells, which are of a disk-like biconcave
shape, show enhanced preference for vertical sedimentation as
their membrane is chemically stiffened, which is in qualitative
agreement with our numerical findings shown in Fig. 1.

3.2 Chains of medium stiffness, 0.3 t Ã t 1

As mentioned in the previous section, as the bending stiffness
is decreased, the final tilt angle becomes smaller. This con-
tinues down to Ã = A2 E 1 and the corresponding bcrit E 501,
at which point the tilted ring solution becomes destabilized.
When Ã decreases below 1, the ring oscillates around a certain
tilt angle, with the amplitude increasing with the decreasing Ã.
This mode is called tilted swinging.

The dynamics becomes richer when the chain stiffness Ã is
decreased below 0.85. In this case hydrodynamic forces over-
come elastic ones sufficiently to induce the swinging mode of
the chain, see the snapshots taken in the center-of-mass (CM)
frame shown in Fig. 5 and Movies 2a, b and c in the ESI.†
Initially, the chain behaves as in the stiffer cases, i.e. the tilt
angle increases. At a critical value of the tilt angle§, the ring
becomes unstable and the chain enters a periodic swinging
motion with its center of mass remaining in a vertical plane.
One cycle of the motion involves transition through a set of
configurations, from a bent 3D shape to its mirror image. The

formerly mentioned vertical plane constitutes also a plane of
symmetry for each transient shape.

For even less stiff chains, Ã t 0.6, the swinging motion also
emerges at the beginning but then destabilizes after a certain
time. Eventually, the chain freezes in one of the transient
shapes, and its settling down is accompanied by a spinning
around its vertical axis. The chain remains in this attracting
state till the end of the simulation. Snapshots of the motion are
depicted in Fig. 6 and Movie 3a (ESI†). The emergence of this
mode is shown in Movie 3b in the ESI.† This sedimentation
mode will be further referred to as frozen rotating.

Summarizing, the initially tilted sedimenting elastic ring
either adopts a fixed oval configuration (for Ã 4 A2) or enters a
periodic swinging motion (for Ã t A2). The swinging motion
seems to be very stable. However, when Ã is further decreased,
the swinging may destabilize and the ring may adopt the frozen
rotating mode, characterized by completely different dynamics.

For even less stiff loops, with Ã t 0.4, the initial behavior of
the ring remains the same – the ring enters a more or less
regular swinging type of motion. But later, there emerge also
other long-lasting sedimentation modes. Simulations scanning
thoroughly the values of bending stiffness Ã in the narrow
range between 0.3 and 0.4 were carried out, and yielded the
existence of as many as three other sedimentation modes,
described in detail below. They were detected at different
(but very close to each other) values of Ã.

For example, for Ã C 0.38 the chain adopts another fixed
configuration, resembling a bent figure eight, which rotates
around the vertical axis. This shape brings up an analogy to the
parabolic shape of elastic rods in homogeneous Stokes flow69

or to sedimenting teardrop-shaped red blood cells.29 Snapshots
of the motion, illustrating the bent figure eight mode, are
presented in Fig. 7 and Movie 4 in the ESI.†

For a bending stiffness smaller by only 0.002 (Ã = 0.378) we
find another periodic mode – tank treading motion. The loop
rotates without changing its shape, and the beads translate
along the loop. Snapshots of the tank treading motion are given
in Fig. 8 and Movie 5 in the ESI.† One should note here that in
Movies 2b, 3a, b and 4 (ESI†) the CM motion has been
subtracted for clarity. The same has been done in Fig. 8 and
Movie 5 (ESI†), but, in addition, the spinning of the system has
also been subtracted. This revealed a very characteristic tank
treading motion, that is motion in which each bead follows
exactly the same trajectory while moving along the loop.

Finally, in this medium bending stiffness range, simulations
yield another periodic mode, e.g. for Ã C 0.35. In this case,
the shape of the loop significantly deforms. The subsequent
configurations possess two vertical planes of symmetry,
perpendicular to each other. In such a symmetric flapping
mode the first half of the periodic cycle can be mapped onto
the second one by a rotation of 90 degrees around the vertical
axis. The center of mass oscillates only in a vertical direction.
Examples of the flapping motion are shown in Fig. 9 and
Movies 6a and b in the ESI.†

Summing up, the simulations performed in this section for
the bending stiffness Ã falling within the range 0.3–0.6 produced

Fig. 4 Relative curvature at the top, s0 = 0 (red triangles, up), bottom,
s0/L = 1/2 (purple triangles, down), and sides, s0/L = 1/4 (green diamonds),
of tilted and vertical rings versus the bending stiffness Ã.

§ The critical tilt angle decreases when Ã becomes smaller.
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one of five sedimentation modes: swinging, frozen rotating, bent
figure eight, tank treading, and flapping.

3.3 Chains of low stiffness, Ã t 0.3

At low bending stiffnesses the chain is sufficiently soft to
spontaneously collapse into a compact structure. Eventually,
though, periodic modes emerge again. The chain adopts a
doughnut-like shape made of two (e.g. for Ã = 0.25) or three
(e.g. for Ã = 0.23) loops, as shown in Fig. 10, 11 and 12b and c.
The toroidal structures orient more or less horizontally, with
tightly intertwined loops swirling around each other. This
motion is accompanied by spinning around the vertical axis
and precession. With reference to the torus knot nomenclature,

Fig. 6 From left to right: snapshots taken in the CM frame showing the rotation of the frozen rotating mode, N = 60. Gravity points down.

Fig. 7 From left to right: snapshots taken in the CM frame showing the
rotation of the bent figure eight mode, N = 60. Gravity points down.

Fig. 5 From left to right: snapshots taken in the CM frame showing the motion of the swinging mode, N = 60. Gravity points down.

Fig. 8 From left to right: snapshots taken in the CM frame showing the flow of beads in the tank treading mode, N = 60. Gravity points down. Here, the
spinning of the system has been subtracted.

Fig. 9 From left to right: snapshots taken in the CM frame showing the motion of the flapping mode, N = 60. Gravity points down.

Fig. 10 From left to right: snapshots taken in the CM frame showing the swirling of the toroidal T2,1 mode, N = 60. Gravity points down.

Fig. 11 From left to right: snapshots taken in the CM frame showing the swirling of the toroidal T3,1 mode, N = 60. Gravity points towards the reader.
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the two modes will be called T2,1, and T3,1 (the modes are
obviously not knotted, which is indicated by 1 in the subscripts,
see Appendix A) for the two, and three looped configurations,
respectively. In Fig. 12b and c, examples of characteristic
shapes are displayed. Fig. 10 and 11 present snapshots of the
swirling motion typical for the T2,1, and T3,1 sedimentation
modes, which are also shown in Movies 7 and 8 in the ESI.†

3.4 Summary

To sum up, the simulations starting from slightly tilted rings
with various values of the bending stiffness parameter Ã
revealed the tendency of the system to adopt one of several
stationary or periodic sedimentation modes. Fig. 12 shows
examples of configurations for all the modes described so far.

One could also see, not surprisingly, that the softer the loops
are (smaller Ã), the more compact structures they can adopt.
This is clearly visible in Fig. 13, where the mean gyration radii
%Rg of the sedimentation modes are plotted against the bending
stiffness parameter Ã. The gyration radius is defined as:

Rg
2 ¼ N�1

PN
i

ri;cm
2, where ri,cm denotes the distance of the i-th

bead center from the center of mass of the chain. The bar
indicates an average taken over many periods, and the error bars
are evaluated in the standard way based on the time-dependent
values. As shown in Fig. 13, the only sedimentation mode for
which Rg significantly changes in time is the flapping mode.

The values of the mean gyration radii vary significantly
between the different modes – e.g. for the T3,1 mode the radius
of gyration is roughly three times smaller than that for the
original circle (since it contains 3 loops made of the original
chain), and the T2,1 mode has an %Rg roughly two times smaller
than the original circle.

It is worth noting that each sedimentation mode presented
here encompasses a family of stationary configurations or

periodic motions, parameterized by the bending stiffness Ã.
Within the same mode, the time-dependent configurations and
orientations observed for different values of Ã are similar to
each other. They repeat in time periodically at similar rates,
with only small quantitative differences observed for different
values of Ã. To give some examples, a tilted mode describes a
family of oval structures with almost flat and circular shapes, tilted
at a certain angle bfin with respect to the horizontal direction.
However, the value of the bfin angle depends on the bending
stiffness parameter, Ã. A frozen rotating mode describes a family
of shapes similar to the one in Fig. 12e rotating with slightly
different speeds. Within a mode, the shapes and gyration radii
slightly differ from each other, depending on Ã.

4 Analysis and discussion of the
dynamics
4.1 Basic features of shapes and dynamics

It is worth looking more closely at the shapes of the modes –
how exotic they are? For example, as already mentioned before,
the oval shapes of tilted and vertical modes resemble the first,
in-plane, buckling modes of an elastic ring, e.g. under hydro-
static pressure.67

It turns out that also configurations from other sedimenta-
tion modes resemble buckled loops formed on purely elastic
grounds. For example, the toroidal T3,1 mode appears for the
most over-curved examples of deformed bi-layered microrings,
jointed arcs of wood, steel wire,70 or on folded paper strips.70,71

Applying less strain to the above mentioned materials yields
shapes quite similar to the frozen rotating mode or one of the
time-dependent structures of the swinging mode, see Fig. 14
(top panel).70,71 The latter two structures can also be obtained
by slightly over-twisting an elastic tube.72

Fig. 12 Typical configurations for sedimentation modes of a closed chain
made of N = 60 beads: (a) bent figure eight (frozen shape with very slow
rotation), (b) toroidal, swirling T2,1, (c) toroidal, swirling T3,1, (d) tank
treading, (e) frozen rotating, (f) swinging, (g) flapping, (h) tilted, and (i)
vertical. In (a), (b), and (d)–(i) gravity points downwards, and in (c) gravity
points perpendicularly, towards the observer, in agreement with Fig. 5–11.

Fig. 13 The mean relative gyration radius, %Rg/R0, of sedimentation modes
versus the bending stiffness Ã. The modes are reached in simulations
starting with tilted rings at b0 = 161, after a relaxation phase. The inset
shows the continuation of the main plot at higher Ã, with the vertical scale
deeply zoomed in. This allows one to see the slight change in shape of
both tilted and vertical modes with increasing Ã (cf. Fig. 3 and 4).
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The above discussion indicates that the shapes observed in
our simulations are known from other contexts. However, the
spontaneous appearance of these shapes for sedimenting elas-
tic loops, and their dynamics described in Section 3, are in this
paper reported for the first time.

It seems remarkable that just a slight change in the chain
configuration may lead to a completely different sedimentation
mode. In Fig. 14, the configuration of the frozen rotating mode
is compared with one of the time-dependent configurations of
the swinging mode (with a modified orientation). The differ-
ences of shapes are relatively small, but the dynamics are very
different, as it is visible in Fig. 5 and 6 and Movies 2b and 3a
(ESI†). The corresponding difference in bending stiffness
between the two chains is as small as DÃ C 0.06.

Another interesting feature of the emerging modes is the
diversity of their dynamics. That is, the settling vertical motion
may be accompanied by either periodic changes of shape
(e.g. swinging, flapping, T2,1, T3,1) or rotation of a fixed
structure (e.g. bent figure eight, frozen rotating), related to
coupling of the translation and rotation.52 In addition, the beads
can move along the chain (tank treading). The rotation appears
due to the shape chirality. (A chiral structure is a structure that
cannot be superposed onto its mirror image.) It means that the
chiral isomers rotate in opposite directions, though with identical
speeds. The rotation of chiral structures during sedimentation is a
well known phenomenon (see e.g. ref. 44 and 73). The question
though remains of why the system considered here (chain and
fluid) chooses such a chiral geometry, keeping in mind that the
initial loop is topologically achiral?

As for the toroidal modes T2,1, and T3,1, it has been already
recognized via experiment and simulations that more complicated

torus knots also perform a similar characteristic swirling
motion.44,73 It is very interesting that such a swirling motion
is also typical in completely different systems such as knotted
vortex lines74 propagating in inviscid fluid or horizontal coaxial
rings made of many separated particles, sedimenting in a very
viscous fluid.75,76

Finally, probably the most intriguing mode, tank treading, is
also chiral, and thus rotates. Such a tank treading motion can
be found in vesicles and red blood cells.25,28,77–79 Depending on
the environmental conditions (pH, in particular), and thus the
bending stiffness of the cell’s membrane, shape and viscosity
contrast, they perform either tank treading, tumbling, or other
motions.¶

To verify the generality of the results presented in Section 3,
and to test in a simplified way how stable are the sedimentation
modes, two additional sets of simulations have been carried
out. The goals are to investigate the impact of the chain aspect
ratio and the influence of the initial configuration on formation
of specific sedimentation modes. As it will be shown in the next
two subsections, simulations with various numbers of beads or
starting from various initial configurations do not much broaden
the already rich family of modes described in Section 3.

4.2 Dynamics of loops with different aspect ratios

To test the impact of the aspect ratio, we perform a set of
simulations for elastic loops made of N = 15, 16, 18, 40, and 90
beads. The other conditions are the same as in Section 3.
Initially, the loops also form tilted circular rings.

In Fig. 15 the mean gyration radius, %Rg, of the output
configurations in a given sedimentation mode is plotted
against the bending stiffness parameter Ã, for various N
(including the results for N = 60, shown in Fig. 13). The gyration
radii are scaled with the radii R0 of circles made of the
corresponding numbers of beads. It is obvious that if different
numbers N of smaller or larger beads were located along the
same curved loop, than Rg/R0 would not depend on N. Movie 9
(ESI†) illustrates that for the frozen rotating motion, the loop
shapes for different values of N are indeed very similar to each
other. A similar property is observed for other sedimentation
modes. Therefore, for elastic loops in a given sedimentation
mode, the scaled mean gyration radii, %Rg/R0, are almost the
same for all N. This property is clearly visible in Fig. 15.

In Fig. 16, the final tilt angle bfin of more stiff loops is shown
as a function of bending stiffness Ã. In this way Fig. 1 is
extended for a wide range of N.

The scaling with 1/N3 present in Ã is just an approximation
(applicable for thin filaments and small deformations), thus
clearly Ã is not perfectly universal for all values of N. Still
though, in Fig. 15 and 16 the modes at various chain lengths
emerge in similar ranges of Ã values, while the corresponding
values of unscaled A differ by up to two orders of magnitude.

Fig. 14 Comparison of two shapes from two sedimentation modes:
frozen rotating (olive) with Ã = 0.58, and swinging (cyan) with Ã = 0.64,
seen from various view angles (top). In both cases N = 60. The overlapping
does not preserve the orientation with respect to gravity. Bottom: The
curvature along the arc length for frozen rotating (dashed), and swinging
(solid) modes. The color scale of the lines marks the vertical position of the
given part of the chain. For the swinging mode, the curvature is almost
symmetric with respect to a vertical plane, and the bottom and top parts of
the loops are more curved than the side ones.

¶ In a more general context, examples are known of such systems of particles
which periodically move along the same relative trajectory while sedimenting in a
viscous fluid.80,81
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The main conclusion is that, in general, the chains of
various numbers of beads behave similarly in similar Ã ranges.
As an example, in Movie 9 (ESI†) the frozen rotating mode is
presented for the loops made of N = 20, 40, 60 and 90 beads.
There appears a striking similarity of shapes and rotation
speeds.

However, there emerges a critical size (or a critical aspect
ratio) below which the dynamics of initially tilted circles
become different than in the case of chains with larger num-
bers of beads. For N r 15 loops maintain circular configura-
tions (with %Rg/R0 = 1, as visible in Fig. 15) and orient
horizontally (with bfin = 0, as shown in Fig. 16). This behavior
has been observed for a wide range of bending stiffness Ã. Only
for very small values of Ã, the loops collapse into a dynamic coil.
For N = 15 the ratio of the bead and loop diameters, pd/Nl0, is

around 0.35. This seems to be the critical ratio above which the
plethora of sedimentation modes may appear.

In the simulations with various numbers of beads there
emerged only one new sedimentation mode, characteristic for
very short chains, and therefore not observed in Section 3.
A typical chain configuration for this mode is shown in the
inset of Fig. 17. The configuration rotates rigidly. This mode
will be further called cone. It seems to be similar to the bent
figure eight mode, but with a more compact shape.

Interestingly, elastic loops with a small number of beads,
e.g. N = 16, and a small bending stiffness, 0.2 t Ã t 0.4, tend to
jump between two sedimentation modes before they adopt the
final stationary shape. Examples of such transitions are shown
in Fig. 17 and 18. In these simulations, the tilt angle of the

Fig. 15 The dependence of the gyration radius on the bending stiffness Ã for sedimentation modes with various numbers of beads in chains. Initially,
the loop is circular and tilted at the angle b0 = 161.

Fig. 16 The dependence of the mean tilt angle bfin on the bending
stiffness Ã for sedimentation modes with various numbers N of beads in
chains. Initially, the loop is circular and tilted at the angle b0 = 161.

Fig. 17 Time-dependent asphericity of an elastic loop with N = 16 and
Ã C 0.40, initially tilted at b0 = 161, vs. squared gyration radius Rg, scaled
with the radius R0 of a reference circle. Symbols mark values at
consecutive time instants of a single simulation, with the simulation time
determined by the colorbar.
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initially tilted ring continues to increase. At a critical value the
structure collapses via a transient coil to the swirling T2,1

mode. The structure is quite compact and dense, hence the
swirl is not as regular as in the case of larger systems. However,
at a certain time the structure straightens again to a tilted ring
configuration at a certain tilt angle. These jumps between the
modes may repeat several times until the final sedimentation
mode is adopted, e.g. a cone mode (see the inset in Fig. 17) or a
tank-treading mode (see the inset in Fig. 18). A cartoon illus-
tration of these processes is presented in Fig. 17 and 18,
respectively. The tilt angles attained in the transient tilted
modes, the times of such jumps and the time to reach the final
mode are irregular and can significantly differ from each other
when different time instants or values of Ã are considered. For
example, the time to reach the final mode for the dynamics
shown in Fig. 17 is much longer than for the motion displayed
in Fig. 18.

The asphericity used in Fig. 17 and 18 is defined as G3 � (G2 +
G1)/2, where G1,2,3 are the eigenvalues of the gyration tensor
and G3 Z G2 Z G1. With this notation, Rg

2 = G3 + G2 + G1.
Clearly, the asphericity is zero for a sphere. The circles in
Fig. 17 and 18 are colored with time as shown in the colorbar
legend (e.g. the final state is yellow). In both cases described
here, the final mode adopted was either a fixed rigid rotating
configuration (cone) or a fixed rigid rotating shape (tank-treading
mode, with the beads moving along the shape). By comparing
the colors of circles in Fig. 17 and 18, one can see that the tank-
treading mode was adopted much faster than the cone mode.
The time scales and the color bars in both figures are the same.
The blue circles indicate time instants close to the beginning of
the simulation, while the orange and yellow ones close to the
end of the simulation. In Fig. 17, only the orange circles are
visible close to both transient modes, and the yellow ones close
to the final cone mode, which indicates a very long time needed
to approach the final mode. On the contrary, in Fig. 18, only the
blue circles are visible close to both transient modes, while all
the orange and yellow circles are superimposed on a single one,
corresponding the final tank-treading mode. This indicates a

very short time needed to approach the final mode during this
simulation.

The above results illustrate that in the elastic loop dynamics,
there exist transient sedimentation modes in addition to the final
ones which seem to be stable. The time scales of such transients
can be short or very long. These findings are important from a
fundamental point of view and essential for practical applications.

4.3 Dynamics for different initial configurations

In this section, another set of simulations is performed to test
the impact of the initial configuration. Dynamics of elastic
loops made of N = 60 beads are considered, starting from either
irregular configurations or from configurations representing
individual sedimentation modes. The other parameters are the
same as in Section 3. All the simulations are again carried out
for various values of bending stiffness Ã.

Fig. 19 presents the initial configurations and orientations
used in the simulations performed in this section. The geo-
metries in Fig. 19b–h and j are representatives of the sedimen-
tation modes discussed in Section 3. The structure in Fig. 19i is
an arbitrary random coil obtained also during one of the
previous simulations. Finally, the structure in Fig. 19a was
obtained from a single run of Brownian dynamics (performed
in the standard way, e.g. as described in our previous work44).

The most important results are sketched in Fig. 20. This
diagram shows which sedimentation mode finally takes place,
depending on the initial configuration and bending stiffness.
The colors of tiles in this diagram represent the final sedimen-
tation modes as marked in the colorbar legend (note that these
colors match also the colors used in Fig. 12, 13 and 15). The
vertical axis corresponds to the initial configurations, and
the horizontal axis to the sample values of Ã used in the
simulations.8 For example, the loop starting from one of the

Fig. 18 As in Fig. 17 but for N = 16 and Ã C 0.27. The time from ‘‘start’’ to
‘‘finish’’ is the same as in Fig. 17.

Fig. 19 Initial configurations used in the third set of simulations: (a) a coil
obtained from a short Brownian dynamics run, (b)–(h) and (j) arbitrarily
chosen configurations from the sedimentation modes obtained in Section
3 (i.e. vertical, tilted, bent figure eight, T2,1, frozen rotating, tank treading,
T 3,1, and flapping modes), and (i) an irregular, compact structure.

8 Not all the performed simulations are shown in Fig. 20.
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bent figure eight configurations (shown in Fig. 19d) with
Ã = 0.87 ends up in the toroidal T2,1 mode.

For rather stiff loops, almost all the initial configurations –
except for T2,1 – attain the vertical mode (for Ã \ 2), and the
tilted mode (for 1 t Ã t 2), as shown in Fig. 20 and Movie 10
(ESI†). The only outlier which survives in the range of medium
and larger bending rigidities, even for the most stiff cases
(Ã \ 2), is the T2,1 mode, as illustrated in Fig. 20. It is probably
stabilized by strong hydrodynamic interactions between the two
loops it forms (strong enough to overcome the elastic strain).

For Ã t 0.98, the diagram in Fig. 20 is full of colors, which
vary between rows and columns. This property illustrates
complexity of the dynamics. For medium bending rigidities Ã
B 0.64–0.98, the swinging mode seems to be typical: it emerges
from the majority of initially rather extended structures. For
more flexible loops, Ã B 0.35–0.52, the most typical sedimenta-
tion modes are frozen rotating (surviving or emerging from
other, rather extended structures), as well as tank treading and
bent figure eight (surviving or emerging from other, typically
rather compact initial configurations). The frozen rotating and
bent figure eight modes survive in the wide ranges of lower and
medium bending rigidities. For the smallest investigated
Ã = 0.23, the most typical is the most compact T3,1 mode.

Looking at a single column in Fig. 20, e.g. Ã = 0.64, we
observe that depending on the initial structure, the chain
adopts one of several sedimentation modes, e.g. swinging,
frozen rotating, tank treading, bent figure eight**, or T2,1.

Such multi-stability is generic. Starting from different initial
configurations, different sedimentation modes can be reached
for the same elastic loop in the same fluid. In Fig. 20, this
property is represented by different colors visible in each

column, and the corresponding significant differences between
the rows.

5 Conclusions

We have shown that an elastic loop, settling in a viscous fluid in
the low-Reynolds-number regime, tends to reach a stationary
configuration or one of the characteristic periodic motions,
superposed with center-of-mass translation. Surprisingly, we
have discovered a diversity of such sedimentation modes,
depending on the loop bending stiffness and initial configuration.
The modes form spontaneously after a certain relaxation time.

More stiff loops can form almost flat stationary oval shapes
(close to the equilibrium circular one), vertical or tilted. The
more stiff the loop, the closer it is to a vertical orientation
during settling, which is in close analogy to the experimental
findings on chemically stiffened red blood cells.25 In the whole
range of the investigated bending rigidities, periodic motions
of complicated bent shapes have been found. Some of them
involve time-dependent deformations of the loop shape. The
others correspond to a fixed, ‘‘frozen’’ shape which rotates
around the vertical axis. In the tank treading mode, there
appears an additional motion of the beads along a certain
fixed, rotating shape.

The important general conclusion is that for the same value
of the bending stiffness, different sedimentation modes may be
observed. For the same system: fluid and sedimenting elastic
loop, there exist multiple stable (or at least long-lasting)
periodic motions or stationary configurations. This property
holds for all considered values of the bending stiffness Ã.
However, a particularly rich diversity of many different modes
is observed for more flexible loops with Ã t 1. These findings
illustrate that in a sedimenting dilute suspension of identical
very elastic loops, many different sedimentation modes can
coexist.

Moreover, the sedimentation modes are sensitive to small
changes of the bending stiffness Ã of the sedimenting loop.
This feature may be of practical significance. If elastic loops are
put in a centrifuge, the value of Ã B 1/F0 can be easily changed
by tuning the centrifugal force F0. In this way the desired
sedimentation modes can be triggered.

Some of the sedimentation modes, such as tilted or some of
the swinging ones, are non-symmetric and as a result there
appears a net horizontal drift. This property might be used in
practice for sorting.

In general, the existence of different sedimentation modes
found in this paper is of great significance for many biological,
medical and industrial systems of sedimenting elastic, deform-
able micro or nano objects. Ring polymers,20–24 red blood
cells and vesicles,25–29 proteins or DNA loops11–15 are just a
few examples.
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Fig. 20 A sample schematic diagram showing the final sedimentation
mode (colors), depending on the initial configuration (rows) for the
indicated values of bending stiffness Ã (columns). N = 60 and the colors
are coded in the bar legend, consistently with the colors in Fig. 12.

** In Fig. 5–8, the swinging, frozen rotating, tank treading and bent figure eight
modes are shown for exactly the same values of the bending stiffness, Ã = 0.64.
In Fig. 9, Ã = 0.25, in Fig. 10, Ã = 1.2, and in Fig. 11, Ã = 0.87.
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Appendix

A Toroidal sedimentation modes

The names of the toroidal modes, T2,1 and T3,1, refer to the
nomenclature introduced in knot theory, where Tp,q describes
a torus knot which winds p times around symmetry axis of a
torus and makes q turns around the centerline of the torus.
If either p or q equals 1, then Tp,q is an unknotted structure
(called an unknot). Fig. 21 shows examples of the simplest of
torus unknots.

There are additional remarks to be made here. Firstly, one
can see that T1,1, especially for a small minor radius of the
torus, is almost equivalent to the tilted configuration shown in
Fig. 19c. Secondly, initial configurations of shapes similar to
T1,3 in Fig. 21 were also tested in the simulations. They relaxed
to a horizontally oriented flat circle and retained this fixed
shape and orientation until the end of the simulation.

B Description of the movies

A list of the movies.
Movie 1: Short simulations of relatively stiff chains with N =

60 beads, ending in a tilted or vertical sedimentation mode.
The bending stiffness Ã = 1.4, 1.9, and 2.8, starting with a less
tilted cyan chain, to vertical dark blue, respectively. For clarity
of presentation, the center of mass motion has been sub-
tracted. Gravity points downwards.

Movie 2a: Example of a swinging mode for a chain with
N = 60 and Ã = 0.37. For clarity of presentation, the horizontal
center of mass motion, and average vertical speed have been
subtracted. Gravity points downwards.

Movie 2b: As in Movie 2a (ESI†), but with the horizontal and
vertical center of mass motion subtracted.

Movie 2c: Emergence of a swinging mode. Center of mass
motion subtracted, gravity points downwards.

Movie 3a: Example of a frozen rotating mode for a chain
with N = 60 beads and Ã = 0.58. For clarity of presentation, the
center of mass motion has been subtracted. Gravity points
downwards.

Movie 3b: Emergence of a frozen rotating mode. Center of
mass motion subtracted, gravity points downwards.

Movie 4: Example of a figure eight mode for a chain with
N = 60 beads and Ã = 0.23. For clarity of presentation, the center of
mass motion has been subtracted. Gravity points downwards.

Movie 5: Example of a tank treading mode for a chain with
N = 60 beads and Ã = 0.52. For clarity of presentation, the center
of mass motion and spinning have been subtracted. Gravity
points downwards.

Movie 6a: Example of a flapping mode for a chain with
N = 60 beads and Ã = 0.28. For clarity of presentation, the
horizontal center of mass motion and average vertical speed
have been subtracted. Gravity points downwards.

Movie 6b: As in Movie 6a (ESI†), but with the center of mass
motion subtracted.

Movie 7: Example of a T2,1 mode for a chain with N = 60
beads and Ã = 0.23. For clarity of presentation, the center of
mass motion has been subtracted. Gravity points downwards.

Movie 8: Example of a T3,1 mode for a chain with N = 60
beads and Ã = 0.23. For clarity of presentation, the center of
mass motion has been subtracted. Gravity points downwards.

Movie 9: Frozen rotating mode for chains with various
numbers of beads: N = 20, Ã = 0.59 (green), N = 40, Ã = 0.63
(cyan), N = 60, Ã = 0.23 (blue), N = 90, Ã = 0.45 (purple). The
center-of-mass motion has been subtracted.

Movie 10: Example transitions from four different modes –
T31 (top left), bent figure eight (top right), tank treading
(bottom left), compact coil (bottom right) – to the final
tilted mode. Middle panel: all four simulations overlaid onto
each other. In all the simulations N = 60, Ã= 1.91, and gravity
points down. After 2/3 of the video the frame rate is increased
4 times.
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