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From ribbons to tubules: a computational study of
the polymorphism in aggregation of helical
filaments†

Magdalena Gruzielab and Piotr Szymczak*a

A simple, coarse-grained model of chiral, helical filaments is used to study the polymorphism of fibrous

aggregates. Three generic morphologies of the aggregates are observed: ribbons, in which the filaments

are joined side-by-side, twisted, helicoidal fibrils, in which filaments entwine along each other and

tubular forms, with filaments wound together around a hollow core of the tube. A relative simplicity of

the model allows us to supplement numerical simulations with an analytic description of the elastic

properties of the aggregates. The model is capable of predicting geometric and structural characteristics

of the composite structures, as well as their relative stabilities. We also investigate in detail the

transitions between different morphologies of the aggregates.

1 Introduction

A number of biological macromolecules assemble in the form
of fibre-like, typically helical forms. The examples include a
wide variety of structures: from coiled-coils of a-helices, double-
stranded DNA or protein fibrils, to microtubules and bacterial
flagella. Even though these systems share a number of struc-
tural similarities, their detailed morphologies depend on the
conformational characteristics at the monomeric level as well
as the dynamics of the assembly process itself. For example, the
fibrillogenesis depends on the type of fibrilized protein1–5 or
the physical conditions during the fibrillization process,6,7 the
DNA super-coil structure is influenced by the sequence of
nucleotides, whereas the structure of a coiled-coil of a-helices
changes depending on their amino acid sequences.8 Fibrillization
processes have recently attracted a lot of attention, both due to
their importance in the medical context and due to their potential
application in bottom-up nanoengineering.9 On one hand, it has
been realized that aggregation of proteins into amyloid fibrils is
often associated with neurodegenerative diseases.10 On the other
hand, many examples of functional fibrillar aggregates exist, the
most famous of which are keratin, collagen, elastin, and silk with
their unique elastic and tensile properties.11 These structures
have provided inspiration for nanoengineers for bottom-up

synthesis strategies, in which a small number of simple pre-
cursor molecules spontaneously assemble into hierarchical
nanofibrils.12 One of the basic questions in this context is
how does the morphology of the fibrous superstructure depend
on the properties of individual units and the dynamics of the
aggregation process itself. Interestingly, despite a wide variety
of building blocks, the set of realizable fibrillar superstructures
seems to be relatively small. These include ribbons, in which
the individual filaments are joined side-by-side, twisted, helicoidal
structures in which several filaments are entwined along each
other and tubular forms, with the filaments wound together
around a hollow core of the tube.7,9,13–21

Several models have been proposed to explain such a
polymorphism, linking it to the action of hydrophobic, electro-
static or entropic forces.9,22 In particular, Adamcik et al.17 and
Assenza et al.23 have proposed models in which a key role in
controlling the morphology of the aggregates is played by the
competition between the electrostatic and elastic contributions
to the total energy. While the electrostatic repulsion between
like charges on different filaments is causing them to twist
helically, the elastic energy prevents this twist from being
excessive. Importantly, the helicity of the aggregates in this model
is a consequence of the interactions between the individual
filaments, which in itself are achiral.

Other researchers have invoked the role of chiralities of the
constituent units. Chiral molecules do not pack parallel to their
neighbors, but rather at a slight angle. Based on that observa-
tion, Aggeli et al.,14 Nyrkova et al.24 and Selinger et al.22 have
analyzed the properties of membranes formed by such chiral
objects (which is reflected in the chiral elastic term in their
Hamiltonian). Similarly to the studies based on electrostatic
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approaches, they also find that filaments self-assemble into
helical or twisted ribbons, which can close on themselves
forming the tubules.

However, as stated above, the starting point of the chirality
models is a membrane Hamiltonian, thus they are better suited
to describe self-assembly and polymorphism in lipids,25,26

colloidal membranes,27 bilayers of gemini surfactants13 or
amphiphiles,28 but less suitable for description of the fibrillar
aggregates. There is thus a gap in the literature which we
attempt to fill in the present paper, by presenting the coarse-
grained model of self-assembling chiral filaments, where we
assume a microscopic Hamiltonian of each filament plus the
interactions between them. A direct inspiration for our model
is the molecular architecture of insulin aggregates. Insulin
protofilaments are known to be helical,29,30 with a spine
composed of steric zipper of b-strands, and the floppy C-termini
of insulin chain B on the opposite sides of the filament winding
around the filament axis. Because these termini are both hydro-
phobic and capable of association into interchain molecular
velcro they tend to be attractive.31 This is reflected in our coarse
grained model, where the filament backbone is represented by a
chain of beads, whereas the second type of beads is used to
represent the attractive interaction sites, arranged in two strips on
the opposite sides of the backbone, each helically wound along
the length of the filaments – arguably the simplest way of
introducing chirality on the level of individual filaments. Thus
the model falls into a similar class to those proposed by Aggeli
et al. and Nyrkova et al.14,24 in that individual filaments are
endowed with nonzero chirality. However, as already mentioned,
we work on a finer scale than the models considered in ref. 24
and 14, resolving the energies and structure of individual fila-
ments, instead of starting at the level of the multi-filament tapes,
as it is the case therein.14,24

Within this model, we analyze the structural forms attained
by multi-filament clusters and the interconversions between
them. Since the coarse-grained model resolves, albeit in a
simplified way, the structure of individual filaments, it can
account for different ways, in which (discrete) sets of binding
sites on each filament can bind each other.32–34 In our previous
paper, we have shown that the presence of such a discrete set of
binding sites leads to a rather intricate dynamics of aggrega-
tion, accompanied by chirality inversions. It is thus of interest
to see how this discreteness affects the cluster morphologies
and the characteristics of the transitions between them, which
is the main motivation for the present study. Interestingly, we
still find three general morphological forms which the aggre-
gates can attain, but their geometry is subtly different from
that found in the continuum-sheet theories. For example, the
helicoids created from the chiral filaments are not simply
helicoidally twisted ribbons, but rather filaments winding
around each other while sharing a common interaction seam,
with the pitch determined by the arrangement of the binding
sites, analogously to ‘‘knobs-into-holes’’ packing in coiled coils,
as described by Crick.8,35,36 Similarly, the tubular structures
that we found are stabilized by a set of discrete contacts
between the individual filaments, which organize themselves

in a specific manner, giving rise to a selection of a well-defined
radius of the tube.

Our aim here is to explore the energy landscape of the
aggregating filaments for a given, fixed set of the parameters
of the model, the same as the one used in our previous work on
chirality reversals.34 Within this framework, we identify the
possible morphologies of the clusters, as well as look in detail
at the transitions between the different morphological forms.
Some of these transitions are found to be spontaneous, whereas
to induce others one needs to apply force and/or increased
temperature. We demonstrate that these morphologies, although
described by a common set of parameters, arise as a result of an
interplay between attraction of individual filaments and their
elastic deformation energy, with individual terms responsible
for bending, twisting and stretching of the filaments. Analysis of
these energy contributions shows that their relative role changes
depending on the superstructure of the cluster. A particularly
important role is shown to be played by an anisotropy in bending
rigidities, and the associated energy density, which gets massively
released during the formation of the tubular structures. Impor-
tantly, a relative simplicity of the model allows us to supplement
the numerical results with an analytic description of the filament
aggregates, based on the continuum representation of the fila-
ments in terms of the classical elasticity theory. This gives an
additional insight into the energetics of the transition between
different morphologies, enabling us to predict a range of para-
meters under which a given structure is expected to be stable.
These predictions compare favorably with the numerical data.
This paper is organized as follows. Section 2 presents the
numerical model of aggregating filaments used in the present
study. A continuum description of this model is introduced in
Section 3. The core of the paper is the analysis of different
aggregate morphologies and the transitions between them in
Section 4. Finally, the conclusions are drawn in Section 5.

2 Coarse-grained model

The coarse-grained model of a filament used in this study is
described in detail in ref. 22. Briefly, the filament backbone is
represented by a chain of beads (gray beads in Fig. 1, marked
with B), whereas a second type of beads is used to represent
the attractive interaction sites, arranged in two strips on the
opposite sides of the backbone, each helically wound along the
length of the filament (white beads marked with S1 and S2 for
each of strip, respectively). For the sake of brevity, we shall refer
to these strips as ‘‘side-strands’’.

In terms of bonding interactions, the force field includes
harmonic potentials for both bonds (between consecutive B
beads and between B bead and the adjacent S bead) and bond
angles (between three consecutive B beads and between two
consecutive B beads and one of the adjacent S beads). The
equilibrium distance between the backbone beads, lBB, is taken
to be the length unit, whereas that between B bead and the
adjacent S bead is lBS = 2lBB. The equilibrium bond angles
correspond to the straight backbone (BBB angles equal to p)
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with perpendicular BS bonds (BBS angles equal to p/2). The key
element of the model is the introduction of a symmetric double
well dihedral potential Uy associated with the dihedral angle
spanned by four consecutive beads S1–Bi–Bi+1–S2 and denoted
as y in Fig. 1. The potential has two minima at y = �y0 inducing
local twist of the side strands, but also allowing for a flip of
local chirality. The curvature of Uy potential at the minima is
characterized by the constant ky. Additionally, another dihedral
potential, Ul, is introduced, associated with the circumferential
angle between a side strand bead and its neighbor (Fig. 1). The
potential has the minima at �l0 = �2(p � y0) and a barrier at
l = 0 with a barrier height DUl = U(0) � U(�l0) = kl/2l0

2. The
goal of this potential is to induce correlation between the values
of the consecutive dihedrals and thus appearance of the overall
twist of the side strands, with the twist density t̂0 = l0/2lBB. The
cohesive interactions between the filaments are mediated

through the Lennard-Jones forces, ULJ ¼ 4e
s
r

� �12
� s

r

� �6� �
.

We use the uniform energy scale for backbone and side strand
beads eB = eS = e but different length scales: sB = 4 and sS = 1
(in the units of lBB). The Lorentz–Berthelot combining rules
are used to calculate the cross-species interaction parameters.
The LJ energy is used as the energy and temperature unit
throughout the paper, with the reduced temperature given by
T* = kBT/e. All the filaments are composed of a fixed number of
backbone and side strand beads, nB = 2nS1 = 2nS2 = 60. The
trajectories of the filaments are calculated using Langevin
dynamics. A natural time scale in the simulations is set by
the time it takes for a single bead to diffuse over the distance

sB, i.e. tD ¼
gsB2

6kBT
, where g is a single bead friction coefficient.

This time scale is used as a time unit in the data reported. The
simulations were performed using the LAMMPS37 molecular
dynamics package.

3 Continuum description

Different morphologies of the filament clusters observed during
the simulations of the aggregation process are shown in Fig. 2.
Their appearance can be rationalized by noting that the driving
force for the aggregation is the interaction between the helical
side strands of each filament. When two such filaments are
brought together then, for high enough binding energy between
the beads, the side strands align forming an interaction seam, as
indeed observed in Fig. 2b–d. The alignment of the side strands
requires a certain amount of bending and twisting of the
filaments. The interplay between bending, torsional and cohesive
energies leads to the appearance of the local minima in the
energy landscape. One of them corresponds to a situation when
the filaments untwist to keep their backbones straight, forming
planar, ribbon structures represented schematically in Fig. 2c.

Fig. 1 Schematic of the model, with backbone beads in gray and side
strand beads – white. Bonds defining the dihedral angles y and l are
dashed and solid, respectively.

Fig. 2 Types of structures observed in the simulation of filament aggre-
gation (bottom) and the schematic view of the corresponding binding
modes between the filaments (top): (a) a single filament with two side-
strands marked in green and red respectively; (b) three filaments con-
nected via the contacts between their side strands (red), making a
helicoidal aggregate (c) untwisted filaments with straight side-strands,
forming a ribbon; (d) tubular shaft of helically wound filaments, forming
a ‘tubule’ structure. In the bottom panels, the individual filaments are
represented by the surface, with gray color marking backbones and brown
marking contacting side strands. Bottom images created with VMD.38
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In such a case, the bending and cohesive energies are at their
minimum, whereas the torsional energy is increased. Such a
ribbon can close on itself, forming a tubular structure (Fig. 2d),
with an additional stabilization due to the larger number of
contacts between the filaments.

In the opposite case, when the twisting energy is at
the minimum at the cost of increased bending energy, the
filaments will tend to intertwine with each other forming
helicoidal coiled coils, as depicted in Fig. 2b. As shown below,
they can be transformed into the tubular structures by twisting.

To put these considerations on a more quantitative footing,
let us consider the space curve r(s), tracing the axis of the
filament, with s being the arc length. At each s, one can define
the material frame built from the vector tangent to the filament
axis (-e3), the vector pointing towards the binding site (-e1) and
finally -

e2 = -
e3 �

-
e1. This basis evolves according to ref. 39

d~ei
ds
¼ t̂0~e3 þ ~O
� �

�~ei (1)

where ~O is a strain vector and t̂0 is the intrinsic twist density of
the filament (side-strand twist angle around backbone per unit
axial length). The energy associated with the elastic deforma-
tion of the backbone of the filament can then be expressed as

Eel ¼
1

2

ðL
0

A1O1
2 þ A2O2

2 þ CO3
2

� �
ds: (2)

where A1 and A2 are the bending stiffness coefficients and C is
the torsional rigidity of the filament. Usually, it is more useful
to express the above by means of the geometric characteristics
of the filament axis: its curvature k(s), torsion t(s) and the

angle, x(s), between -
e2 and the Frenet–Serret normal, n ¼ d~e1

ds
.

In such a case,39 O1 = k sin x, O2 = k cos x, thus the energy can be
written as

Eel ¼
1

2

ðL
0

A1k2ðsÞ þ Aspk2ðsÞ cos 2ðxÞ þ C tðsÞ � t̂0ð Þ2
� �

ds
h i

:

(3)

where Asp = A2 � A1 measures the asymmetry of bending
rigidities. The second term in the above expression gives the
extra energy which is associated with bending along one axis in
comparison to the other. It is sometimes called the splay elastic
energy, particularly often encountered in the liquid crystals,
where it is associated with the distortion mode characterized by
a nonzero divergence of a director field.40 In the context of
elastic rods and ribbons splay becomes important whenever –
due to anisotropy of the internal structure of a rod – it becomes
more easy to bend it in a particular direction.24,41 In our case
the anisotropy is associated with the presence of the side strand
along the filament axis. Comparing the backbone with the
side strand to a comb, one can intuitively see that bending in
the plane of the teeth introduces an extra strain between the
teeth, while bending in the perpendicular direction does not
(teeth remain perpendicular to the backbone though the back-
bone itself gets bent, see Fig. 3). The exact relation between
the effective parameters A1, A2 and C and the coefficients

characterizing the coarse-grained model are discussed in
Sections. S5 and S6 in the ESI.†

4 Aggregate morphologies and
binding modes
4.1 Ribbons

When the filaments are put in solution, they begin to aggregate into
clusters. If the internal twist of the filaments is relatively small
(l0 o 281) then the first structures which appear during the
aggregation usually are the ribbon forms of Fig. 2c. In these ribbons,
the filaments are ordered side by side, with side strands untwisted
to allow for a maximum number of contacts between the beads.
However, such a geometric arrangement of the filaments is not
energetically favorable, since each contact site binds two filaments
only. This leads eventually to reorganization of the filaments into a
more packed structure, in which they entwine one around the other
to form helically twisted fibers (Fig. 2b). Notably, analogous ribbon
structures have been observed in a number of experiments on
aggregating proteins.6,7,15,18,20,21,42 Which of these shapes are rea-
lized is determined by the conditions of the aggregation (either
quiescent or agitated6,15) as well as pH.7,18 Clearly, the electrostatic
environment around the growing fibril may have an impact on the
protonation states of proteins and thus on the distribution of
binding sites on the filament. On the other hand, even a slight
change in the structure of the proteins may result in different elastic
properties of the growing fibril. Interestingly, there are also cases in
which ribbon and helicoidal forms coexist20 and can be trans-
formed into each other, in close analogy to what is observed in
our simulations. Although for a particular parameter choice corres-
ponding to the current model the ribbon structure is just a
metastable intermediate form, by modifying the ratio between the
bending and twisting rigidity and Lennard–Jones energy per contact
(or the number of possible contacts), the ribbons can be made a
kinetically favorable structure. This has been confirmed in ref. 20
where it has been shown that the mutations of human islet amyloid
polypeptide destabilize the helical fibrils sufficiently relative to the
ribbons and lead to their complete elimination.

4.2 Helicoids

Interestingly, the helicoidally twisted fibers themselves can
exist in several conformational states. For small internal twists

Fig. 3 Two bending modes of a comb: involving splay strain (a) and not
involving it (b).
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of constituting filaments (t̂0) the filaments interact in a bead-
by-bead manner: each S bead of one filament meets with its
partner on the other (see Fig. 5a). This maximizes the number
of bead-to-bead contacts, but comes at a cost of bending energy,
since the filaments need to wind around each other. Eventually,
for larger values of internal twist the cost in bending energy
becomes too high and the cluster restructures itself into a
configuration in which every nth side strand bead binds to a
neighboring S bead on a second filament34 (cf. Fig. 5b).

This reduces the twist of the filament backbone, since the
effective twist density is now equal to

t̂n(l0) = ln/2nlBB, (4)

where

ln(l0) = �p + (nl0 + p)mod 2p (5)

is the circumferential angle between a side strain bead and its
nth neighbor wrapped to the interval [�p, p]. The optimal
configuration of the cluster is then a result of a minimization
of the total energy of the system, which (per unit contour
length) is of the form

EtotðaÞ
L

¼ Ak2ðaÞ þ Aspk2ðaÞ cos 2x

þ C tðaÞ � t̂n l0ð Þð Þ2þEint

L
; (6)

where the curvature and torsion were reparametrized with
superhelix helix angle a (that is the angle between the tangent
to the helix and its axial line, Fig. 4) instead of arc length s
and the cohesive interactions between the filaments, Eint, are
approximated by the product of the contacts and the depth of
the LJ potential well (see ESI† for a more detailed description).
In principle, both the curvature and torsion are functions of the
helix angle of the superhelix, a, and its radius, R (see Fig. 4):

k ¼ sin 2 a
R

; t ¼ sin a cos a
R

: (7)

However, the radius of the superhelix is controlled by the
strong binding interactions and is only weakly dependent on
the specific binding mode. Hence, for a given binding mode (n)
the energy of the system becomes the function of one variable
only, a (see also ref. 32 for a similar approach). By minimizing
eqn (6) with respect to a, i.e. finding a* such that

(dEtot/da)a=a* = 0, (8)

we obtain the energies of binding modes as a function of the
internal twist, l0. Fig. 6 shows a plot of the optimal energy per
unit length, Etot(a*), as obtained from eqn (6) for the first few
binding modes. As observed up to l0 E 481 the most energe-
tically favorable is n = 1 (bead-by bead) mode, whereas for larger
l0 the n = 5 mode becomes more favorable. The theoretical
predictions are in very good agreement with the numerical
simulations of the coarse-grained model of Section 2. Sponta-
neously formed clusters of the filaments bind in the n = 1 mode
for l0 o 401 and in the n = 5 mode for l0 4 481 (intervals
marked by arrows in Fig. 6). In the intermediate range of the

twist angles, the three energetically favorable modes, n = 1,
n = 5, and n = 7, compete with each other, which results in
inhomogeneous structures of mixed handedness. The bottom
panel of Fig. 6 shows the value of the pitch of the optimum
helical superstructures, P = 2pR cota*, compared with the average
pitch measured in the simulations. An important phenomenon

Fig. 4 Geometric parameters characterizing the supercoil: helix angle a
and radius R.

Fig. 5 Different binding modes in a helicoidal cluster: (a) n = 1 mode with
the side strands binding in a bead-by-bead manner and (b) n = 5 mode in
which every 5th side strand bead binds to a neighboring bead on a second
filament (for clarity, only two filaments from a 3-filament cluster are shown
here). The brown color marks the side strand beads in contact.
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observed here is the chirality inversion: the modes n = 1 and n = 5
are characterized by a different handedness (as determined by
the sign of a*) – supercoil of n = 1 mode maintains the same
handedness as the individual filaments, whereas that for n =
5 – handedness opposite to that of individual strands. Interest-
ingly, recent experiments by Usov et al.21 seem to confirm the
existence of such a chirality-reversal transition in the fibrillization
processes in bovine serum albumin.

4.3 Tubular structures

The aggregates can exist in yet another state, in which they
form a tube of helically wound filaments (‘tubular’ structures
of Fig. 2d). In the simulations, these structures are not observed
to form spontaneously, because of the high free energy barrier
between the helicoidal and tubular state, associated with
the large amount of backbone bending needed to induce the
transition. It is, however, possible to force the transition by
twisting the helicoidal supercoil, much like what one would do
while curling the macroscopic ribbons, as presented in Fig. 7.

To be more precise, we clamp one end of the helicoidal
supercoiled structure, while steadily ramping up the torque
acting on the other end, T= at with torque rate a E 0.1e/tD up
to Tmax = 60–75e. During the ramping process the aggregate
first transforms itself from an initial helicoidal structure into
the ‘overtwisted’ form (middle structure in Fig. 8) with a pitch
reduced by a factor of 2 to 3, depending on the initial twist of
the filaments. At that point the system encounters an energy
barrier and further twist is impeded. The barrier is too high for
the conformational transitions to occur during the accessible
simulation time scales, unless the temperature is increased
beyond T* = 1.

The resulting transition leads to a dramatic conformational
change within the cluster, accompanied by an abrupt rotation
of the side strands. As observed in Fig. 9, the main difference

Fig. 6 Top: The theoretical predictions of the energies of the clusters in
different binding modes obtained by minimization of the free energy,
eqn (8). The modes correspond to a situation in which every nth side chain
bead binds to a neighboring bead on another filament. The binding modes
presented in the Figure correspond to n = 1 (filled squares), n = 5 (filled
triangles), n = 7 (empty triangles) and n = 4 (empty squares). The lower
indices (1, 2) mark the number of side strands involved in the formation of
the interaction seam between the filaments. The arrows mark the intervals
of l0 values in which a given mode is prevailing in the simulations. Bottom:
the theoretical prediction of the pitch of the helicoidal superstructures
calculated based on eqn (8) for the modes n = 1 and n = 5, compared with
the simulation data.

Fig. 7 Analogy of ribbon, helicoidal and tubular states for a measuring
tape. Grabbing the tape (a) by the ends and twisting it slightly, we put it into
a helicoidal conformation (b). A somewhat larger twist induces a transition
into the helical state (c). The difference between (b) and (c) lies in that in (b)
the center line of the ribbon is straight and coincides with its symmetry
axis, whereas in (c) the center line is a helix itself.

Fig. 8 Overtwisting of a helicoid leading to the formation of a tubular
structure.
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between the helicoidal and tubular structure is that in the
former the side strands are turned towards the main axis (or
outwards, depending on the side strand) whereas in the latter
they are positioned along the surface of the tube. This can be
quantified by an angle, x, between the backbone normal vector
and side strand bond: it is close to zero in the overtwisted
helicoidal conformation and p/2 in the tubular form.

A video illustrating the helicoid to tubule transition can be
found in the ESI.† As can be seen from the video, the transition
– although relatively abrupt – proceeds in a stepwise manner.
As illustrated in more detail in Fig. 10, the transition starts
locally, with a group of bonds in one of the filaments reorient-
ing their side-strands from x = 0 to p/2. Then the transition
‘‘diffuses’’ towards the end of this filament (Fig. 10b). Once two
filaments change their configuration, the whole structure
becomes stabilized by the interacting side strands and then
the last filament becomes locked in its place. The prominent
role that the angle x plays in the helicoid–tubule transforma-
tion suggests that this transition can also be induced by
applying the torque to one of the filaments in the overtwisted
cluster, in order to increase the value of x within it (cf. Fig. 11).
Except for being an efficient way of inducing the helicoid–
tubule transition, such a controlled way of performing the
transition provides insight into the energetics of the restructuring
process. As presented in Fig. 12, the splay energy, accumulated
during the overtwisting, is released during the transition to the
tubular state. On the other hand, neither the torsional nor
the backbone bending energy changes during the transition.
Instead, they remain at their values acquired during the over-
twisting, which are respectively smaller (for torsional) and
larger (for bending energy) than the corresponding values for
the unconstrained helicoid.

Importantly, there exists a range of intrinsic twist angles of
the filaments (l0 A [181;321]) for which the tubular forms
remain (meta)stable even after the torques are relaxed, with
lifetimes of at least 4 � 105 tD. These observations can be

rationalized in terms of a simplified, 1d energy landscape
presented in Fig. 13. Here the solid line represents the situation
in the absence of the torque. The helicoidal state (H) is then at
the global energy minimum, separated by a wide and high
barrier from the tubular form (T). As the torque is applied to
the filament (phase 1 of the twisting), the landscape deforms

Fig. 9 Geometrical characteristics of the overtwisted (a) and tubular (b)
structures (see also Fig. 8): w – bond angles (S–B–B) of equilibrium value of
p/2; x – the angle between the backbone normal vector and the side
strand bond (it is roughly 0 in the overtwisted and twisted states and p/2 in
the tubule). The strain in the w angles is the source of an elastic splay term
in the continuum description. See ESI† for details.

Fig. 10 (a) Example trajectory snapshots showing the transition from
overtwisted (that is after the initial twisting phase, see text) helicoidal to
tubular configuration. For clarity of presentation, (b) shows only a single
filament. Images created using VMD.38

Fig. 11 Example time evolution of |cos x| (see Fig. 9) during the simula-
tions with external torques applied at T* = 1.0 and l0 = 261, where the
twisting I phase is the initial stage with a constant torque rate applied to
twist the helicoidal supercoil, and twisting II is the next stage with constant
torques applied to single filaments.
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(dashed line in Fig. 13), and the cluster attains an overtwisted
state (H*). The remaining barrier between H* and T can be
overcome either stochastically or by additional twisting of one
of the filaments (phase 2 of the twisting). This transition is
marked by a dashed arrow in Fig. 13. After the torque is
released, the tubular state remains at the local minimum.
The energy barrier can be crossed stochastically (solid arrow
in Fig. 13) which is accompanied by an abrupt release of the
backbone strain with a simultaneous increase of dihedral and
splay energy as the system goes back to the helicoidal form
(Fig. 14). The change in splay energy is here relatively small, in
contrast to the H - H* - T transition, where there is a large
amount of splay strain involved in the overtwisted H* structure.

The video illustrating the T - H transition can be found in the
ESI.† The transition is slower than in the H - T case, but also
takes place in a stepwise manner – it is initiated by loosening of

the contacts between the filaments at their ends and then
advancing towards the center of the aggregate.

To estimate the heights of the H* - T and T - H energy
barriers the rates of interconversion between these conformers
were measured by performing a series of simulations at elevated
temperatures and fitting them to the Arrhenius equation.43,44

The results, plotted as a function of l0, are shown in Fig. 15. Note
that the barrier heights depend on the maximum torque, Tmax,
used to overtwist the helicoid in phase 1 of the twisting – the
larger the torque, the smaller the barrier left to overcome. This
can again be related to the energy landscape shown in Fig. 13,
where the position of H* minimum shifts to the right as the
torque is increased. Another interesting issue is the existence of
the peak of maximum energy barrier at l0 = 261 pointing to more
stable tubular structures at this intrinsic twist. Indeed, for these
structures large temperature (even T* = 1.5) is necessary to
disrupt the tubules.

More insight into the forces stabilizing the helicoidal and
tubular structure can be gained by the analysis of individual

Fig. 12 Example time evolution of selected energy contributions during
the simulations with external torques applied at T* = 1.0 and l0 = 261
(twisting phases as in Fig. 11).

Fig. 13 Schematic of the energy landscape for helicoid–tubule transition.
The helicoidal, overtwisted, and tubular conformations are denoted by
H, H* and T respectively. The dashed/solid line corresponds to the case
with/without the external torque applied to the ends of the filament.

Fig. 14 The time evolution of the backbone bond angle, dihedral, and
splay energies during T - H transition at T* = 1.3 and l0 = 261.

Fig. 15 The heights of energy barriers obtained from the simulation data
for the tubule to helicoid (T - H) transition (filled diamonds) and for the
overtwisted helicoid to tubule (H* - T) transition (empty symbols). The
overtwisted state H* has been obtained with two different values of
the maximum torque: H1* with T1 = 62.5e and H2* with T2 = 75e. The
lines are the guide to the eye.
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contributions to the internal energy (Fig. S3a–d, ESI†).
Although significantly different in shape, both the helicoidal
and tubular conformations maintain a similar number and
quality of contacts, that is the difference between the two
structures in the cohesive energy is small (Fig. S3d, ESI†),
particularly, relatively to other contributions. Also, the difference
in the bond energy is negligible (Fig. S3a, ESI†). Clearly, the two
competing forces in the cylindrical structure is the one aiming at
straightening the backbone (towards the helicoidal configu-
ration, with the backbone only slightly bent) competing with
the one aiming at keeping the torsion of the backbone helix at
t = t̂0 which minimizes the dihedral term in the elastic energy, as
given in eqn (6).

The tubular structures have a very robust geometry. They are
formed by three filaments wound together around a hollow
core of the tube. The LJ attraction forces between the backbone
beads stabilize their distance at d0 = 21/6sB. The cross-section of
the tubule coincides then with a circle circumscribed on the
equilateral triangle with a side length of d0 (see Fig. 16). This
sets the circle radius at R = 4 � 21/6 � 3�1/2 E 2.59, where
we have used the fact that sB = 4 (in the units of lBB). This value
of the radius is not far from the simulation results, where hRiE
2.65 � 0.1 has been obtained. However, d0 is also the distance
between the filament backbones as measured along the side of
the cylinder (cf. Fig. 16). By solving the triangle marked in the
left panel of Fig. 16, we get P = 6pRd0(4p2R2 � 9d0

2)�1/2 E
23.958, which is very close to the average pitch of the tubular
structures measured in the simulations (hPi = 23.3 � 0.4). Finally,
the helix angle of the tubule can be calculated to be a = 34.21.

These values of R and a, together with A1, Asp and C
parameters given in the ESI† can then be used in eqn (6) to
estimate the free energy of tubular structures, as shown in
Fig. 17. Also, the energies of helicoids, overtwisted helicoids
and ribbons are presented there. The ribbon energies are
approximated by assuming straight configuration of the filaments,
with the only strain coming from the untwisted side-strands. The
ribbons and tubules are structurally similar to each other, with the
main difference coming from the fact that the latter form a closed
structure, with a larger number of contacts between the backbones

and the side strands, and hence lower LJ energy, stabilizing the
structure. There are approximately 450 contacts in 3-filament
cluster of a tubular form (180 B–B contacts, 90 S–S contacts and
180 S–B contacts), which gives on average 2.5 contacts per unit
length of each filament. An analogous calculation for the ribbon
gives a value of 1.67 contacts per unit length.

Finally, the energies of overtwisted helicoidal structures are
calculated similarly to those of the tubules, based on the
observation that neither the pitch nor the radius changes
significantly during the H* - T transition. This, together with
the assumption that x = 0 fully determines the geometry of
these structures.

It is worth noting a pronounced minimum in the tubule
energy plot (cf. Fig. 17) at around l0 = 201. This is related to the
dihedral term, C(t � t̂0)2 in the energy eqn (6). The torsion
of the tubule, calculated based on eqn (7), with a = 34.21 reads
t E 0.179. Since, on the other hand, t̂0 = l0/2lBB, one concludes
that for l = 0.358 radians (or 201) the dihedral term vanishes,
hence the parabolic form of the energy plot in this region. This
minimum, suggesting the increased stability of the tubules at
l0 = 19–211, should be compared with the maximum in the
barrier heights shown in Fig. 15 which marks the most stable
tubules obtained in the simulations. However, the maximum is
shifted to l0 = 261 which is probably the result of a simplified
treatment of LJ interactions between side-strand beads in the
analytic model. When calculating the interactions between the
side strands in the tubule, we assume that they are directed
along the backbone binormal vectors. However, at the same
time the attractive interactions between the backbones try to
bring the distance between them to the equilibrium value of d0.
To accommodate that, the side strand beads have to slightly
protrude out of the cylinder surface, which is the reason why
the optimal angle in the real system shifts by approximately
10% with respect to that predicted by a theory.

Finally, let us note that there are in principle two ways in
which the tubules can be formed. One is by twisting the
helicoidal structures, as described above. The other possibility
of tubule formation would be directly from the ribbon, which
can wrap around and close on itself. However, in the presentFig. 16 Arrangements of the filaments within the tubule.

Fig. 17 Theoretical estimates of the free energy per unit length of the
helicoid (filled diamonds), overtwisted helicoid (empty triangles), ribbon
(filled triangles), and tubule (filled rectangles) systems at T* = 1.0 for various
values of intrinsic filament twist angle, l0.
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model a large difference in energies between the ribbons and
the helicoids creates a strong bias towards the latter. As a
result, the ribbons are transient structures only and get trans-
formed into the helicoids before they manage to form tubules.

5 Concluding remarks

In this paper, we have presented a simple model of aggregating
helical filaments, capable of describing the transitions between
different aggregate morphologies: ribbon-like, helicoidal, and
tubular. A relative simplicity of the model allowed for an
introduction of analytic description, based on a linear elastic
model of helical filaments interacting through multiple bind-
ing sites. We studied the dependence of the results on the
intrinsic twist of the filaments. The theoretical model predicts
nicely the crossover between binding modes in the case of
helicoidal clusters, as well as the existence of the most stable
forms of the tubules. We have quantified the geometrical
characteristics of different morphological types as well as the
main energy contributions determining their relative stability.
We conclude with two remarks. First, as already mentioned in
the Introduction, there are both similarities and differences
between the geometries of the aggregate structures in the present
study and those based on the continuum sheet theories.13,14,22,45–48

On one hand, the overall topological features, with the division into
three main structural classes – ribbons, helicoids and tubules – are
similar in both approaches. However, at a finer level of detail a
number of differences are evident. The helicoids are not simply
twisted ribbons, as in the continuum theories, but rather coiled
coils composed of filaments winding around each other while
sharing a common interaction seam. Similarly to the ‘‘knobs-
into-holes’’ packing in a-helical coiled coils described by Crick
and others,8,35,36 we find that the filaments forming a helicoid
can bind themselves in a number of different ways (‘‘binding
modes’’), the selection of which depends on the internal twist
of the individual filaments. The binding modes determine both
the pitch and the handedness of the resulting cluster. The
network of contacts between the binding sites with an under-
lying triangular ordering (cf. Fig. 17) also provides a stabilizing
scaffold for the tubular structure, giving rise to the selection of
a well-defined radius of the tube.

Second, the numerical data and theoretical considerations
presented here seem to suggest that it should be relatively easy
to induce a transition between different morphological forms.
The easiest way of carrying it out is to change the relative
magnitude of cohesive and elastic contributions to the energy.
This can be achieved by changing the ionic strength (which can
screen the electrostatic interactions between the binding sites)
or temperature. Importantly, these factors not only influence
the interaction between the filaments but can also affect the
properties of individual filaments, such as their internal twist
(l0), which in turn influences the properties of the aggregate,
including its handedness. An increased sensitivity of the aggre-
gate characteristics to the environmental conditions has indeed
been observed in many experimental studies.6,7,18,21,47 Such a

possibility of dynamic morphology control makes these materials
particularly attractive from the point of view of bottom-up
nanotechnology.
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and M. Fändrich, J. Mol. Biol., 2006, 362, 347.

5 L. C. Serpell, M. Sunde, M. D. Benson, G. A. Tennent,
M. B. Pepys and P. E. Fraser, J. Mol. Biol., 2000, 300, 1033.

6 A. Loksztejn and W. Dzwolak, J. Mol. Biol., 2008, 379, 9–16.
7 D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie and I. K. Lednev,

Biophys. J., 2012, 103, 522–531.
8 A. N. Lupas and M. Gruber, in Advances in Protein Chemistry,

Fibrous Proteins: Coiled-Coils, Collagen and Elastomers, ed.
D. Parry and J. Squire, Elsevier, 2005, vol. 70, pp. 37–78.

9 J. Adamcik and R. Mezzenga, Macromolecules, 2012, 45,
1137–1150.

10 A. Kajava, J. Squire and D. A. D. E. Parry, Advances in Protein
Chemistry, Fibrous Proteins: Amyloids, Prions and Beta
Proteins, Elsevier, Academic Press, 2006, vol. 73.

11 J. Squire and D. A. D. E. Parry, Advances in Protein Chemistry,
Fibrous Proteins: Muscle and Molecular Motors, Elsevier,
Academic Press, 2005, vol. 71.

12 T. Vo-Dinh, Protein Nanotechnology - Protocols, Instrumentation,
And Applications, Humana Press, 1st edn, 2010.

13 R. Oda, I. Huc, M. Schmutz, S. J. Candau and F. C.
MacKintosh, Nature, 1999, 399, 566–569.

14 A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick,
T. C. B. McLeish, A. N. Semenov and N. Boden, Proc. Natl.
Acad. Sci. U. S. A., 2001, 98, 11857–11862.

15 A. T. Petkova, R. D. Leapman, Z. Guo, W.-M. Yau, M. P.
Mattson and R. Tycko, Science, 2005, 307, 262–265.

16 J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios,
G. Dietler and R. Mezzenga, Nat. Nanotechnol., 2010, 5,
423–428.

17 J. Adamcik and R. Mezzenga, Soft Matter, 2011, 7, 5437–5443.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
4 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
ni

w
er

sy
te

t W
ar

sz
aw

sk
i o

n 
11

/0
9/

20
15

 1
8:

44
:4

7.
 

View Article Online

http://dx.doi.org/10.1039/c5sm00652j


6304 | Soft Matter, 2015, 11, 6294--6304 This journal is©The Royal Society of Chemistry 2015

18 D. Kurouski, X. Lu, L. Popova, W. Wan, M. Shanmugasundaram,
G. Stubbs, R. K. Dukor, I. K. Lednev and L. A. Nafie, J. Am. Chem.
Soc., 2014, 136, 2302–2312.

19 L. R. Volpatti, M. Vendruscolo, C. M. Dobson and
T. P. Knowles, ACS Nano, 2013, 7, 10443–10448.

20 S. Zhang, M. Andreasen, J. T. Nielsen, L. Liu, E. H. Nielsen,
J. Song, G. Ji, F. Sung, T. Skrydstrup, F. Besenbacher,
N. C. Nielsen, D. E. Otzen and M. Dong, Proc. Natl. Acad.
Sci. U. S. A., 2013, 110, 2798–2803.

21 I. Usov, J. Adamcik and R. Mezzenga, ACS Nano, 2013, 7,
10465–10474.

22 J. V. Selinger, M. S. Spector and J. M. Schnur, J. Phys. Chem.
B, 2001, 105, 7157–7169.

23 S. Assenza, J. Adamcik, R. Mezzenga and P. De Los Rios,
Phys. Rev. Lett., 2014, 113, 268103.

24 I. A. Nyrkova, A. N. Semenov, A. Aggeli and N. Boden,
Eur. Phys. J. B, 2000, 17, 481–497.

25 D. S. Chung, G. B. Benedek, F. M. Konikoff and J. M. Donovan,
Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 11341–11345.

26 Y. V. Zastavker, N. Asherie, A. Lomakin, J. Pande,
J. M. Donovan, J. M. Schnur and G. B. Benedek, Proc. Natl.
Acad. Sci. U. S. A., 1999, 96, 7883–7887.

27 T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward,
Y. Yang, C. Berciu, R. Oldenbourg, M. F. Hagan and
D. Nicastro, et al., Nature, 2012, 481, 348–351.

28 L. Ziserman, H.-Y. Lee, S. R. Raghavan, A. Mor and
D. Danino, J. Am. Chem. Soc., 2011, 133, 2511–2517.

29 B. Vestergaard, M. Groenning, M. Roessle, J. S. Kastrup,
M. Van De Weert, J. M. Flink, S. Frokjaer, M. Gajhede and
D. I. Svergun, PLoS Biol., 2007, 5, e134.

30 M. I. Ivanova, S. A. Sievers, M. R. Sawaya, J. S. Wall and
D. Eisenberg, Proc. Natl. Acad. Sci. U. S. A., 2009, 106,
18990–18995.

31 V. Babenko and W. Dzwolak, FEBS Lett., 2013, 587,
625–630.

32 S. Neukirch, A. Goriely and A. C. Hausrath, Phys. Rev. Lett.,
2008, 100, 038105.

33 C. W. Wolgemuth and S. X. Sun, Phys. Rev. Lett., 2006,
97, 248101.

34 M. Gruziel, W. Dzwolak and P. Szymczak, Soft Matter, 2013,
9, 8005.

35 F. Crick, Acta Crystallogr., 1953, 6, 689–697.
36 G. Offer, M. R. Hicks and D. N. Woolfson, J. Struct. Biol.,

2002, 137, 41–53.
37 S. Plimpton, J. Comput. Phys., 1995, 117, 1–19.
38 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics,

1996, 14, 33–38.
39 J. F. Marko and E. D. Siggia, Macromolecules, 1994, 27,

981–988.
40 H. Deuling, Liquid Crystals, Solid State Physics, 1978, 14,

103–107.
41 J. B. Fournier, Phys. Rev. Lett., 1996, 76, 4436.
42 C. Lara, S. Handschin and R. Mezzenga, Nanoscale, 2013, 5,

7197–7201.
43 M. Schlierf, H. Li and J. M. Fernandez, Proc. Natl. Acad. Sci.

U. S. A., 2004, 101, 7299.
44 P. Szymczak and M. Cieplak, J. Phys.: Condens. Matter, 2006,

18, L21.
45 R. L. B. Selinger, J. V. Selinger, A. P. Malanoski and

J. M. Schnur, Phys. Rev. Lett., 2004, 93, 158103.
46 R. Ghafouri and R. Bruinsma, Phys. Rev. Lett., 2005,

94, 138101.
47 Y. Sawa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto,

R. L. B. Selinger and J. V. Selinger, Proc. Natl. Acad. Sci. U. S. A.,
2011, 108, 6364–6368.

48 L. Teresi and V. Varano, Soft Matter, 2013, 9, 3081–3088.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
4 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
ni

w
er

sy
te

t W
ar

sz
aw

sk
i o

n 
11

/0
9/

20
15

 1
8:

44
:4

7.
 

View Article Online

http://dx.doi.org/10.1039/c5sm00652j



