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Abstract Analyzing the dissolution of rocks and other porous materials is simplified by the large dis-
parity between mineral and reactant concentrations. In essence, the porosity remains frozen on the time
scale of the reactant transport, which can then be treated as a quasi-stationary process. This conceptual
idea can be derived mathematically using asymptotic methods, which show that the length scales in the
system are, to a first approximation, independent of the ratio of reactant and mineral concentrations.
Nevertheless, in a growing number of papers on dissolutional instabilities, the reactant-mineral concen-
tration ratio has been incorrectly linked to the thickness of the dissolution front. In this paper we critically
review the application of asymptotic methods to the reaction-infiltration instability. In particular, we dis-
cuss the limited validity of the thin-front or ‘‘Stefan’’ limit, where the interface between dissolved and
undissolved mineral is sharp.

1. Introduction

When an acidic solution is injected into a soluble porous matrix, for example, calcite or gypsum, the disso-
lution front does not necessarily remain planar. One important consequence is that the permeability
increase during reservoir acidization depends nonmonotonically on flow rate [Rowan, 1959], with the
maximum corresponding to the spontaneous development of highly localized flow paths, or ‘‘worm-
holes.’’ Wormhole formation has been investigated in the laboratory using a variety of materials: plaster
(gypsum) dissolved by water [Ewers, 1982; Daccord, 1987; Osselin et al., 2016], acidized limestone cores
[Hoefner and Fogler, 1988; Fredd and Fogler, 1998; Polak et al., 2004; Luquot and Gouze, 2009; Noiriel et al.,
2013; Luquot et al., 2014], KH2PO4 crystals [Detwiler et al., 2003; Detwiler, 2010], and salt [Kelemen et al.,
1995; Golfier et al., 2002].

In a seminal paper, Chadam et al. [1986] proposed a simple feedback mechanism to explain the instability
of a dissolution front. A region of slightly enhanced porosity draws flow and reactant from the surrounding
regions, and therefore dissolves more quickly. This in turn increases the flow to that region, amplifying the
porosity contrast with the neighboring material. A linear stability analysis was used to estimate the wave-
lengths of unstable perturbations in the front position. They found both a simple criterion for an unstable
front, and a formula for the growth rate and wavelength of the most unstable mode. Subsequently, in two
influential papers [Ortoleva et al., 1987a, 1987b], they reframed their insights within a geological context.
However, their papers [Chadam et al., 1986; Ortoleva et al., 1987b; Chadam et al., 1988, 2001] also contain a
crucial misconception, which they refer to as ‘‘large solid-density asymptotics.’’ They deduced (incorrectly)
that a large ratio of mineral to aqueous concentrations inevitably means that the interface between the dis-
solved and undissolved mineral is sharp.

It has been pointed out several times, beginning with Hinch and Bhatt [1990] and Steefel and Lasaga [1990],
that the analysis in Chadam et al. [1986] is only valid in the fast-reaction limit [Wangen, 2013; Szymczak and
Ladd, 2014]. Nevertheless, the erroneous connection between mineral-reactant concentration ratio and the
thickness of the porosity front persists to the present day [Zhao et al., 2008, 2010, 2013a; Zhao, 2014; Zhao
et al., 2014, 2015; Lai et al., 2016]. In this paper we retrace the original derivation from Chadam et al. [1986],
pointing out that they are, in effect, taking two limits simultaneously. One is the limit they discuss, namely
that the solution concentration is much smaller than the mineral concentration. But there is also a hidden
assumption of fast-reactions, which makes for the discontinuous change in porosity [Lichtner, 1988; Phillips,
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1990; Steefel and Lasaga,
1990]. We also introduce a
more general analysis
[Szymczak and Ladd,
2014], which allows for
finite reaction rates and a
gradual transition in
porosity across the front.
The symbols used in the
paper are summarized in
Table 1.

2. Fundamental Equations and Scales

Dissolution of a porous matrix involves the interplay of transport processes, convection, and dispersion, with
chemical reactions at the solid surfaces. Since reaction rates and flow velocities in subsurface transport can vary
by many orders of magnitude, different regimes of dissolution are possible. To elucidate the possibilities, we
begin with the equations for reactive transport in porous media [Chadam et al., 1986; Steefel and Lasaga, 1990;
Golfier et al., 2002], which are balance equations for the mass of (incompressible) solvent, reactant, and mineral

@t/1r � v50; (1)

@tð/cÞ1r � ðvcÞ5r � D � rc2Rðc;/Þ; (2)

csol@t/5Rðc;/Þ: (3)

In these equations / is the matrix porosity, v is the superficial or Darcy velocity, c is the reactant concentra-
tion field, and csol is the concentration of consolidated mineral. The Darcy velocity is related to the mean flu-
id velocity in the pore space (u) by v5/u, with r � u50.

We will assume that the rock contains some insoluble material, so that Darcy’s law can be used to represent
the fluid momentum balance even as the rock dissolves,

v52
K
l
rp; (4)

where Kð/Þ is the permeability, p is the pressure, and l is the fluid viscosity. Because the qualitative features
of the reaction-infiltration instability are insensitive to the precise form of the constitutive models [Szymczak
and Ladd, 2014], we use a minimal reactive transport model; namely, a constant isotropic dispersion, D5D1,
and a linear reaction rate,

Rðc;/Þ5kcs Hð/12/Þ; (5)

with a constant specific surface area s. The Heaviside function,

HðxÞ50 x � 0; (6)

HðxÞ51 x > 0; (7)

limits the reaction to partially dissolved regions where the porosity is less than its maximum value /1. A disso-
lution reaction can also be described in terms of the undersaturation of aqueous mineral ions R5kðcsat2cÞs
[Plummer and Wigley, 1976]. Equation (2) is then replaced by an identical equation for the undersaturation
C5csat2c; the subsequent analysis follows section 3 with the exception that C is scaled by csat rather than the
inlet concentration cin.

In geological settings, there is usually a large difference between the reactant concentration in the incom-
ing fluid stream cin and the mineral concentration csol. The ratio of these two concentrations,

c5
cin

csol
; (8)

is then a small parameter; for example, in the dissolution of natural calcite c is of the order of 1024.
Physically, this means that on time scales where the flow and reactant transport come to a quasi-

Table 1. Symbols Used in the Paper, Grouped by Fields, Input Parameters, and Derived Scalesa

Fields Input Parameters Derived Scales

/ Porosity s Specific surface area lp penetration length (11)
v Velocity v0 Outlet velocity U front velocity (43)
c Concentration cin Inlet concentration tr reaction time scale (19)
Kð/Þ Permeability k Reaction rate constant td dissolution time scale (20)

D Diffusion coefficient H transport parameter (25)
csol Mineral concentration c dissolution ratio (8)

C permeability ratio K0=K1

aSubscripts 0 and 1 in the text refer to the undissolved and fully dissolved matrix; for exam-
ple K05Kð/0Þ refers to the permeability and porosity of the undissolved matrix.
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stationary state, the porosity remains
unchanged. Thus, it will be possible
to drop the time derivatives in equa-
tions (1) and (2), but not in (3) where
the evolution is much slower. These
qualitative considerations will be sub-
stantiated with mathematical analysis
in section 3.

As an initial condition we can imagine
a sharp planar boundary between dis-
solved and undissolved mineral, locat-
ed at x 5 0. Upstream of the front
(x< 0) the mineral is fully dissolved
while downstream of the front (x> 0) it
is entirely undissolved. Reactant is
introduced far upstream at constant
velocity v0 with concentration c0.

Downstream of the front the reactant concentration eventually vanishes, while the flow velocity returns to
a uniform value v0.

The front broadens and propagates over time, eventually reaching a steady state in a frame x05x2Ut mov-
ing with a fixed velocity U. The concentration profile is illustrated schematically in Figure 1. The dissolution
front (dashed line) advances into the undissolved matrix (porosity /0); to the left of the front (porosity /1)
all the soluble material has dissolved, whereas to the right of the front there is a region of partially dissolved
material.

The stationary concentration field is given by [Szymczak and Ladd, 2013]

c
cin

512
ev0x0=D

11v0lp=D
x0 < 0; (9)

c
cin

5
e2x0=lp

11D=v0lp
x0 > 0; (10)

where both the concentration (c) and the flux (v0c2Ddc=dx0) are continuous at the interface (x050).
Upstream of the front (x0 < 0 in Figure 1) the porosity is constant and all reaction has ceased; the concen-
tration near the front decays with a length scale D=v0 (9). The thickness of the porosity front (x0 > 0) is given
by the reactant penetration length [Lichtner, 1988; Phillips, 1990; Steefel and Lasaga, 1990],

lp5
2D

ðv2
014DksÞ1=2

2v0

; (11)

where v0 is the velocity of the incoming fluid. In subsurface rocks lp ranges from less than 1 mm to 100 m
[Phillips, 1990; Szymczak and Ladd, 2013].

Two important limiting cases can be identified from the one-dimensional concentration profile given by
equations (9) and (10). When the downstream length dominates, lp � D=v0, the concentration profile
appears constant right up to the front, decaying exponentially (for linear reaction kinetics) into the porous
matrix

c5cin x < 0; (12)

c5cine2x=lp x > 0: (13)

On the other hand, when the upstream length is dominant, lp � D=v0; now the concentration does not
penetrate into the matrix, but is entirely consumed in a thin region at the front

c5cin 12ev0x=D
� �

x < 0; (14)

Figure 1. Concentration and porosity profiles for a planar front; the position of
the front in the moving coordinate system x05x2Ut is indicated by the dashed
vertical line. The concentration, c (dotted line), decays with different length scales,
D=v0 and lp, in the upstream (x0 < 0) and downstream (x0 > 0) regions.
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c50 x > 0: (15)

Equations (12)–(15) summarize (for a planar front) the two key limiting cases of the reaction-infiltration
instability. In the first case, (12) and (13), dispersion is negligible and the penetration into the matrix is set
by the balance between convection and reaction lp5v0=ks. This is typically the case for fracture dissolution
[Szymczak and Ladd, 2012], but it can also occur in porous materials when the reaction rates are slow
[Phillips, 1990; Szymczak and Ladd, 2013]. In the second case, (14) and (15), the reaction rate is large and the
infiltrating solution is always in a condition of local equilibrium [Lichtner, 1988; Steefel and Lasaga, 1990].
Here the reactant does not penetrate into the matrix and only the upstream length is significant, set by the
balance of dispersion and convection. Thus, the thickness of the porosity front is determined by transport
parameters (D, v0, and ks) and not by c, as suggested in a number of publications [Chadam et al., 1986; Orto-
leva et al., 1987a; Chadam et al., 1988; Chadam and Ortoleva, 1990; Chadam et al., 2001; Zhao et al., 2008,
2013a, 2013b; Zhao, 2014; Zhao et al., 2014].

3. Asymptotic Limits

If the initial front is not exactly planar then a variety of evolving interface shapes become possible, due to
the instability mechanism first described by Chadam et al. [1986]. In this section we discuss a more general
approach to the instability problem [Szymczak and Ladd, 2013] and point out its connection to the earlier
theory [Chadam et al., 1986].

We have already noted that there are two natural length scales that arise in the transport equations (9 and
10): the upstream length D=v0 and the downstream penetration length lp (11). Here we scale distance by
the upstream length,

~r5
rv0

D
; (16)

which ensures that the distance scale remains finite in the fast-reaction limit (lp � D=v0). In addition to the
distance scaling, v is scaled by the flow velocity in a uniform (undissolved) matrix v0 and c is scaled by the
inlet concentration cin

~v5
v
v0
; ~c5

c
cin
: (17)

The permeability of the undissolved matrix K05Kð/0Þ and v052K0rp=l. The dimensionless version of
Darcy’s law is then

~v52~K ~r~p; (18)

where ~K 5K=K0 and ~p5pK0=lD.

When a reactive fluid comes in contact with soluble mineral, reactant is consumed on a time scale

tr5
1
ks
; (19)

while mineral dissolution is characterized by a slower time scale,

td5
tr

c
5

1
ksc

: (20)

We nondimensionalize the time with td,

~t5
t

td
5ksct; (21)

so that an order one variation in / requires a dimensionless time ~t � 1. With the scalings from (16), (17),
and (21), equations (1)–(3) are
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cH~@ t/1 ~r � ~v50; (22)

cH~@ tð/~cÞ1 ~r � ð~v~cÞ5 ~r2
~c2H~c Hð/12/Þ; (23)

~@ t/5~c Hð/12/Þ: (24)

The dimensionless group H, given by

H5
Dks
v2

0
; (25)

can vary widely: combining natural systems, acidization, and laboratory experiments, H spans a range from
1024 < H < 103 [Szymczak and Ladd, 2013].

The dimensionless equations (22)–(24) contain two independent parameters, c and H. However, the large
ratio of mineral to reactant concentration, c� 1, implies that the time derivative in equations (22) and (23)
can usually be neglected; the flow and concentration fields are in a quasi-steady state, slaved to the slowly
evolving porosity field. If we take the position of the front xf ðyÞ as the boundary between fully (/5/1) and
partially (/ < /1) dissolved mineral, then in the upstream region, x < xf

~r � ~v50; (26)

~r � ð~v~cÞ5 ~r2
~c; (27)

~/5/1: (28)

Downstream of the front, x > xf ,

~r � ~v50; (29)

~r � ð~v~cÞ5 ~r2
~c2H~c; (30)

~@ t/5~c: (31)

The velocity and concentration fields are now explicit functions of position only, while H is the sole parame-
ter characterizing the dimensionless equations.

Although the interface dividing dissolved and undissolved minerals is not always sharp [Lichtner, 1988], the
thin-front limit, meaning D=v0 � lp or H� 1, occurs frequently in nature and sometimes in reservoir acid-
ization as well [Szymczak and Ladd, 2013]. Taking H!1 in equation (30) implies that ~c must vanish in the
downstream region

~r � ~v50; (32)

~c50; (33)

~/5/0: (34)

More precisely, as H!1 the gradients of ~c in equation (30) must become ever steeper in order to balance
the term H~c . The penetration length into the matrix lp !

ffiffiffiffiffiffiffiffiffiffi
D=ks

p
becomes vanishingly small in comparison

to the concentration length scale in the upstream region D=v0. The quasi-stationary thin-front limit
described by Chadam et al. [1986] therefore involves two sequential limiting steps: first c! 0 (29)–(31),
then H!1 (32)–(34); we return to this point in the next section.

By invoking a quasi steady state in equations (26)–(31), we have implicitly assumed that the dissolution
time scale is the longest in the system, td � max ðtr ;D=v2

0Þ (Appendix A). This imposes two different condi-
tions on the validity of equations (27) and (30), depending on the value of H. For H< 1 (tr > D=v2

0 ), the con-
dition for a quasi-steady state is td � tr , or

:c� 1: (35)

On the other hand, when H> 1 (and D=v2
0 > tr ) the quasi steady state condition is td � D=v2

0 , or
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cH� 1: (36)

This is an additional restriction on the validity of the quasi-stationary thin-front limit (32)–(34); not only
must the system satisfy the condition H� 1, but c must be sufficiently small that cH� 1. Otherwise the
time derivatives in equations (22) and (23) cannot be neglected.

4. Thin-Front Asymptotics

In section 3 we showed how the thin-front limit can be obtained from the reactive-transport equations
(22)–(24) by a double limiting process c! 0 and H!1. The condition cH� 1 must also be satisfied to
eliminate the time-dependent term in equation (32) (Appendix A). Here we endeavor to explain the hidden
assumptions in Chadam et al. [1986], and why their conclusion that c! 0 is a sufficient condition for a thin
front is incorrect.

Chadam et al. [1986] introduced a time scale (t? in their notation), which apart from numerical constants is
equivalent to the mineral dissolution time td. Next they scaled length by ðDtdÞ1=2 and time by c21td

r̂5
r

ðDtdÞ1=2
; t̂5

ct
td
; v̂5v

ffiffiffiffi
td

D

r
; (37)

where a hat is used to identify variables with the new scaling. Then, from (1)–(3) the following dimension-
less equations are obtained [Chadam et al., 1986]

c@̂ t/1r̂ � v̂50; (38)

c@̂ tð/~cÞ1r̂ � ðv̂~cÞ5r̂2
~c2@̂ t/; (39)

c@̂ t/5~c Hð/12/Þ; (40)

where equation (40) was used to replace the reaction term in (39) with @̂ t/.

Equations (38)–(40) are equivalent to (22)–(24) when c > 0. However, in taking the limit c! 0 we must
ensure that there are no hidden powers of c in the derivatives of the fields. For example, in equation (40) it
appears that the left hand side is of order c, suggesting it can be neglected in the limit c! 0. But this is not
true, because the choice of time scale (37) makes the derivative @̂ t/ of order c21 and the left-hand side of
order one overall, as in equation (31). Thus the conclusion in Chadam et al. [1986] that the left-hand side of
(40) vanishes as c! 0 is incorrect in the general case.

The c! 0 limit in equation (40) only exists if we impose the additional condition that td is held constant.
Then @̂ t/ is order one and the left-hand side of (40) vanishes when c 5 0. But, if td5ðkscÞ21 is to be con-
stant, then the reaction rate must diverge as c! 0; in nondimensional terms, H must diverge as c! 0 so
as to keep the product cH fixed. Thus, the derivation in Chadam et al. [1986] is not inconsistent with section
3, but it is precisely the special case of a fast reaction limit (32)–(34). It is a less general condition than the
small c limit implied by (29)–(31), and a significant portion of the parameter space (H�1Þ has been lost.

5. Interface Stability in the Thin-Front Limit

The reaction-infiltration equations (26–31) permit stationary one-dimensional solutions in a frame x05x2Ut,
moving with velocity U. In the thin-front limit (H� 1) the porosity has a jump discontinuity at x050:
/ðx0 < 0Þ5/1, and /ðx0 > 0Þ5/0. The upstream concentration field is, from (14),

~c512exp ð~x 0Þ ~x 0 < 0; (41)

while downstream (~x 0 > 0) the concentration vanishes. A balance between the incoming flux of reactant,
ðv02UÞcin , and its consumption at the front, Uð/12/0Þcsol , gives the front velocity

U5
cv0

ð/12/0Þð11cÞ ; (42)

which in the limit c! 0 is simply
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U5
cv0

/12/0
: (43)

In the same limit, the fluid velocity in the comoving frame is independent of the front speed.

Chadam et al. [1986] and Ortoleva et al. [1987b] derived a dispersion relation describing the growth rate (x)
of small perturbations to a planar dissolution front, but valid only when H� 1 (section 4). In our notation
the result from Ortoleva et al. [1987b] is

~x5
1

11C
11ð12CÞ~u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114~u2

p� �
; (44)

where u52p=k is the wave number of the perturbation and C5K0=K1 is the permeability contrast. The
dimensionless quantities are (Appendix B): ~x5xlt=U and ~u5ult (lt5D=v0). Importantly, the interface is only
unstable to long wavelength perturbations u < ulim, with a limiting wave number [Chadam et al., 1986]

~u lim5
2ð12CÞ

312C2C2 : (45)

If the width of the system (W) is less than p=ulim, then the longest wavelength in the system (klim52W) is
stable and the front remains flat. By contrast, in the convection-dominated limit (H! 0) all wavelengths
are unstable [Szymczak and Ladd, 2013].

A new criterion for an unstable front was proposed in Zhao et al. [2013b] and Zhao [2014, chap. 11],

Zh >
312C2C2

2ð12CÞ û; (46)

where Zh5v0=
ffiffiffiffiffiffiffiffiffiffi
Dksc
p

is a dimensionless group. Because Zh contains the reaction rate, it has been claimed
that this is a more general stability condition than (45), valid for a range of reaction rates [Zhao et al., 2013b;
Zhao, 2014; Lai et al., 2016]. However, because it follows the same scaling, it is actually identical to the stabil-
ity criterion in Ortoleva et al. [1987b]. Although the connection is hidden in the scaling, by noting that

û5u
ffiffiffiffiffiffiffi
Dtd

p
5

~uv0

D

ffiffiffiffiffiffiffiffiffiffiffiffi
D=ksc

p
5~uZh; (47)

it can be seen that equation (46) is identical to (45). We would also point out that attempts to extend this
expression to cases where c is not vanishingly small [Zhao et al., 2013b] fail, because the condition for a
quasi-stationary transport equation, cH� 1, is violated.

6. Conclusions

In this paper we have offered a critical review of the reaction-infiltration instability, pointing out two signifi-
cant misconceptions that have arisen from hidden assumptions in the asymptotic analysis. First, that the
mineral dissolution ratio (c) plays a role in determining the degree of reactant penetration; second, that in
the limit c! 0 the reactant concentration downstream of the front vanishes [Chadam et al., 1986; Ortoleva
et al., 1987a; Chadam et al., 1988; Chadam and Ortoleva, 1990; Zhao et al., 2008, 2010, 2013a, 2014; Zhao,
2014; Zhao et al., 2015]. Both these statements are incorrect. Equations (27) and (30) show that the mineral
dissolution ratio (c) plays no role in determining the quasi-stationary concentration profile; in particular, the
downstream concentration only vanishes when H� 1.

We have further shown that the thin-front or Stefan limit, first derived in Chadam et al. [1986], is actually a
double limit, requiring both c! 0 and H� 1. The condition c! 0 is necessary for a steady state to be
achieved without significant mineral dissolution, while the condition H� 1 ensures that the interface sepa-
rating dissolved and undissolved mineral remains sharp. Results from Appendix A suggest a general criteri-
on for the quasi-steady approximation is max ðc; cHÞ < 0:1. When dissolution is reaction limited (H< 1), the
condition is almost always satisfied. However, in the case of transport-limited dissolution (H� 1), the condi-
tion is more stringent. The range of infiltration velocities that can be described by the thin-front limit is
bounded from above by the condition H> 1 and from below by cH < 0:1. For example, a typical mineral
dissolution ratio for calcite is of the order of 1024, which bounds H in the range 1 < H < 1000. Assuming a
reaction rate constant k5231025 cm/s [Dreybrodt, 1996] and a reactive surface area s 5 50/cm [Noiriel et al.,
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2009], this puts the velocities for which a thin-front limit is appropriate in the range 1024 cm/s to 331026

cm/s.

Attempts to extend the thin-front stability analysis to finite reaction rates [Zhao et al., 2007, 2008, 2010, 2013b]
do not lead to new results (see section 5), but only repeat previous calculations [Chadam et al., 1986; Ortoleva
et al., 1987a] in a different scaling (47). A stability analysis for a finite-width front (H�1) is possible [Szymczak
and Ladd, 2014], but closed form solutions can only be obtained for small permeability contrasts (C � 1).

Appendix A: Time Evolution of the One-Dimensional Transport Equations

In this appendix we investigate the approach of the reactant transport equation (2) to steady state. The
goal is to determine under what conditions the mineral dissolution time td is the longest time scale in the
system. We consider a one-dimensional system on time scales less than td so that variations in porosity can
be ignored,

/@t c1v0@x c5D@2
x c2kscHð/12/Þ: (A1)

For fast reactions (H> 1), the slowest relaxation is in the upstream region (x< 0 and /5/1), with a relaxa-
tion time scale D=v2

0 that is longer than the reaction time scale ðksÞ21 (19). On the other hand, when H< 1
the reaction time scale in the downstream region (x> 0 and /5/0) is the slowest process.

If H> 1, we can assume that the evolution of the upstream concentration profile is not significantly affected
by the more rapidly relaxing concentration downstream. Thus we consider the upstream region only and
seek a solution to the following problem:

�@ t~c1�@ x~c5�@
2
x~c; (A2)

~cð21; tÞ51; (A3)

~cð0; tÞ50; (A4)

~cðx; 0Þ51: (A5)

The scalings �x5xv0=D and �t5tv2
0=D/1 were used to make the equations dimensionless. The boundary con-

dition at x 5 0 could be any fixed value without affecting the relaxation time of the profile. In reality ~cð0; tÞ
is time-dependent, but, as H!1; ~cð0; tÞ ! 0 for all times.

The solution can be expressed in terms of complementary error functions [Bear, 1988],

cð�x ;�tÞ512
1
2

erfc
2�x1�t

2�t 1=2

� �
1exp ð�xÞerfc

2�x2�t

2�t 1=2

� �� �
; (A6)

where �x < 0. At sufficiently long times the argument 2�x2�t is always negative, and we can rewrite the solu-
tion as the stationary term plus a time-dependent correction,

cð�x ;�tÞ512exp ð�xÞ2 1
2

erfc
2�x1�t

2�t 1=2

� �
2exp ð�xÞerfc

�x1�t

2�t 1=2

� �� �
: (A7)

Since the arguments of both complementary error functions are now positive (assuming �t > �x ), we can
determine the leading order correction from the asymptotic expansion of erfcðxÞ,

cð�x ;�tÞ512exp ð�xÞ2 2�x�t 1=2

p1=2ð�t 2
2�x 2Þ

exp
2ð�t2�xÞ2

4�t

 !
:

The time-dependent solution converges to the steady state as exp ð2�t=4Þ. Numerically we find the
corrections in the domain �x < 0 are small when �t > 10. When �t510, the largest deviations, found near
�x � 21, are less than 0.1%; by �t5100 they are negligible (� 10214). For an accuracy of 0.1%, the criterion
for the quasi steady state approximation to be valid is td5ðkscÞ21 > 10D=v2

0 (taking /151). Dissolution
under conditions where H> 1 and cH < 0:1 can therefore be treated by a quasi-steady approximation.
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If H< 1, we ignore the relaxation of the upstream concentration, and seek a solution to the downstream
problem,

�@ t~c1�v �@ x~c5�@
2
x~c2~c; (A8)

~cð0; tÞ51; (A9)

~cð1; tÞ50; (A10)

~cðx; 0Þ50: (A11)

The scalings �x5x=
ffiffiffiffiffiffiffi
Dtr
p

; �t5t=tr/0, and �v5v0=
ffiffiffiffiffiffiffiffiffi
D=tr

p
5H21=2 were used to make the equations dimension-

less. The approximate boundary condition ~cð0; tÞ51 becomes exact in the limit H! 0. The solution can
again be expressed in terms of complementary error functions [Bear, 1988],

cð�x ;�tÞ5 1
2

exp
�xð�v2�uÞ

2

� �
erfc

�x2�u�t

2�t 1=2

� �
1exp

�xð�v1�uÞ
2

� �
erfc

�x1�u�t

2�t 1=2

� �� �
; (A12)

where �u5
ffiffiffiffiffiffiffiffiffiffiffiffi
�v 214
p

. Once again we can extract the stationary solution, together with a correction term valid
for large �t ,

cð�x ;�tÞ5exp
2�xð�u2�vÞ

2

� �
2

2�t 1=2�x

p1=2ð�u2�t 2
2�x 2Þ

exp 2
�u2�t 2

22�v�t�x1�x 2

4�t

 !
: (A13)

The asymptotic decay to steady state is now dependent on H as well as �x . The largest deviations from
steady state occur around �x5�v�t ; these terms vanish as exp ð2�tÞ. Numerical calculations again confirm this
dependence on �t , with �t > 7 for 0.1% accuracy. In other words, for H< 1 the quasi steady state approxima-
tion will hold (within 0.1%) whenever c < 0:15.

Appendix B: Instability in the Thin-Front Limit

In the thin-front limit (H� 1), the system can be divided into an upstream region where all the soluble
material is dissolved (/5/1) and a downstream region where the material remains completely undissolved
(/5/0). The boundary between these two regions is sharp and can be described by a curve rf ðtÞ; all the dis-
solution takes place in an infinitesimal region located along this curve and the problem is to determine the
time evolution of rf . Here we determine the development of small perturbations from an initially planar
front.

A planar front propagates with a steady velocity U (43) and we define a coordinate system x05x2Ut moving
with this mean front position. For small perturbations we can parameterize the local front position relative
to the mean as a function of y,

x0f ðyÞ5dexp ðxtÞcos ðuyÞ; (B1)

where d is the amplitude of the perturbation. In the linear regime it is sufficient to treat the perturbations as
individual Fourier modes, characterized by a wavelength k52p=u and an amplitude d. The growth (or
decay) of each individual mode is determined by xðuÞ.

For a planar front the pressure is a linear function of position, p52ax0, where a5lv0=Kð/Þ and the pressure
is set to zero at the front. The pressure gradient is different in the two regions because of the variation in
permeability, but both the pressure and velocity are continuous at the front. Next we calculate the change
in the pressure field when the front is perturbed according to equation (B1). We will write the solutions sep-
arately in each region and then match them at the front.

p152a1x01dp1 exp ðux0Þexp ðxtÞcos ðuyÞ x0 < x0f ; (B2)

p052a0x01dp0 exp ð2ux0Þexp ðxtÞcos ðuyÞ x0 > x0f : (B3)

The perturbations satisfy the Laplace equation r2p50 in their respective domains, and vanish far from the
front. They contain the same Fourier component as the front perturbation in order to satisfy the boundary
conditions.
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The matching condition, p1ðx0f Þ5p0ðx0f Þ, requires care because the front is not located exactly at x050, but
within a linear approximation

pðx0f Þ5pð0Þ1x0f @x0pð Þx050: (B4)

Combining equations (B2)–(B4) with the matching condition on the pressure, we have (to linear order in
the perturbations)

2a1d1dp1 52a0d1dp0 : (B5)

Continuity of mass across the interface requires matching the normal pressure gradients as well,

K1ðn � rp1Þx05x0f
5K0ðn � rp0Þx05x0f

: (B6)

For small perturbations, the location of the boundary has no effect on the pressure gradient

ðrpÞx05x0f
52aex1udpexp ðxtÞ 6cos ðuyÞex2sin ðuyÞey

	 

; (B7)

where the remaining contributions are of order d2 and beyond. The surface-normal points predominantly in
the x direction

n5ex2dsin ðuyÞey ; (B8)

and the matching condition to linear order is

K1dp1 52K0dp0 : (B9)

Combining (B5) and (B9), we can solve for the coefficients dp in terms of the amplitude of the front pertur-
bation d

dp1 52
lv0

K1

12C
11C

d; dp0 5
lv0

K0

12C
11C

d; (B10)

as before, C5K0=K1 is the permeability contrast. These expressions can be further simplified by introducing
the constant b5ð12CÞ=ð11CÞ

dp1 52a1bd; dp0 5a0bd: (B11)

The concentration field in the upstream region c1ðx0; yÞ is the solution of the convection-diffusion equation
(27), with boundary conditions c1ð21; yÞ5cin and c1ðx0f ðyÞ; yÞ50. Combining the solution for a planar front
(14) with a term describing a single Fourier mode perturbation,

c15cin 12exp ðx0v0=DÞ1dcðx0Þexp ðxtÞcos ðuyÞ½ 	; (B12)

in this case the amplitude of the perturbation dcðx0Þ is a function we need to solve for. The fluid velocity,
v152K1rp1=l, can be determined from equations (B2) and (B11),

v15v0 ex1budexp ðxt1ux0Þfcos ðuyÞex2sin ðuyÞeyg
	 


: (B13)

Combining (B12) and (B13) with the convection-diffusion equation v1 � rc5Dr2c results in an equation for
dcðx0Þ

l2
t @

2
x dc2lt@xdc2ðultÞ2dc52budexp ðux01x0=ltÞ; (B14)

where lt5D=v0 is the transport length scale. The solution of (B14) is

dcðx0Þ5C1exp ðk1x0=ltÞ1C2exp ðk2x0=ltÞ2bdl21
t exp ½ðu1l21

t Þx0	; (B15)

where the coefficients C6 are determined by the boundary conditions at 21 and x0f . The exponents

k65ð16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðultÞ2

q
Þ=2 are the roots of the characteristic equation.

The perturbations in concentration must die out far from the front (x0 ! 21), implying that C250. The
boundary condition at the front c1ðx0f ðyÞ; yÞ50 is, to linear order in the perturbations,
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2
d
lt

1C12
db
lt

50: (B16)

The solution for the concentration perturbation is then

dcðx0Þ5
d
lt
ð11bÞexp ðk1x0=ltÞ2bexp ð11ultÞx0=ltð Þ½ 	: (B17)

The reactant flux Jðx0f ðyÞ; yÞ at the boundary is purely diffusive (since c1ðx0f ðyÞ; yÞ50),

J52Dðnn � rc1Þx05x0f
: (B18)

At linear order, only the x derivative makes a contribution to the flux (B8), while the perturbation can again
be calculated at the mean position x050

Jx52Dcin 2
1
lt

2
x0f
l2
t

1ð@x0dcÞx050exp ðxtÞcos ðuyÞ
� �

: (B19)

The flux contains the contribution from the planar front v0cin in addition to the perturbations.

When the front advances by a small increment dxf, it consumes an amount of mineral (per unit area)
dM5ð/12/0Þcsol dxf 5Jx dt. The front then advances with a local velocity

dxf

dt
5

v0cin

ð/12/0Þcsol
11

d
lt

exp ðxtÞcos ðuyÞ½12ð11bÞk11bð11ultÞ	
� �

: (B20)

Thus, a planar front (d 5 0) propagates with a velocity U, given by equation (43), while perturbations in the
front grow (or decay) exponentially dx0f=dt5xx0f , at a rate

x5
U
lt

11bð11ultÞ2ð11bÞ
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðultÞ2

q
2

2
4

3
5: (B21)

The characteristic time scale for the growth of perturbations in the thin-front limit is then lt=U. After some
rearrangement of equation (B21), we obtain the result quoted in equation (44), replacing ult by the dimen-
sionless wave number ~u and xlt=U by ~x,
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