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Abstract – We study patterns formed by viscous fingering in a rectangular network of microfluidic
channels. Due to the strong anisotropy of such a system, the emerging patterns have a form of thin
needle-like fingers, which interact with each other, competing for an available flow. We develop
an upscaled description of this system in which only the fingers are tracked and the effective
interactions between them are introduced, mediated through the evolving pressure field. Due to
the quasi-2d geometry of the system, this is conveniently accomplished using conformal mapping
techniques. A complex two-phase flow problem is thus reduced to a much simpler task of tracking
evolving shapes in a 2d complex plane. This description, although simplified, turns out to capture
all the key features of the system’s dynamics and allows for the effective prediction of the resulting
growth patterns.
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Interfacial instabilities are a driving force of many
pattern-forming processes in nature, be it in the realm
of fluid mechanics, flame propagation or directional so-
lidification [1–3]. A large body of work has been de-
voted to the analysis of these processes throughout the
last decades. Initial phases of the evolution of an interface
are well understood in terms of linear stability analysis,
which yields the wavelength of the most unstable pertur-
bation. Much less is known, however, about the nonlin-
ear regime, when the initial perturbations of the interface
are transformed into finger-like structures that advance
into the system. These nonequilibrium structures inter-
act with each other in a strongly nonlinear way, which
gives rise to a complex dynamics of the front, particu-
larly challenging to analyze. For example, in miscible
fingering problem [4,5], the emerging fingers are inces-
santly merging, fading, shielding, and tip splitting [6–8],
but no detailed quantitative characterization of this non-
linear dynamics has been provided yet.

In this letter, we consider a particular class of fin-
gered growth systems, in which the emergent fingers
are long and thin. Due to the high field gradients at
their tips, these structures grow predominantly in length,

but not in diameter. Such structures are observed
e.g., in the electrochemical deposition experiments [2,9],
wormhole formation in dissolving rocks [10], smoldering
combustion [11–13], side-branches growth in crystalliza-
tion [14,15], or the evolution of seepage channel net-
works [16,17]. For systems of this kind, we show that
the dynamics can be followed using a higher-level descrip-
tion, in which the microscopic details are neglected and
the system is treated as a collection of emergent structures
—thin lines interacting with each other through a contin-
uous field. The model turns out to be remarkably effective
in predicting the evolution of the fingering pattern. Impor-
tantly, the complexity of such description decreases with
time, as only the longest lines need to be tracked while
the shorter, screened ones can be neglected. Thus, some-
what paradoxically, the emergence of structures in such
pattern-forming systems can lead to the simplification of
the description of the system’s dynamics.

We illustrate these ideas with experimental results on
anisotropic viscous fingers formed in a network of mi-
crofluidic channels. In classical viscous fingering experi-
ments [18,19], such a multi-finger growth regime is just
a short transient, and soon the fingers coalesce into a
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Fig. 1: Schematic of the channel network. The less viscous fluid
(water) is injected along the lower boundary into the system
initially filled with a more viscous fluid (oil).

single-finger final state. To prevent such a coalescence,
we have carried out the viscous fingering experiments in
a rectangular grid of channels. In the experimental setup,
the microchannel network has been engraved in the poly-
carbonate plate using a micro milling machine and then
bonded with another, flat plate in a thermal press. The
details of the bonding procedure are given in [20]. A
schematic view of the channel network is presented in
fig. 1. The network comprised 42 × 100 channels with
the length of horizontal connectors lx = 1200μm and
vertical connectors ly = 400μm. The cross-sections of
the channels were 200 μm × 200μm. During the experi-
ments, the network was initially filled with motor oil (of
μ ≈ 500 × 10−3 (Pa · s)) whereas the invading fluid was
water dyed with ink (on the polycarbonate surfaces the
oil is wetting with respect to water). The mean velocity
of fluids in tubes was around 14 × 10−3 (m/s). The inter-
facial tension between water and oil was assumed to be
around 15 × 10−3 (N/m) which corresponds to the capil-
lary number Ca ≃ 0.5. More details of the experimental
procedure together with a comprehensive analysis of the
patterns obtained in this and similar experiments will be
given a forthcoming publication [21].

The displacement of oil by water in our experimen-
tal system led to the emergence of elongated, straight
dendrite-like fingers, the examples of which are presented
in fig. 2. Initially, many small fingers appear, with lengths
controlled by the random noise. Subsequently, however,
the dynamics becomes deterministic, with longer fingers
screening the shorter ones and a hierarchical structure of
fingers is formed. It is in this regime that the higher-level
model of the finger growth can be introduced.

Let us briefly describe the key steps involved in the con-
struction of the model. We start from the description of
the dynamics at the microscopic level, which here corre-
sponds to resolving the flow in individual channels. As-
suming that the pressure drop in the invading low-viscosity
fluid is negligible, we are only left with the task of com-
puting the pressure field in the displaced fluid. To this
end we combine the continuity condition

∑

i

qij = 0, (1)

Fig. 2: Evolution of the patterns in the viscous fingering ex-
periment. The patterns are captured at different time points.
The invading fluid (water) is dyed with ink, hence the dark
color. Succesive frames correspond to the situation after 0.5 s,
1 s and 1.8 s after the start of water injection.

with the Poiseuille equation for the volumetric flux

qij = −pj − pi

ρlij
, (2)

where (pj−pi) denotes the pressure drop along the channel
joining node i with node j, qij is the volumetric flux in this
channel, lij its length and ρ the hydrodynamic resistivity
of the channel, involving the fluid viscosity and geomet-
rical characteristics of a capillary. We assume that the
finger moves with the velocity corresponding to the mean
flow rate in the capillary, i.e. vi = qi

s , where s is the cross-
sectional area of the capillary. Together, eqs. (1) and (2)
are the hydraulic equivalents of Kirchhoff’s circuit rules,
and constitute the basic equations of pore-network models
of porous media [22]. On scales which are large in com-
parison with the channel lengths, these equations can be
interpreted as a discretization of a continuous anisotropic
Laplace equation:

lx
ly

∂2p

∂2x
+

∂2p

∂2y
= 0, (3)

where lx and ly are the lengths of the horizontal and ver-
tical channels, respectively (in the experiments reported
here, lx/ly = 3). Rescaling the horizontal coordinate by

x′ =
√

lx/lyx leads finally to the standard Laplace equa-
tion in x′, y space.

The next step in the construction of the model is to
replace the needle-like fingers by infinitely thin lines inter-
acting through the continuous pressure field, as described
by (3). Such thin-finger models have been considered pre-
viously in [23–26]; however a direct comparison between
a model of this kind and a real experimental system
has never been attempted. Another important difference
between the above works and the model considered here
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Fig. 3: The pressure field along the centerline of the system
(dashed line in the upper inset) with a single finger extend-
ing between (L/2, 0) and (L/2, L/2). Solid line: solution of
anisotropic Laplace equation (3). Points: pressure calculated
based on the Kirchoff’s rules (1), (2). The lower inset shows
the neighborhood of the finger’s tip.

is that the fingers in [23–26] are allowed to bend to fol-
low the field gradient lines, whereas here —due to the
presence of the lattice— they move along the straight
lines in the direction of the external pressure gradient.
There are several other processes in which such struc-
tures are formed spontaneously, e.g. side-branch growth
in solidifying dendrites or wormhole formation in dissolv-
ing porous rock [10,15,27].

However, there is a price to pay for the simplification:
since the finger is assumed to be infinitely thin, there is
a singularity in a field gradient at its tip. Namely, at a
small distance r from the tip of i-th finger, the pressure
takes the form

pi(r, t) = Ci(t)
√

r cos(θ/2), (4)

where the coefficients Ci(t) depend on lengths and shapes
of all the fingers. In the above, the origin of coordinates
is located at the tip of the finger and the polar axis is di-
rected along it. The pressure gradient will then have r−1/2

singularity. In the actual experimental system this singu-
larity is removed, since the pressure gradient in each ele-
mentary channel comprising the network is approximately
constant. This is illustrated in fig. 3, which compares the
continuous solution for the pressure field around a thin
finger of half the length of the system with the solution of
the discrete Kirchhoff’s equations (1), (2). As observed,
the two solutions agree to a good degree of accuracy. Close
to the finger tip, the pressure gradient can thus be approx-
imated by Ci(t)/

√

ly and the advancement velocity of the
tip is then

vi =
Ci(t)

ρs
√

ly
. (5)

The analysis of the pressure drops in the channels near
the finger tip allows us also to explain the fact that the
fingers grow straight, without curving. Namely, let us

Fig. 4: The growth of a single finger seeded asymmetrically in
the 2d system with reflecting walls. The initial seed is marked
by a thick black line; the dotted line marks the evolution of
the finger in the continuous system [26], whereas the straight,
dashed line shows its evolution in the lattice. The inset shows
the magnitudes of the pressure gradients in the channels near
the finger tip (solid arrows) and the pressure gradient in the
continuous system (dashed arrow), directed at an angle to the
vertical.

Fig. 5: (Color online) The mapping gt of the exterior of the
fingers onto the empty system (ω-plane). The images of the tips
γi(t) are located on the real line at the points x = ai(t) (circles).
The points Gi are the two pre-images of γi(0) (squares), i.e.

f(G±
i

) = γi(0)± ǫ.

consider a small “seed” of a finger, positioned off the center
axis, as shown in fig. 4. In a continuous system, such
a finger will begin to bend towards the centerline of the
system [25] (dotted line in fig. 4). In the discrete system,
however, the bending is impeded as there are only two
possible growth directions: horizontal and vertical. The
pressure drop along the former is much smaller than that
along the latter, thus the finger continues to grow straight,
with just small side-branches produced in the transverse
direction, which subsequently get screened off by a faster
growing tip.

Because of the quasi-2d geometry of the system, the
Laplace equation is conveniently solved by the confor-
mal mapping techniques. To this end, one finds a map-
ping gt(z = x + iy) which transforms the region filled
with the displaced fluid onto the empty system (ω-plane
in fig. 5). The solution of the Laplace equation in the
ω-plane is simply Φ(ω) = Im(ω), which —when trans-
formed back onto the original domain— yields the pres-
sure, p(z) = Im(g(z)). The description of the system
in terms of gt is remarkably convenient, as gt can be
shown to obey a first-order ordinary differential equation
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(deterministic Loewner equation), a considerable simpli-
fication in comparison to the partial differential equation
describing the boundary evolution.

The exact form of the Loewner equation depends on
the shape of the domain in which the growth takes
place [28,29]. For the growth of thin fingers in the system
bounded by reflecting walls, it reads [25]

ġt(z) =
π

2

n
∑

i=1

di(t)h(gt(z), ai(t)) (6)

with

h(gt, a) =
cos

(

π
2 gt

)

sin
(

π
2 gt

)

− sin
(

π
2 a

) (7)

and the initial condition g0(z) = z corresponding to the
empty space with no fingers. Note that the poles of the
RHS of eq. (6) are located at the images of the tips,
ai(t) = gt(γi) (cf. fig. 5). The functions di(t) are the
so-called growth factors, controlling the speed with which
the fingers are growing. By Taylor expanding the in-
verse mapping, ft = g−1

t around ai(t), the exact rela-
tion between di(t) and vi(t) can be shown to be [24,25]
di(t) = vi(t)/|f ′′

t (ai(t))|. On the other hand, the field
amplitudes Ci(t) in (4) can also be expressed in terms of
the conformal mapping ft [25] as Ci(t) =

√

2/|f ′′
t (ai(t))|.

Hence, for the Laplacian growth, with velocities of the fin-
gers proportional to pressure gradients at their tips, the
growth factors are expressed as

di(t) =
1

ρs

√

2

ly
|f ′′

t (ai(t))|−3/2
. (8)

On the other hand, the pole positions, ai(t), in the
Loewner equation (6) control the shape of the growing
fingers. In general it is impossible to find analytically the
functional form of ai(t) which would produce the fingers
of a given shape, although efficient numerical methods
exist [30]. However, a recent work of Tsai [31] provides
a general theoretical framework to find ai(t) for a large
class of finger shapes. In particular, applying these ideas
to the case of straight fingers one finds the following set
of equations for the evolution of ai(t):

ȧj(t) = −π

4
dj tan

(π

2
aj

)

+
π

2

∑

i�=j

(di + dj)h(aj , ai)

− π

4

∑

i

dj

(

h(aj , G
−
i ) + h(aj , G

+
i )

)

(9)

which guarantees that the fingers continue to grow verti-
cally. In the above, G+

i and G−
i are the two pre-images

under ft of the points γi(t = 0), where the fingers start to
grow, i.e. G±

i = limǫ→0 gt(γi(0)± ǫ) (cf. fig. 5). In princi-
ple they can be found once the mapping gt is known but
in practice it is more convenient to track their evolution
in time using directly (6), i.e.

Ġ±
j (t) =

π

2

∑

i

di(t)h(G±
j , ai). (10)

Fig. 6: The comparison of the experimental pattern (top
panel) and the one obtained based on the conformal mapping
approach (bottom panel) for the same initial geometry, repro-
duced in a narrow strip below each panel. Black lines corre-
spond to the interacting fingers, whereas gray lines correspond
to the case in which the fingers are grown independently.

Together, eqs. (6)–(10) completely determine the
evolution of the fingers. Note that this is not just a
simple recasting of the problem in terms of another for-
malism. First of all, the new description is considerably
simpler —the entire information about the system is now
encoded in the set of finger tips’ positions: γi. The dy-
namics is much simpler to track as well —instead of the
original PDE for the movement of the front we now need
to deal with 2N +1 coupled ODEs (eqs. (6), (9) and (10)).
Finally, as will be discussed below, a considerable advan-
tage of this description is the possibility of its further sim-
plification as the front evolves.

The above model is remarkably effective in predict-
ing the dynamics of the fingers, which can be shown
by comparing its predictions with the viscous finger-
ing experiment. As mentioned, the initial stages of the
finger evolution are noise-driven, which makes them un-
predictable except in a statistical sense. However, as soon
as the fingers reach the height of a few ly, the dynamics
becomes deterministic, as can be demonstrated by the fol-
lowing procedure: We take the first frame in fig. 2 and
approximate the fingers there by a set of line segments
of corresponding lengths. Such a configuration is then
used as the initial geometry for the conformal mapping
solver and the corresponding conformal map g0 is found.
Then, the mapping is evolved according to eqs. (6)–(10).
Figure 6 shows the comparison of the pattern produced by
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Fig. 7: The Pearson correlation between the two patterns as a
function of time (here measured in terms of the length of the
longest finger, ymax).

such a method with the original experimental pattern. As
observed, not only a general, hierarchical structure of the
fingers is faithfully reproduced, but even the lengths of in-
dividual fingers are in a very good agreement between the
model and experiment. This is further confirmed by com-
puting the Pearson correlation between the experimental
and theoretical finger lengths as a function of time. As
shown in fig. 7, over the entire evolution the correlation
between the experiment and the model remains high with
the correlation coefficient in the range 0.98–1.

An attractive feature of our model is that the descrip-
tion of the dynamics becomes simpler with time, even
though the interface between the two phases gets progres-
sively more rugged in the course of the evolution. To ex-
plain this seemingly contradictory observation, let us refer
back to fig. 2 and observe that as time progresses, most
of the fingers stop to grow and only a few continue to ad-
vance through the system. This is caused by a strong,
exponential screening between the fingers [25,32,33]: if a
shorter finger of length l1 is positioned between two longer
fingers of length l2, then the ratio of the field at their tips
scales like e−2π(l2−l1)/a, where a is the horizontal distance
between them. The speed of the shorter finger will then
quickly drop, whereas the longer fingers continue to grow,
focusing an ever-increasing portion of the flow. The pro-
cess is then repeated at a larger scale which leads to the
emergence of a self-affine, hierarchical structure. To show
that the interaction between the fingers is indeed a cru-
cial factor shaping their evolution, we have included in
fig. 6 the pattern in which the fingers are grown indepen-
dently of each other (gray lines in the figure). Such an
“independent” evolution is obtained by running N single-
finger problems, where each time just one finger is evolved
in an empty system (from a given initial condition) and
the influence of others is neglected. As one can see there
are dramatic differences between such case and the case
of interacting fingers —in the latter, due to the exponen-
tial screening, the competition between the fingers is very
strong, with a complete stopping of the growth of the
shorter ones. In the former (“independent growth”) case
all of the fingers continue to grow, albeit with slightly
different velocities, since the fingers which were initially
longer will always have a larger pressure gradient at their
tips than the shorter ones. However, there is no screening

between the fingers in this case and the hierarchical struc-
ture does not appear.

The fact that the number of active fingers decreases is
crucial from the practical perspective. The growth factors
of these fingers become exponentially small, hence they
can be removed from the summations (6), (9) and (10),
which considerably simplifies the system. For example,
in the configuration shown in fig. 6, the velocity of the
third longest finger is already more than 20 times smaller
than that of the two leading fingers, thus the system effec-
tively becomes a two-body one. In practice, we eliminate
the slow fingers from the computations whenever their ve-
locity reaches 10−3 of that of the longest finger. When
comparing the results of such a procedure with the case
in which all of the fingers are tracked, we find differences
in finger lengths of less than 0.1%.

Importantly, the method presented here is not limited
to the relatively simple fluid displacement problems, but
can also be used in the more complicated pattern-forming
systems, provided that the following requirements are
fulfilled: 1) the patterns should consist of long-and-thin
fingers growing predominantly at their tips; 2) the inter-
action between these fingers is mediated through a certain
Laplacian field Ψ (pressure, temperature, concentration,
etc.); 3) the velocity of the growth of a single finger is
a function or a functional of Ψ and possibly some other,
local fields, which are non-zero only within the finger (e.g.
the reactant concentration field in the problem of chemi-
cal erosion of porous rock surfaces by the inflowing acidic
solution [10,27,34,35]). In principle, one could also relax
the assumption of a Laplacian nature of the field driving
the growth, as long as it is conformally invariant. A large
class of conformally invariant, non-Laplacian growth pro-
cesses was identified by Bazant in [36,37] and involves such
phenomena as nonlinear diffusion or advection or electro-
migration coupled to diffusion. One can also generalize the
present approach to other different geometries, e.g. radial,
annular or cylindrical, for which the respective Loewner
equation has been derived [25,29,38].

In summary, we have proposed an effective description
of the dynamics of anisotropic viscous fingers in terms of
thin lines growing at their tips and interacting through
the Laplacian pressure field. The model is capable of pre-
dicting the final finger pattern in a very accurate way,
given the initial “seeds” (i.e. the position and lengths of
the fingers at the early stage of the evolution, just after
the instability). Importantly, the complexity of such de-
scription decreases with time, as only the longest fingers
need to be tracked while the shorter, screened ones can be
removed from the dynamics.
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