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Boundary conditions for stochastic solutions of the convection-diffusion equation
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Stochastic methods offer an attractively simple solution to complex transport-controlled problems, and have
a wide range of physical, chemical, and biological applications. Stochastic methods do not suffer from the
numerical diffusion that plagues grid-based methods, but they typically lose accuracy in the vicinity of inter-
facial boundaries. In this work we introduce some ideas and algorithms that can be used to implement
boundary conditions in stochastic simulations of the convection-diffusion equation with accuracies comparable
to the bulk phase. The algorithms have been tested in two-dimensional channel flows over a range of Peclet
numbers, and compared with independent finite-difference calculations.
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I. INTRODUCTION

The convection-diffusion equation

] tc~r ,t !1v~r ,t !•“c~r ,t !5D¹2c~r ,t ! ~1!

is the basic transport equation for a wide range of physi
chemical, and biological processes. HereD is the diffusion
coefficient andv is the fluid velocity field, which is taken to
be incompressible (“•v50). In this work we interpret
c(r ,t) as a concentration field, but Eq.~1! may equally well
describe heat transfer@1# or the evolution of fluid vorticity
@2#. In spite of its relatively simple form, a numerical sol
tion of Eq. ~1! can be computationally demanding@3,4#. In
particular, a strongly convective flow gives rise to an ad
tional length scale in the vicinity of an interface, which c
be difficult to resolve. The thickness of this boundary laye
of the order ofL Pe21/3, whereL is the channel width, Pe
5VL/D is the Peclet number, andV is a characteristic ve
locity of the flow. Peclet numbers for mass transport
typically three orders of magnitude larger than the cor
sponding Reynolds number of the flow, this being the ratio
the kinematic viscosity of the fluid to the molecular diffusio
coefficient. Thus the concentration field near an interfac
boundary varies on a length scale that is an order of ma
tude less than the velocity field.

The convection-diffusion equation, Eq.~1!, can be solved
by finite-element analysis@5#, but although very accurate re
sults are possible for diffusion-dominated problems, at h
Peclet numbers grid-based methods suffer from numer
dispersion~if upwind differencing is used! or oscillatory and
even unstable solutions~if central differencing is used!. Al-
though there are methods to circumvent these difficulties@5#,
their implementation is problematic in complex geometri
where it is difficult to control the potential sources of erro
To avoid such problems, Lagrangian particle tracking me
ods have been frequently used, the most straightforw
implementation being the random-walk method@1,2,6–11#.
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Here the concentration profile is represented by a set of m
ing particles, which are advected according to the veloc
field, while the diffusive displacements of the particles a
sampled from a random distribution. Particle-tracking me
ods are stable, easy to implement, and free of numerical
persion and grid-generation problems. In this paper we
dress one of the major difficulties of random-walk metho
namely, the imposition of appropriate boundary conditio
on the concentration field.

The other major drawback of a random walk is its s
chastic nature, so that the results include statistical er
proportional toN21/2 whereN is the number of particles in
the simulation. Mixed Euler-Lagrange methods have be
proposed to eliminate the statistical errors in random wa
for example the method of characteristics@12–14#. Here the
convection term is accounted for by particle tracking wh
diffusion is taken care of by finite difference. A differen
approach is taken by the particle-strength-exchange me
@15,16#, where the differential diffusion operator is replace
by an integral operator that is discretized by using the po
tions of the particles as quadrature points. The concentra
associated with each particle is then modified to account
the diffusion process. In contrast to the method of charac
istics, a fixed grid is not needed. Although these schem
generally perform better than finite-difference methods
convection-dominated problems, some implementations
the method of characteristics may lead to artificial oscil
tions whereas others suffer from numerical dispersion
violation of mass conservation@17#. Particle-strength-
exchange methods require frequent remeshing of particle
sitions, as convection distorts the uniformity of the partic
distribution and causes loss of accuracy in the quadratu
This issue becomes more important in highly nonunifo
flows or in complex geometries where remeshing may no
straightforward. However, in the computational fluid dyna
ics community there is a growing consensus in favor
particle-strength-exchange methods@18#, based on their effi-
cient representation of fluid vorticity fields. Nevertheless,
this work we will continue to use random walks, because
our applications the convective velocity field is independ
of the concentration fieldc. Thus random errors in concen
tration are not amplified by correlated errors in velocity
they are in the vortex method. The focus of this paper is

-
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developing boundary conditions for stochastic solutions
the convection-diffusion equation, but our results may a
be applicable to other Lagrangian schemes.

Although stochastic methods can lead to accurate s
tions of the convection-diffusion equation in bulk phas
they typically lose accuracy in the region of interfac
boundaries@19#. In this paper we develop boundary cond
tions for the convection-diffusion equation@Eq. ~1!#, and
consider their spatial and temporal convergence. We focu
the simplest boundary conditions on the concentration fi
namely, zero-flux~reflection! and zero-concentration~ab-
sorption! interfaces. The absorbing boundary has also b
generalized to simulate a finite-concentration reservoir c
dition. In subsequent work we will consider more gene
mass-transfer conditions corresponding to complex chem
kinetics at the solid surfaces.

The paper is organized as follows. In Sec. II we summ
rize basic results concerning stochastic solutions of
convection-diffusion equation. In Sec. III we introduce t
different types of boundary conditions and sketch the ba
ideas behind their implementation. We then show how
reflection boundary condition can be modified to account
convection near the interface~Sec. IV!. In Sec. V we con-
sider the difficulties that occur in implementing an outflo
condition. In Sec. VI, additional errors introduced by usi
non-Gaussian distributions of displacements are analy
these are much more severe in the vicinity of the interf
than in the bulk. The algorithms are tested using tw
dimensional channel flows, for which independent numer
solutions can be computed~Sec. VII!, and conclusions are
drawn in Sec. VIII.

II. CONVECTION DIFFUSION IN THE BULK

A stochastic processX(t), associated with the
convection-diffusion equation@Eq. ~1!#, obeys the stochasti
differential equation

dX1v~X!dt5A2DdW, ~2!

wheredW is the differential of a Wiener process with un
variance. Stochastic algorithms for the bulk are well dev
oped@19–21#, including intricate schemes with higher-ord
convergence~for a thorough review see Ref.@20#!. The sim-
plest numerical approximation to Eq.~2! is the Euler method

X~ t1Dt !5X~ t !1v„X~ t !…Dt1A2DDW~ t !, ~3!

where the incrementDW(t)5W(t1Dt)2W(t) is a Gauss-
ian random variable with varianceDt. Since we are inter-
ested in the evolution of a distribution function rather th
individual trajectories, we use the notion of weak conv
gence@20,21# to characterize the accuracy of a particu
numerical scheme. Specifically, an approximationX is said
to be weakly convergent with ordern to the exact solution
Xex if there exists a positive constantd such that the error in
any polynomial function ofX is bounded by

u^g„Xex~ t !…2g„X~ t !…&u<d~Dt !n ~4!
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for sufficiently smallDt. Global convergence of ordern is
guaranteed if the local error at each time step is bounded
@19#

u^g„Xex~Dt !…2g„X~Dt !…&u<d~Dt !n11. ~5!

Equation ~3! can be proved to be a weakly first-order a
proximation to the solution of Eq.~2!. Higher-order approxi-
mations can be constructed along similar lines@20#, but these
are computationally more complex and expensive. More
portantly, the fluid velocity field is usually obtained by som
sort of numerical approximation, so that higher derivatives
v are known with less precision thanv itself. Consequently,
most higher-order algorithms are of the predictor-correc
type, the simplest of which is the Heun method, with traje
tories constructed according to

X~ t1Dt !5X~ t !1
1

2
$v„X~ t !…1v„Xp~ t1Dt !…%Dt

1A2DDW~ t !. ~6!

The predictor step forXp is an Euler step@Eq. ~3!# with the
same random incrementDW(t). The Heun method is
weakly second order convergent when the diffusion coe
cient is independent of spatial position, but higher-order
gorithms for spatially varying diffusion coefficients are co
siderably more complicated@20,21#.

Since the velocity field typically changes on much long
length scales than the concentration field, an alternative
gorithm can be constructed based on the assumption tha
fluid velocity field is locally linear,

v~r !5v~r0!1~r2r0!•“v~r0!. ~7!

Then in the frame moving with velocityv(r0) tracer particles
satisfy the Ornstein-Uhlenbeck equation

dX1X•“v dt5A2DdW, ~8!

which has an exact solution@22# that can be used as a loc
approximation to the solution of Eq.~2!. On the other hand
the order of convergence of this method for nonlinear fl
fields is Dt as opposed toDt2 for a second-order Euler o
Heun method. In a number of test problems~Sec. VII! the
differences between the concentration profiles obtained w
the Heun and Ornstein-Uhlenbeck methods were within
range of the statistical errors. Since the Heun method
faster and simpler to implement, we decided to use it in
subsequent simulations.

It has not been possible to extend the Ornstein-Uhlenb
analysis to include any physically relevant boundary con
tions. Nor has it been possible to devise second-order
proximations in the presence a general flow field. Howev
by considering flows that occur under relevant physical c
ditions we have been able to obtain second-order approxi
tions to the stochastic processes near reflecting and abs
ing walls. This has been accomplished for two characteri
flow fields: a linear shear flow, which typifies the flow near
solid interface, and a locally uniform flow, which occurs ne
an inflow or outflow boundary.
4-2
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BOUNDARY CONDITIONS FOR STOCHASTIC . . . PHYSICAL REVIEW E 68, 036704 ~2003!
It is frequently argued@19,20# that finite-range increment
are preferable to Gaussian distributions in stochastic sim
tions. They are simpler to generate and avoid the occasi
long jumps generated from Gaussian distributions, wh
may be troublesome in systems of finite size. However, n
an interfaceanynon-Gaussian increment reduces the orde
local convergence to 1/2@19#, and does not guarantee glob
convergence even in theDt→0 limit. In describing our al-
gorithms for imposing boundary conditions on th
convection-diffusion equation~Secs. III–V!, we will assume
that the displacements are being sampled from Gaussian
tributions, which simplifies the analysis. Additional erro
introduced by finite-range increments will be examined
Sec. VI.

III. BOUNDARY CONDITIONS

We consider a domainV, bounded by the surfaceS, and
use a system of units such that the root-mean-square
placement in unit time,A2D, is unity. The boundary condi
tions to be considered in this paper are as follows:

~1! A zero-flux ~reflection! condition:

n̂~r !•“c~r !50, rPS, ~9!

wheren̂(r ) is a unit vector normal to the surface.
~2! A constant-concentration boundary condition:

c~r ,t !5c0 , rPS. ~10!

The special casec050 describes a totally absorbing boun
ary,

c~r ,t !50, rPS. ~11!

In future work we will investigate more complex bounda
conditions describing mass transfer due to chemical react
at the interface:

n̂~r !•Ji~r !52Di¹ci~r !•n̂~r !, rPS, ~12!

where Ji is the flux of speciesi and depends on the loca
concentrations.

A. Reflecting wall

In the absence of flow, the Greens function for a reflect
wall situated atx50, Gr , can be constructed by taking th
mirror image of the infinite-space propagator@23,24#,

G~x,x8,Dt !5
e2(x2x8)2/4DDt

A4pDDt
. ~13!

In a one-dimensional half space,x.0,

Gr~x,x8,Dt !5G~x,x8,Dt !1G~x,2x8,Dt !. ~14!

The mirror symmetry inGr about the planex50 ensures
that the zero-flux condition is exactly satisfied. A stochas
implementation of the reflecting boundary condition can
realized by a specular reflection of each tracer particle cr
03670
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ing the planex50. In the general case, a stochastic traje
tory X(t), in the region of a reflecting boundary defined b
the local surface normaln̂, evolves according to

X~ t1Dt !5X~ t !1DW~ t !, X~ t !1DW~ t !PV

X~ t1Dt !5R•@X~ t !1DW~ t !#, X~ t !1DW~ t !¹V,
~15!

whereR is the mirror reflection operatorR5122n̂n̂.
Specular reflection is commonly used for simulating

zero-flux boundary condition@8,18,25#, but a number of
other methods have also been proposed. For an increm
DW(t) such thatX(t)1DW(t)P” V, these include the fol-
lowing.

~1! Rejection@26,27#. The particle does not change i
position in the given time step,DW(t)50.

~2! Multiple rejection@28#. New increments are calculate
until a DW(t) is found such thatX(t)1DW(Dt)PV.

~3! Interruption @29,30#. The particle stops at the wall an
its clock is incremented bylDt with l given by

X~ t1lDt !5X~ t !1lDW~ t !. ~16!

Then, an additional step withDt85Dt(12l) is performed.
However, all these schemes fail to impose the zero-fl

boundary condition (]c/]x)x5050 correctly, even in the
limit of purely diffusive transport. Figure 1 shows that on
the specular-reflection and rejection methods preserve an
tially uniform distribution; both the multiple-rejection an
increment methods distort even the steady-state distribu
c(x)51. In the transient case, shown in Fig. 2, only t
specular-reflection method@Eq. ~15!# immediately imposes
the zero-flux boundary condition; all the other methods le
to incorrect concentration profiles in the immediate vicin
of the interface. Moreover, in higher spatial dimensions, o
specular reflection preserves gradients parallel to the surf

FIG. 1. Comparison of different reflecting boundary algorithm
after a single time step: specular reflection and rejection~solid!,
interruption ~dashed!, and multiple rejection~dot-dot-dot-dashed!.
The graphs show concentration profilesc(x,1) evolving from an
initial concentrationc(x,0)51 with a reflecting wall situated atx
50. The unit of lengthA2D is the root-mean-square-displaceme
in unit time.
4-3
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B. Absorbing wall

An absorbing wall boundary condition

c~r !50, rPS ~17!

can be implemented in a similar way to the reflecting wall
introducing negative mass particles or holes. The Gr
function for a particle diffusing in a half spacex.0, with an
absorbing interface atx50, is @23#

Ga~x,x8,Dt !5G~x,x8,Dt !2G~x,2x8,Dt !, ~18!

which differs from the reflection propagator@Eq. ~14!# in the
sign of the second term. It is simpler to add a distribution
holes to account for the negative sign, rather than attemp
remove a distribution of particles. Thus we implement t
absorbing boundary condition by reflecting particles at
planex50 and then converting them into holes. Similar
holes that attempt to recross the boundary are reflected
converted back into particles.

Other methods for simulating a zero-concentration bou
ary condition are found in the literature, typically the ‘‘tot
absorption’’ method@6,31,32#, where particles are remove
whenX(t)1DW(t) lies outside the domainV. However, in
this case the plane of zero concentration is shifted outside
system by a distance of order of the mean-square displ
ment A2DDt ~see Figs. 3 and 4!. On the other hand, the
‘‘reflection-conversion’’ scheme ensures that the concen
tion is exactly zero on the absorbing wall, regardless of
time stepDt. The total absorption method can be correc
by removing additional particles near the wall@19#, but this
is more complicated than reflection conversion.

C. Contact with particle reservoir

A reservoir boundary condition of constant concentrat
c(0)5c0 can be imposed by combining reflection conve
sion ~Sec. III B! with a virtual concentration profile behin
the interface. In the absence of convection it can be sho
that the virtual distribution

cv~x!52c0 , x,0 ~19!

FIG. 2. Comparison of different reflecting boundary algorithm
for the initial profilec(x,0)5x ~dotted!. The graphs show concen
tration profilesc(x,1) for the following algorithms: specular reflec
tion ~solid!, interruption~dashed!, rejection~dot-dashed!, and mul-
tiple rejection~dot-dot-dot-dashed!.
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produces a concentration profile in the system (x.0)

c~x,Dt !5c0F12ErfS x

A4DDt
D G ~20!

after a timeDt. Equation ~20! is a solution of the one-
dimensional diffusion equation, with boundary conditio
c(0)5c0 and c(x→`)50. Reflection conversion ensure
that the real distribution (x.0) satisfies the one-dimension
diffusion equation, with a boundary conditionc(0)50. Thus
in combination, the real and virtual particles lead to precis
the correct boundary condition, at least in one dimension

D. Particle-hole recombination

The algorithm described in Sec. III B introduced the co
cept of holes or particles with negative mass. As far as
numerical simulation is concerned, a hole behaves just lik
particle; it moves according to the same propagatorG,
specularly reflects off a reflecting wall, and after reflecti

FIG. 3. Simulation of a zero-concentration boundary conditio
reflection-conversion~solid! and absorption~dashed!. The graphs
show the concentration profilesc(x,1) after a single time step, be
ginning with a profile c(x,0)5x. For the reflection-conversion
scheme the concentration profile is stationary, while for the abs
tion scheme the zero-concentration boundary condition is not
served.

FIG. 4. Simulation of a zero-concentration boundary condit
with an initial profilec(x,0)51 ~dotted!. The graphs show the con
centration profilesc(x,1) after a single time step. Again, only th
reflection-conversion scheme~solid! assures thatc(0,t)50; the ab-
sorption method~dashed! leads to a nonzero concentration at t
surface.
4-4
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BOUNDARY CONDITIONS FOR STOCHASTIC . . . PHYSICAL REVIEW E 68, 036704 ~2003!
off an absorbing wall becomes a particle again. However,
introduction of holes has the drawback that the local conc
tration can become a small difference between large pop
tions of particles and holes. Statistical errors in the conc
tration field can be reduced by canceling equal number
particles and holes within the same small volume in the bu
It is important to avoid any bias or spatial correlations in t
process.

Recombination of particles and holes can be implemen
by dividing the domainV into a number of nonoverlappin
cellsCi , typically small cubic volume elements. The numb
of particles and holes contained inCi is denoted bypi and
hi , respectively. Recombination consists of randomly pi
ing ni5min(pi ,hi) particles andni holes fromCi , and eras-
ing them. The procedure is repeated in each cell. If the
mensions of the cells are sufficiently small, much sma
than any characteristic length scale in the simulation~includ-
ing the root-mean-square displacement of the random wa!,
the effect of recombination on the distributionc(r ,t) will be
negligible. The recombination is performed everyR time
steps, whereR should be neither too small~to ensure a rea
sonable number of holes before recombination! nor too large
so that the statistical errors accumulate. In practice i
straightforward to keep the particle and hole populat
steady while not losing significant information about t
concentration profile.

IV. ZERO-FLUX BOUNDARY CONDITION

We begin our analysis of the convection-diffusion pro
lem with a two-dimensional system confined to thex.0 half
space by a reflecting wall situated atx50. The no-slip
boundary condition on the solid surface,v(rPS)50, allows
for significant simplification if we restrict the time stepDt so
that the fluid velocity field near the wall varies linearly ov
a typical particle displacement. Assuming the fluid is inco
pressible, then to a first approximation the velocity field
tangential to the surface and linear in the normal dista
from the surface. With an appropriate choice of a coordin
system, the velocity field near the wall can therefore be w
ten as

v~x,y!5xgey1••• . ~21!

Thus the problem is reduced to the solution of a tw
dimensional convection-diffusion equation in a linear sh
flow

]c~x,y!

]t
1gx

]c~x,y!

]y
5DS ]2c~x,y!

]x2
1

]2c~x,y!

]y2 D ,

~22!

with the boundary condition

S ]c~x,y!

]x D
x50

50. ~23!

In the absence of convection, the reflection Green’s fu
tion is constructed from the infinite-space solution by int
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ducing an image source on the opposite side of the boun
@Eq. ~14!#. However, in a shear flow the image of th
Ornstein-Uhlenbeck process is not a solution of the origi
convection-diffusion equation~22!, but of that with the sign
of the shear rate,g, reversed. Thus we cannot construct t
equivalent stochastic process by combining an Ornst
Uhlenbeck process with its image. Nevertheless, the ide
reflecting the particle position with respect to the wall can
implemented within a predictor-corrector scheme to maint
second-order accuracy, even near the interface. We obs
that the normal (x) displacement has no convective comp
nent and is therefore independent of position in the vicin
of the interface. Thus a random displacement with reflect
is sufficient to give an exact sampling of the normal motio
In order to determine the convective contribution to the ta
gential (y) displacement we must integrate over all possi
trajectories between the initial and finalx positions. In the
bulk this gives the linearly averaged velocity used in t
Heun method@Eq. ~6!#, but near the interface, the weightin
function is different. To obtain the proper weighting functio
in this case, we must calculate the mean time the part
spends at a positionx̃ during its move fromx8 to x in the
time stepDt:

p~ x̃ux,x8,Dt !Dt5

E
0

Dt

G~x,x̃,Dt2t !G~ x̃,x8,t !dt

G~x,x8,Dt !
,

~24!

whereG(x,x8,t) is the one-dimensional diffusion propag
tor, Eq.~13!. The integral in Eq.~24! can be calculated using
Laplace transforms:

p~ x̃ux,x8,Dt !5
1

4DDtG~x,x8,Dt !
ErfcS ux̃2xu1ux̃2x8u

A4DDt
D ,

~25!

and this probability distribution is illustrated in Fig. 5. Inte
estingly it is uniform betweenx andx8, with tails accounting
for the paths that move outside the interval (x,x8).

FIG. 5. The conditional probability distributionp( x̃ux,x8,Dt)
for a trajectory beginning atx851 and ending atx52 after unit
time Dt51 @Eq. ~25!#.
4-5
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The average convective velocity in the time stepDt can
be calculated by integrating the flow field at eachx̃ with
p( x̃ux,x8,Dt) as the weight function:

v̄y5gE
2`

`

ux̃up~ x̃ux,x8,Dt !dx̃5g f ~x,x8!. ~26!

The paths described byx̃ may extend into the virtual region
x̃,0. Physically, the particle is reflected and remains in
real (x̃.0) domain, but it is simpler computationally to a
low negative values ofx̃ and change the sign of the she
rate. In calculating the mean convective velocity we m
also differentiate between situations where the final pointx is
reached directly and where it is reached after reflecti
Sincep is translationally invariant, it is the displacementx
2x8, along with the time stepDt, that are the controlling
parameters inp. Therefore, the final positionx in Eqs.~24!–
~26! must be calculated without reflection, and can be po
tive or negative. If the particle is far from the wall, the a
eraged velocity is, by symmetry,g(x1x8)/2 as used in the
Heun method@Eq. ~6!#. However, as the particle comes clo
to the wall, the tails in the distribution become more imp
tant, especially whenux2x8u!ADDt. For example, ifx
5x850 andDDt51, the particle attains an average velo
ity of about 0.3g.

These ideas can be implemented by modifying the H
method@Eq. ~6!# whenever there is a significant probabili
that the particle trajectory explores the virtual region beh
the interface. In such cases the convective increment in
corrector step should be weighted according to Eq.~26!. The
velocity field near the wall can be used to estimate the m
nitude and direction of the local shear rateḡ, and the new
particle position is then given by

X~ t1Dt !5R•@X~ t1Dt !1ḡf „Xp~ t1Dt !•n̂,X~ t !•n̂…Dt

1A2DDW~ t !#, ~27!

wheref (x,x8) is calculated from Eq.~26!. It should be noted
thatXp is calculated without the reflection operator and m
lie outside the system; this point was discussed in the
following Eq. ~26!.

If the velocity field has the form of a shear flow@Eq. ~21!#
everywhere, not only in the vicinity of the wall, then th
above algorithm is equivalent to advancing the concentra
profile with the approximate reflection propagator:

G~x,x8,y,y8,Dt !

5
1

4pDDt S expF2
~x2x8!21@y2y81g f ~x,x8!Dt#2

4DDt G
1expF2

~x1x8!21@y2y81g f ~x,2x8!Dt#2

4DDt G D .

~28!

Although it is not an exact solution of the convectio
diffusion equation, the proposed algorithm guarantees th
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zero-flux boundary conditionn̂•“c50 is maintained at the
boundary regardless of the time step. This can be checke
direct differentiation of the Green function~28! and using the
symmetry relations f (0,x8)5 f (0,2x8) and ]xf (0,x8)5
2]xf (0,2x8).

To test the algorithms, we simulated a random walk in
linear shear flowvy5x, near a reflecting wall atx50, start-
ing from an initiald-function distribution

c~x,y,0!5d~x21!d~y!. ~29!

As there is no analytical solution of the problem, results we
compared with a numerical approximation to the exact so
tion, obtained by releasing a large number (N5107) of tracer
particles and advecting them with a very small time st
(Dt51025). Figure 6~a! compares the concentration profil
calculated using our predictor-corrector algorithm, with t
‘‘exact’’ numerical solution. The predictor-corrector algo
rithm is rapidly convergent, consistent with second-order
curacy, and results obtained withDt,0.5 are indistinguish-
able from the exact profile on the scale of the figure. B
comparison, Fig. 6~b! shows analogous results obtained wi
a first-order Euler algorithm, including specular reflectio
whenever the trajectory crosses the interface. It can be s
that the errors are larger and the convergence is more or
linear. Figure 7 shows that the interruption and multipl
rejection methods have larger errors than the Euler met
and that the concentration profile converges to the wro
result in the vicinity of the source point. Such algorithm

FIG. 6. Convection diffusion near a planar reflecting bounda
(x50) in the presence of a linear shear flow. A point source
placed at (1,0) and the time evolution is simulated using spec
reflection at the solid boundary:~a! second-order predictor-correcto
method, Eq.~27!; ~b! first-order Euler method with specular reflec
tion. The concentration profiles att51, c(x,0,1), obtained with
time stepsDt51 ~dot-dashed!, Dt51/3 ~dotted!, and Dt51/10
~dashed!, are compared with the exact solution~solid!.

FIG. 7. Convection diffusion near a planar reflecting bounda
is simulated using~a! interruption and~b! multiple-rejection meth-
ods. The concentration profiles att51, c(x,0,1), obtained with
time stepsDt51 ~dot-dashed!, Dt51/3 ~dotted!, and Dt51/10
~dashed!, are compared with the exact solution~solid!.
4-6
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BOUNDARY CONDITIONS FOR STOCHASTIC . . . PHYSICAL REVIEW E 68, 036704 ~2003!
cannot generate the correct Green function for
convection-diffusion equation, even with very small tim
steps.

Despite the relatively large errors in concentration,
moments of the distribution calculated by interruption a
multiple rejection converge linearly with the time step,
shown in Fig. 8. The errors in the second moment are c
parable to the Euler method, which also converges line
with Dt. The predictor-corrector method has much sma
errors and converges quadratically withDt.

V. DIRICHLET BOUNDARY CONDITIONS

The most important example of Dirichlet boundary co
ditions is an absorbing boundary

c~r ,t !50, rPS, ~30!

where the concentration vanishes. In Sec. III B we show
that the Green function for diffusion near an absorbing w
could be interpreted using particles of negative mass~holes!,
which enter the system with trajectories that mirror those
real particles leaving the system. A zero-concentration~ab-
sorbing! boundary condition can be implemented by modi
ing the predictor-corrector scheme of Sec. IV so that
flected particles are converted into holes, carrying nega
mass in the overall concentration balance. This algorit
ensures that the concentration on the wall vanishes regar
of the time step used in a random walk~Fig. 9!, and is
second-order convergent in time.

Outflow boundary condition

It is often the case that a zero-concentration condition
imposed on some imaginary surface in the fluid, for exam
at an inlet or outlet, rather than on a solid wall. In this ca
the fluid velocity does not vanish at the boundary, but
leading order the velocity field can be taken to be consta

v~x,y!5v01••• . ~31!

FIG. 8. Differences between the second moment of the con
tration profiles in Figs. 6 and 7 and the second moment of the e
concentration profile,M0. The predictor-corrector algorithm~solid
circles! shows quadratic convergence~slope 2.260.2), while the
other methods converge linearly. These methods are Euler~open
circles!, interruption ~open squares!, and multiple rejection~open
triangles!.
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The Green function in a constant flow fieldv0 is simply

G~x,y,x8,y8,Dt !

5
1

4pDDt
expF2

~x2x82vx
0Dt !21~y2y82vy

0Dt !2

4DDt G ,
~32!

and without loss of generality, the boundary surface can
taken to be the planex50. As in the case of pure diffusion
a Green’s function for an absorbing wall can be construc
using an image source of negative mass. For a constant
Eq. ~18! takes the more general form

Ga~x,y,x8,y8,Dt !

5G~x,y,x8,y8,Dt !2a~x8!G~x,y,2x8,y8,Dt !,

~33!

where a(x8) can be interpreted as the mass of the ho
which is now variable. The absorption conditio
Ga(0,y,x8,y8,Dt)50 requires that

a~x8!5
G~0,y,x8,y8,Dt !

G~0,y,2x8,y8,Dt !
5expF2

x8vx
0

D G . ~34!

We note that in order for Eq.~33! to obey the convection-
diffusion equation,a(x8) must be independent of the tim
stepDt, as is the case here.

For the purely diffusive case the Green function@Eq. ~18!#
was simulated by reflecting particles at the wall and conv
ing them into holes of equal mass, but in the presence
velocity field, reflection conversion will not apply the corre
convective displacement to the holes. Instead we introdu
distribution of virtual holes in the regionx,0, outside the
system. We have devised two algorithms; the first illustra
the basic idea, the second is a much more efficient imp
mentation.

n-
ct

FIG. 9. Convection diffusion near a planar absorbing bound
(x50) in the presence of a linear shear flow. A point source
placed at the point~1,0! and the time evolution is simulated usin
reflection conversion at the solid boundary with the second-or
convective correction, Eq.~27!. The concentration profilesc(x,0,1)
obtained with time stepsDt51 ~dot-dashed!, Dt51/3 ~dotted!, and
Dt51/10~dashed! are compared with the exact solution~solid line!.
4-7
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P. SZYMCZAK AND A. J. C. LADD PHYSICAL REVIEW E68, 036704 ~2003!
Algorithm I

~1! Make a virtual distributionc* (x,0) of holes that
images the positions of real particles in the region (x.0)
near the wall: for each particlepi we create a holehi in the
position

xhi
52xpi

, ~35!

yhi
5ypi

, ~36!

behind the wall. The mass of the hole is given bymhi

5a(xpi
) and counts2a(xpi

) in the overall concentration
balance.

~2! Move both virtual holes and real particles according
their infinite-space propagators, keeping only the partic
that remain in the system at the end of the time step.

The algorithm ensures that the concentration is exa
zero on the absorbing wall, regardless of the time stepDt,
which is not true of a rudimentary alternative@6,32#, where
particles are removed when their trajectories cross
boundary of the system. Figure 10 shows that particle
moval is inaccurate in the vicinity of the wall, even for rel
tively small time steps.

The outflow condition can also be extended to impos
reservoir boundary condition. An additional distribution
virtual particles is inserted in the regionx,0 behind the
boundary, with a uniform number densitynp5c0, but with a
nonuniform mass@cf. Eq. ~19!#,

mpi
511a~2xpi

!. ~37!

When this distribution is advected, it leads to a concentra
profile in the system@cf. Eq. ~20!#,

FIG. 10. Evolution of an initial concentration profilec(x,y,0)
5d(x21)d(y) in a constant flow fieldv5(21,0) with an absorb-
ing wall at x50. Absorption is simulated by the particle remov
method. The concentration profilesc(x,0,1), obtained for time
stepsDt51 ~dot-dashed!, Dt51/3 ~dotted!, andDt51/10~dashed!,
are shown together with the exact solution~solid! given by the
Green function~33!.
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c~x,Dt !5
c0

2 F11ErfS vx
0Dt2x

A4DDt
D G

1
c0

2
expS vx

0x

D D F12ErfS vx
0Dt1x

A4DDt
D G , ~38!

which is a solution of the convection-diffusion equation wi
boundary conditionc(0)5c0. It is worth noting that in a
uniform system, for whichc(x)5c0 everywhere in thex
.0 half space, the total virtual concentration~particles
1holes! for x,0 will be also constant and equalc0. More-
over, in the absence of flow Eq.~19! is recovered, with
a(2xpi

)51.
Although Algorithm I is exact for constant velocity flows

it becomes inefficient for large negative values ofvx
0 , corre-

sponding to fast outflow of material from the system. Figu
11 shows the characteristic positive and negative compon
of the Green function@Eq. ~33!# in such cases. It can be see
that the negative component, corresponding to the hole
tribution, can be orders of magnitude larger than the posi
one. At the same time only the very tail of the hole distrib
tion enters thex.0 region, so that most of the virtual hole
do not enter the system. But whenever one of the holes d
cross thex50 plane, it brings a substantial negative ma

into the system (e2xpi
vx

0/D@1), which leads to large statisti
cal fluctuations in the concentration field near the bound

We therefore propose the following improvement.

Algorithm II

~1! Again create holes atxhi
52xpi

, this time with unit
massmhi

51.

~2! Calculate the probabilityphi
that the holehi enters the

system in the next time stepDt. This corresponds to the are
of the shaded region in Fig. 11 and is given by

phi
5E

0

`

dxE
2`

`

dy a~xpi
!G~x,y,2xpi

,ypi
,Dt !

5
1

2
e2xpi

vx
0/DF11ErfS Dtvx

02xpi

A4DDt
D G . ~39!

It may be shown by rearranging the integrand in Eq.~39! that
phi

is always less than unity.

FIG. 11. The positive~solid! and negative~dashed! components
of the Green function given by Eq.~33! for v05(21,0), Dt51,
x851, andy85y50. Only a small portion of the negative compo
nent ~shaded region! enters the real space.
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BOUNDARY CONDITIONS FOR STOCHASTIC . . . PHYSICAL REVIEW E 68, 036704 ~2003!
~3! With probability phi
, insert the hole into the system a

the pointx, sampled from a Gaussian tail distribution that
limited to the regionx.0:

p~x,y!5
1

phi

a~xpi
!G~x,y,2xpi

,ypi
,Dt !. ~40!

Otherwise discard the hole.
This algorithm gives the same concentration profiles

Algorithm I but is much more efficient. Keeping the mass
the hole unitary greatly reduces the statistical fluctuation
c(x) near the boundary.

VI. FINITE-RANGE PROPAGATORS

It is not necessary thatDW be a Gaussian propagator
order to obtain weak convergence. For example, any ran
variable^DY& with the correct second moment, i.e.,

^DYi&50,

^DYiDYj&5Dtd i j ,

^DYiDYjDYk&50, ~41!

guarantees weak first-order convergence of the approx
tion scheme@21#. Finite-range increments obeying these m
ment conditions@Eq. ~41!# are frequently used@1,29,30# be-
cause these are simpler and faster than Gaussian-sam
increments, and do not introduce significant errors in
bulk. However, near an interface odd moments of the inc
ments are nonzero and space dependent. Reflection prop
tors constructed from finite-range increments via Eq.~14! or
Eq. ~27! then have a local error in the first moment propo
tional toDt1/2 @19#, which suggests that the global error@Eq.
~4!# may not vanish with decreasing time step. Howev
although the short-time evolution may be poorly converge
after a sufficiently long time the concentration distributi
can still reach the correct steady-state. For example, in
absence of flow it is straightforward to prove that the stati
ary state of any isotropic propagator is a solution of
Laplace equation. If this propagator can be supplemen
with an algorithm that imposes the correct boundary con
tions then the errors will decrease with time rather than
crease as might be expected in the worst-case scenario

Even in convection-diffusion problems, finite-rang
propagators can lead to reasonable results after a few
steps. Figure 12 shows results obtained with a displacem
that is sampled uniformly over the surface of a circle, a
can be compared with the result for a Gaussian propag
shown in Fig. 6~b!. For more than two steps, the errors a
similar to those obtained with Gaussian displacements.

Although it is possible to construct practical bounda
conditions with finite-range increments, these are never
less less accurate and less flexible than Gaussian increm
and also more difficult to analyze. To avoid the complic
tions associated with the infinite range of Gaussian propa
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tors it may prove advantageous to sample diffus
increments from truncated Gaussian distributio
p(DWi /ADt,xT), instead

p~x,xT!5e2x2/2@A~xT!1B~xT!x21C~xT!x4#. ~42!

The coefficientsA–C can be constructed to match the z
roth, second, and fourth moments of the Gaussian distr
tion, although for truncation rangesxT,3ADt it is only
practical to match the first two nonzero moments. Althou
for sufficiently smallDt such distributions ultimately have
the same convergence properties as any finite-increment
tribution, the errors introduced by ignoring the tails of th
Gaussian are negligible for sufficiently largexT . Figure 13
shows the concentration profile for different truncation d
tances; forxT.3ADt, the dynamics of the random walk ar
not noticeably affected.

FIG. 12. Convection diffusion near a planar reflecting bound
is simulated using finite-range displacements, distributed unifor
over the area of a circle. The Euler method with specular reflec
is used to integrate the stochastic differential equations. The c
centration profilesc(0,y,1) obtained for time stepsDt51 ~dot-
dashed!, Dt51/3 ~dotted!, and Dt51/10 ~dashed! are compared
with the exact solution~solid!.

FIG. 13. Convection diffusion near a planar reflecting bound
is simulated using a Gaussian propagator truncated at 2ADt
~dashed! and at 2.5ADt ~dot-dashed!. The Heun method with specu
lar reflection is used to integrate the stochastic differential eq
tions. The concentration profilesc(0,y,1) are compared with the
exact solution~solid!. The results for truncation distances larg
than 3ADt are indistinguishable on the scale of the figure fro
those obtained with a Gaussian distribution.
4-9
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VII. CONVECTION DIFFUSION IN A
RECTANGULAR CHANNEL

In this paper we have constructed a set of algorithms
impose reflection ~zero-flux! and absorption ~zero-
concentration! boundary conditions at solid interfaces. In a
dition we have developed reservoir boundary conditions
the inlets and outlets to the system. Here the algorithms
tested on two-dimensional convection-diffusion proble
whose solution can be found independently. We take a ch
nel of width Ly510 and lengthLx5nLy , with a constant-
concentration inletc(0,y,t)51 and a zero-concentration ou
let c(Lx ,y,t)50. The solid wall at y50 is reflecting,
]yc(x,0,t)50, and the wall at y5Ly is absorbing,
c(x,Ly ,t)50. This problem geometry allows us to test all
the types of boundary condition in a single test problem. T
tests were run from the diffusion-dominated limit Pe50.1 to
the convection-dominated limit Pe51000, using increasing
channel lengths at higher Peclet numbers so that the
step can remain constant. The Peclet number Pe5VLy /D is
defined in terms of the velocity at the center of the chann
We have assessed the convergence of the concentration
at the absorbing wall based on comparisons with a multi-g
finite-difference code from the NAG library@33#. We used a
modest aspect ratio grid, at most 2:1, since noticeable er
were observed with high aspect ratios (.10).

The algorithms of Secs. IV and V can be combined in
vicinity of corners where surfaces with two different boun
ary conditions meet. In such cases we track the motion of
particle, applying the appropriate rules at each succes
encounter with a bounding surface. To gain more insight i
how and why this works in practice, consider a purely diff
sive process in a wedgex.0,y.0, bounded by reflecting
(y50) and absorbing (x50) walls. For a point source a
(x8,y8), the reflecting wall adds an image source at (x8,
2y8), while the absorbing wall adds a sink at (2x8,y8) ~see
Fig. 14!. Near the corner, there is an additional sink
(2x8,2y8), because of the interaction between reflect
and absorbing boundaries. Thus the Green function is g
by

Gc~x,y,x8,y8!5G~x,y,x8,y8!1G~x,y,x8,2y8!

2G~x,y,2x8,y8!2G~x,y,2x8,2y8!.

~43!

Analogous constructions can be made for other types of
ners.

The implementation of Eq.~43! may be achieved in a
variety of ways. For example, the image particles and ho
can be placed in the appropriate locations and propagate
Dt, retaining only the particles within the system at the e
of the time step. However, it is simpler and more effective
move the original particle and perform a specular reflect
at the reflecting wall and reflection conversion at the abso
ing one~see Fig. 14!. Unfortunately, this method only work
when there is no flow across the absorbing interface; a fl
field introduces an asymmetry in the distribution, so th
holes generated by reflection conversion do not have
right convective displacement. Therefore we use an im
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hole at (2x8,y8) to impose a zero-concentration condition
x50. The hole is moved according to Algorithm I or II, a
described in Sec. V. However, the reflecting boundary c
always be implemented by specular reflection, so that th
is no need to introduce a hole at (2x8,2y8) or a particle at
(x8,2y8).

The results in Figs. 15–17 show that the stochastic sim
lations are in essentially exact agreement with the fin
difference results over most of the channel, regardless of
Peclet number. However, there is a singularity in the flux
the corner (x50,y50), where the boundary conditionsc
51 ~alongx50) andc50 ~alongy50) meet. Here the time
step must be reduced to obtain accurate results, particu
at the highest Peclet number~Fig. 17!.

Sampling errors can be controlled by increasing the d
sity of particles,N, or by time averaging over an intervalT.
Figure 18 illustrates the behavior of the statistical errors

FIG. 14. Diffusion near a corner bounded by reflecting and
sorbing walls. In the absence of flow, boundary conditions can
imposed by reflecting the particle at each wall and converting i
a hole when necessary~solid line!. However, when there is a flow
across the interface, reflection conversion does not sample the
rect convective displacement. Instead, the image hole at (2x8,y8)
must be introduced~see Sec. V! and propagated~dotted lines!. Both
the particle and the hole are allowed to cross thex50 plane but
after one time step only the particles inside the wedge (x.0,y
.0) are retained.

FIG. 15. The flux of particles across an absorbing wall a
Peclet number Pe50.1, as a function of the position along the cha
nel. Random walk simulations~open circles! with a time stepDt
51 are compared with finite-difference results~solid line!. The
inset shows results near the inlet position for time stepsDt51
~circles!, Dt51/3 ~squares!, andDt51/10 ~triangles!.
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BOUNDARY CONDITIONS FOR STOCHASTIC . . . PHYSICAL REVIEW E 68, 036704 ~2003!
the particle current at an absorbing interface (y50). The
current measured by the random-walk method at differ
locations,Ji , was compared with the corresponding finit
difference resultsJi

f d at 30 locations far from the singula
entry point,Lx/4,xi,Lx . The root-mean-square deviation

d5A(
i

~Ji2Ji
f d!2

(
i

~Ji
f d!2

~44!

was calculated at a Peclet number Pe510 with a time step
Dt50.1, and decays asANT with a coefficient of order 10.

In this work we used long runs to obtain very precise da
and each channel flow simulation ran for'1 h, whereas the
finite-difference code ran for only a few seconds. Howev
in more complicated geometries we expect statistical er
of the order of 5% to be adequate, and in this case the c
parison is more favorable. Moreover, the stochastic sim
tions evolved in time to a steady state, whereas the fin
difference code solved the time-independent probl

FIG. 16. The flux of particles across an absorbing wall a
Peclet number Pe510, as a function of the position along the cha
nel. Random-walk simulations~open circles! with a time stepDt
51 are compared with finite-difference results~solid line!. The
inset shows results near the inlet position for time stepsDt51
~circles!, Dt51/3 ~squares!, andDt51/10 ~triangles!.

FIG. 17. The flux of particles across an absorbing wall a
Peclet number Pe51000, as a function of the position along th
channel. Random-walk simulations~open circles! with a time step
Dt51 are compared with finite-element results~solid line!. The
inset figure shows results near the inlet position for time stepsDt
51 ~circles!, Dt51/10 ~squares!, andDt51/100 ~triangles!.
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directly. A better comparison would be to estimate the tim
taken to update the concentration profile for a unit tim
From the data shown in Fig. 18 we expect that densities
the order of 105 particles per unit area~or volume in the
three-dimensional case! will be sufficient to calculate the
flux over a unit surface length~or area! to about 3% preci-
sion in a single configuration. For the Pe510 simulation this
corresponds to a total of about 43107 particles and a single
time step would be sufficient to update the system for a u
time. With our current and by no means optimized code,
can update about 106 particles per second, so a single st
would take of the order of 40 s.

VIII. CONCLUSION

In this paper we have developed and tested stochasti
gorithms to solve the convection-diffusion equation in t
vicinity of reflecting and absorbing boundaries. The k
ideas were the introduction of particles with negative m
~holes! to account for deposition fluxes, and methods to
corporate convection in the vicinity of an interface. In th
case of a shear flow we have shown how to correctly sam
the distribution of convective velocities to obtain secon
order convergence, and we have shown how to efficien
implement an absorption condition (c50) at an outlet. Nu-
merical tests show that these algorithms are much more
curate than thead hocmethods that are typically used fo
such problems.

We have tested a multidimensional implementation in
rectangular domain, for which precise numerical solutio
are available for comparison. The overall agreement w
finite-difference results was excellent, even though the st
concentration gradients in the vicinity of singular corne
made for a stringent test of the algorithm. In general
found quadratic convergence in the time step almost ev
where in the domain and linear convergence near the sin
lar points. The stochastic method is not as efficient as fin
difference methods in simple geometries. However,
statistical errors of a few percent are acceptable, such m

FIG. 18. The statistical error of the measured particle curr
through absorbing wall as a function of number of time stepsT,
over which the measurement is averaged~circles! and the number
of particles,N, used to simulate the concentrationc0 in a unit cell
~squares!. The reference values areT521 000 andN51000. The
slope of the line is20.5260.07 indicating square-root convergenc
characteristic for stochastic methods.
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ods may be viable in irregular geometries.
We have examined several different increment distri

tions for the random walk. For test purposes a Gaussian
tribution is the simplest and the most accurate, but fin
range increments are desirable in complex geometries
are also more efficient. Although finite-range propagat
can introduce significant errors near an interface, of or
ADt at short times, the errors at long times are smaller.
have found that truncated Gaussian distributions have m
smaller errors in the vicinity of an interface than uniform
nd

th
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,

sf

s

. J
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sampled increments; discrete increments have even large
rors than uniform distributions.
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