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From the solution of the creeping-flow equations, the drag force on a sphere becomes
infinite when the gap between the sphere and a smooth wall vanishes at constant
velocity, so that if the sphere is displaced towards the wall with a constant applied
force, contact theoretically may not occur. Physically, the drag is finite for various
reasons, one being the particle and wall roughness. Then, for vanishing gap, even
though some layers of fluid molecules may be left between the particle and wall
roughness peaks, conventionally it may be said that contact occurs. In this paper,
we consider the example of a smooth sphere moving towards a rough wall. The
roughness considered here consists of parallel periodic wedges, the wavelength of
which is small compared with the sphere radius. This problem is considered both
experimentally and theoretically. The motion of a millimetre size bead settling towards
a corrugated horizontal wall in a viscous oil is measured with laser interferometry
giving an accuracy on the displacement of 0.1 µm. Several wedge-shaped walls were
used, with various wavelengths and wedge angles.

From the results, it is observed that the velocity of the sphere is, except for small
gaps, similar to that towards a smooth plane that is shifted down from the top of
corrugations. Indeed, earlier theories for a shear flow along a corrugated wall found
such an equivalent smooth plane. These theories are revisited here. The creeping
flow is calculated as a series in the slope of the roughness grooves. The cases of a
flow along and across the grooves are considered separately. The shift is larger in
the former case. Slightly flattened tops of the wedges used in experiments are also
considered in the calculations. It is then demonstrated that the effective shift for the
sphere motion is the average of the shifts for shear flows in the two perpendicular
directions. A good agreement is found between theory and experiment.

1. Introduction
Hydrodynamic interactions between particles and walls are relevant for the open

problem of specifying boundary conditions for suspension flows. The Reynolds
number around a small particle close to a wall is usually low and creeping-flow
equations apply. For a suspension in water or air, the assumption of a low Reynolds
number is true for particles typically of the order of 100 µm or less.

† Author to whom correspondence should be addressed: feuillebois@pmmh.espci.fr
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However, the application of creeping-flow equations may lead to paradoxes.
Classical solutions of these equations for a spherical particle close to a smooth
wall by Brenner (1961), Maude (1961), Dean & O’Neill (1963), O’Neill (1964) and
O’Neill & Stewartson (1967) show that the drag coefficient becomes infinite when the
gap between the sphere and the wall vanishes. For instance, a sphere with radius a

settling with velocity U towards a smooth horizontal plane is subjected to a lubrication
drag force

F � −6πaµ

ξ
U (1.1)

when the non-dimensional gap ξ , that is the gap normalized by the sphere radius,
becomes small compared with unity. Here µ denotes the fluid viscosity. A consequence
of this lubrication effect is that the settling sphere would theoretically never touch
the wall in a finite time. As recognized by Goldman, Cox & Brenner (1967a, b), the
practical observation that the sphere indeed touches the wall in a finite time is the
consequence of other physical phenomena, such as short-range attractive forces, like
van der Waals forces. An earlier contact may also be due to surface roughness of
the wall or particle. For even though a lubrication force on the scale of a bump
prevents surfaces from approaching each other (using (1.1) in which a is replaced by
the radius of the bump, see Smart & Leighton (1989)), the gap between the bump and
the nearby surface would then become of the order of the fluid molecular dimension.
Therefore, even in the presence of some remaining layers of fluid molecules, it may
conventionally be said that contact occurs. This physical importance of roughness
provides a strong motivation for studying the hydrodynamics of suspensions with
rough surfaces. The importance of surface roughness has been also recognized for
some time in the lubrication literature (see e.g. Szeri 1998 and references therein).
Various theoretical approaches are based on the Reynolds equation and include
the influence of surface roughness by averaging this equation. However, when the
lubrication approximation is no longer valid, the Stokes equations have to be applied
in the presence of a rough wall and these ‘Stokes roughness’ problems have received
little attention.

This article is concerned with the interactions of non-touching rough surfaces,
in cases when the Stokes equations have to be applied. More specifically, we will
study in detail the test case of a sphere approaching a rough wall. Smart & Leighton
(1989) measured the hydrodynamic effect of the surface roughness of a sphere moving
perpendicularly to a smooth wall. Some of their spheres were made rough by gluing
very small spheres on their surfaces. Here we do the reverse, that is we prepare
walls with a definite roughness and the sphere roughness is small in comparison.
The roughness considered in this article consists of periodic parallel wedges, the
wavelength of which, λ, is small compared with the sphere radius (see figure 1).

The experimental technique that we use to observe the motion of a settling sphere
is laser interferometry. It provides an accuracy for the sphere displacement of 0.1 µm,
a significant improvement over other experiments using video. This technique was
developed for this particular application, but has also been applied to other creeping-
flow hydrodynamics problems (see Lecoq et al. 1993, 1995; Masmoudi et al. 1998,
2002; details on the experimental setup may be found therein).

The experimental results will show that, for a sphere in motion at a distance from
the wall that is large compared with the roughness, the rough wall is equivalent to a
smooth wall that is shifted down from the top of the rugosities.
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Figure 1. The sphere approaching the wedge-shaped wall.

In order to model these experimental results, first recall that a shear flow close to
a rough wall is equivalent to a flow close to an effective smooth wall. The extensive
literature on this problem will be quoted below. Consider a rough wall (like that in
figure 1) with z = 0 representing the plane at the top of the rugosities and consider
e.g. a shear flow along x with velocity gradient κ far from the wall. There are two
equivalent ways to consider such a flow field:

(i) either the flow velocity is written as

vx = κ(z + b) (1.2)

where b is the shift; that is, there is an equivalent no-slip wall at z = −b;
(ii) or the boundary condition on the plane z = 0 is written as a slip condition:

vx |z=0 = b
∂vx

∂z

∣∣∣∣
z=0

(1.3)

and b is then called a ‘slip length’.
For a rough wall made of parallel wedges, it is expected that the shifts (or the

slip lengths) will be different for shear flows along the wedges and across them. Both
problems will be considered here for the more general case of periodic corrugations.
The reason for considering a general corrugated profile rather than simple wedges is
that we want to take into account the deviations from the wedge geometry due to
machining of the profiles used in the experiment. These deviations have non-negligible
hydrodynamic consequences, as we will see.

We will then use the assumption that the flow on a scale that is large compared
with the roughness, yet smaller than the sphere to wall distance, is a shear flow to
which these models apply. On this basis, we will derive an expression for the drag
force on a sphere approaching a rough wall on which different slip lengths apply in
two perpendicular directions.
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Figure 2. Notation for the corrugated wall.

There is a body of literature on the problem of a shear flow along a periodic rough
wall. The wall profile considered here is a general periodic function with period λ
along one dimension, but such that the corrugation profile is symmetric. That is,
normalizing lengths by λ/(2π), as shown in figure 2, and using capital letters for the
dimensionless coordinates, the conditions for the profile f (X) are

(i) f (X + 2π) = f (X),
(ii) f (X + π) = −f (X).

Using Hocking’s (1976) notation, let the dimensionless shift be β = (2π/λ)b (see
figure 2). There are two main problems: one for the flow parallel to the corrugations
and one for the flow perpendicular to them. The first problem is a harmonic problem
for the velocity along the wedges and the second requires a solution of the full
creeping-flow or Stokes equations.

Both shear flow problems are well documented. Richardson (1971) calculated
the particular case of a flow over a row of parallel and equidistant thick semi-
infinite slabs by conformal mapping and Schwarz–Christoffel transformation. From
his formula (4.4), we derive the following normalized shift for semi-infinite plates of
zero thickness, that is the case of wedges when the angle α in figure 1 vanishes at
constant λ: β = 2 log 2.† Bechert & Bartenwerfer (1989) calculated flows over various
profiles (sawtooth, trapezoidal valleys, blade riblets, namely wall attached barriers)
by conformal mapping. Luchini, Manzo & Pozzi (1991) used the numerical boundary
element technique to solve flows over sinusoidal, scalloped and sawtooth profiles.
Wang (1994) calculated in particular the flow over blade riblets by a collocation
technique.

For cross-flows, the Stokes equations have to be solved. Richardson (1973)
calculated the cases of sinusoidal and scalloped profiles by conformal mapping.
Hocking (1976) provided an interesting solution that he applied to the sinusoidal
profile, improving that of Richardson (1973). However, his solution leads to numerical
problems for large slopes. He then calculated the case of an infinite slope, namely of
a row of semi-infinite plates of zero thickness, by the Wiener–Hopf technique, with
the result: β = 0.5569.‡ Luchini et al. (1991) applied the numerical boundary element
technique to the same profiles as for the parallel flows. Davis (1993) considered in
particular the case of blade riblets. He used a distribution of singularities over the

† Note that there is a misprint in the slip velocity he gives for that case (a factor 2 is missing),
but the result follows easily from his equation (4.4) which is correct. There is also a misprint in
Hocking’s (1976) quotation of Richardson’s result: a factor 4 is missing. The same result as in
Richardson (1971) was obtained independently by Bechert & Bartenwerfer (1989) from the limit of
a sawtooth profile and again by Jeong (2001) using the Wiener–Hopf technique. Jeong remarks that
he recovers the result of Richardson (1971) but without pointing out the misprint in that paper. We
have redone the calculation by conformal mapping as a check.

‡ Unaware of this paper, other authors redid this calculation independently, also with the Wiener–
Hopf technique: Luchini et al. (1991) with the result β = 0.556475; and Jeong (2001) with the result
β = 0.5567.
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Figure 3. Experimental setup. C: cylindrical vessel; D: diaphragm; L1,L2: lenses; M: mirrors;
Mf: mirror reflecting the reference beam; Mr: mirror reflecting the interference fringes;
P: spherical particle; S: beam splitter.

riblets and solved a Fredholm integral equation for this distribution. Wang (1994)
solved this problem independently by a collocation technique. Tuck & Kouzoubov
(1995) treated the sinusoidal profile using a Hocking (1976) type of solution together
with a collocation technique. Stroock et al. (2002) noticed that as a consequence of
the anisotropy in the directions parallel and perpendicular to the grooves, the fluid
particles follow helical trajectories.

We will revisit here these problems for the shear flow along and perpendicular to
the corrugations. Our theoretical approach uses a solution in the spirit of Hocking
(1976) and expands it as a series in the normalized half-amplitude s (see figure 2).
Note that for a sinusoidal profile, s is also the maximum slope, so it will be called the
‘slope’ here. We will then accelerate the convergence of the series in s to extend its ap-
plication range. This approach is in principle valid for any profile with limited slope.

The outline of the article is as follow. The experiment is presented in § 2. The
problems of shear flows along and perpendicular to corrugations will be revisited
in § 3. Then § 4 is concerned with the derivation of the drag force on a sphere
approaching a periodic rough wall represented by a smooth wall with two different
slip lengths. The experimental results and the model are compared and discussed in
§ 5. Finally, the conclusion is given in § 6.

2. Experiment
A laser interferometer was used to measure with high accuracy the vertical velocity

of a spherical particle moving in a viscous fluid, using the technique described in earlier
articles (see Lecoq et al. 1993; Masmoudi et al. 1998). A sketch of the experimental
interferometry setup is presented in figure 3. It provides a measurement of the vertical
displacement of the particle versus time. A typical example of the interferometric
signal is sketched in figure 5, below. A signal variation from a maximum to a
minimum (or conversely) is due to a displacement of the sphere between interference
fringes of δz = Λ/(4n) where Λ = 632.8 nm is the wavelength of the laser beam,
n= 1.404 the index of refraction of the oil, that is δz =0.112 µm. The particle velocity
is then derived after recording the displacement across several interference fringes
versus time. The accuracy in the displacement is roughly equal to δz, and even a little
smaller. The time is recorded with the precision of the data acquisition system, of the
order of 1 µs.
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Figure 4. Scanning electron micrograph of a machined wall with wedges.

The settling particle is a steel ball with a mass density of about 7800 kg m−3 and a
diameter of 6.35 mm. Departure from sphericity is negligible (lower than 0.5 µm) and
the arithmetic roughness Ra as indicated by the manufacturer is 0.013 µm.

The sphere is embedded in a very viscous oil contained in a cylindrical vessel. This
vessel (with a diameter of 50 mm and a height of 40 mm) is made of altuglas and is
closed at its top by a plane glass window of optical quality.

The rough surface to be studied is placed on the inside of the lower plane endwall.
Several rough surfaces were used, with periodic parallel groves with height and
wavelength of the order of 100 µm. A scanning electron micrograph of one surface is
shown in figure 4. It is apparent that, due to machining, the top and bottom are not
sharp wedges, but are truncated as depicted schematically in figure 7 below in which
they are shown as the dimensionless lengths T and B . The dimensions of all surfaces
used in the experiment are given in table 1.

The vessel is filled with Rhodorsyl 47V100000 silicone oil (manufactured by Rhône-
Poulenc) of mass density 978 kg m−3 and kinematic viscosity 0.1m2 s−1 at 25 ◦C. With
this very large viscosity, the Reynolds number based on the sphere radius and Stokes
sedimentation velocity of the particle settling in the unbounded fluid at rest is of the
order of 10−5. The variation of the viscosity of silicon oil with temperature is low and
the oil has a Newtonian behaviour up to a shear rate of the order of 100 s−1. Such a
high shear rate was never attained in the experiments even when in lubrication. The oil
viscosity is determined either before or after each experiment (as in Lecoq et al. 1993;
Masmoudi et al. 1998) by matching the experimental result for the velocity of the
sphere towards the smooth endwall (i.e. the plane glass window) with the theoretical
expressions of Brenner (1961) and Maude (1961). The ‘experimental’ Stokes velocity
obtained in this way was found to be in agreement within 0.1% with the velocity
calculated from the Stokes formula using the physical data given above.



A sphere moving towards a corrugated wall 253

α λ T
λ

2π
B

λ

2π
βexp

λ

2π
δβ

λ

2π
(deg.) (µm) (µm) (µm) (µm) (µm)

A 90 100 7 3 9 ± 1 0.3
B 90 206 28.5 17 15.5 ± 1 1.2
C 90 295 8 25.2 26.5 ± 2 3.2
D 60 100 10 11.3 10.1 ± 1 0.3
E 60 200 15 9.6 20 ± 1 1.3

Table 1. Data for various profiles (λ is the wavelength and the non-dimensional top T and
bottom B are defined in figure 7) and experimental results βexp for the shift. The uncertainty
given for the experimental results corresponds to a range of four different measurements. The
δβ uncertainty corresponds to the unknown final touching position of the sphere.

This configuration also provides an estimate of the hydrodynamic effect of the
other walls. It was found in Lecoq et al. (1993) and Masmoudi et al. (2002) that
the velocity of the sphere along the axis of the vessel is fitted well by the theoretical
expression for the motion towards a plane wall when the sphere is within one radius
of that wall. On this basis, it is expected that the motion of a sphere towards a rough
wall is not affected by the other walls for similar distances.

At the beginning of the settling motion towards the rough surface, the sphere is
held at the top plane window and aligned with the axis of the cylinder by using a
magnet applied on the upper side of the window. Just after the sphere is released,
the vessel is translated horizontally so that the laser beam reflected by the sphere is
always superimposed on the incident one.

The contact position is defined, within the experimental accuracy of 112 nm in the
displacement, as that at which the particle velocity vanishes for the first time. Note
that the sphere may be rolling down around rugosities after this first contact and
eventually come to rest in positions below the origin. A typical signal for a sphere
arriving on a rough plate is displayed in figure 5 and the signal for a sphere moving
towards a smooth plate is shown for comparison.

The gap d between the particle and the wall is defined from this origin and recon-
structed at the end of each experiment. We then define ξ = d/a as the non-dimensional
distance between the sphere and the wall. When the wall is smooth, the sphere velocity
normalized by its Stokes velocity decays slowly with ξ in the lubrication regime
and vanishes at the ‘contact’ (figure 6; actually, as explained in the introduction,
contact then occurs because of microrugosities). On the other hand, when the sphere
approaches a rough wall, far from the contact the velocity decreases as previously
and then there is a small variation in velocity and contact between the sphere and
the wall occurs suddenly, that is the velocity falls to zero. In figure 6, we shifted
the curve for the velocity obtained with the plane smooth wall by an amount �ξ

so that both curves match in the far field, that is in the region where the gap
d = ξa is an order of magnitude larger than the wavelength λ of corrugations. In
practice, we minimized the distance between the two curves in least-squares sense,
in the following matching ranges for profiles A, B, C, D, E described in table 1:
ξ ∈ [0.6, 0.8], [0.7, 0.8], [0.8, 1.0], [0.6, 0.8], [0.7, 0.8], respectively. Comparing the two
experimental curves allows the possible influence of the other walls of the container to
be taken automatically into account. But here, it happens that the ranges of matching
distances are sufficiently small that the influence of the other walls of the container
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Figure 5. Example of recorded signals for the motion of the sphere arriving close to (a) a
smooth and (b) a rough wall. The signal unit and origin of times are arbitrary. From a maximum
to a minimum of the signal (or conversely), the sphere moves a distance δz = Λ/(4n) = 0.112 µm.

is not important. Indeed, we found by comparing our experimental results for a
smooth wall to the theoretical results of Brenner (1961) and Maude (1961) that the
hydrodynamic interaction with the other walls becomes important only for ξ > 3.

If contact occurs when the sphere is touching the top of rugosities (see figure 7),
then by the definition of β the dimensionless shift in figure 6 is �ξ = β λ/(2πa). Now,
depending upon the initial position of the released sphere, it may also touch the
rugosities after having penetrated a small distance into the wedges. The shift �ξ then
is smaller than β λ/(2πa) by an amount which may be estimated using some geometry
to be at most

δξ � λ2

8a2

(
1 − T

2π

)2

where the dimensionless top length T is defined in figure 7. This variation in the shift
leads to a variation in β of δβ = δξ 2πa/λ.

Results for the experimental dimensional shift βexp λ/(2π) (in µm) obtained for the
various profiles are presented, together with the experimental errors, in table 1. We
also include the dimensional variation δβ[λ/(2π)] for comparison. The error in the
shift is larger for profile C since, because of a larger λ, we have to match in the region
ξ ∈ [0.8, 1.0] that is farther away from the wall; the sphere falls faster and the time
rate of our data acquisition system then appears a little too slow, thereby decreasing
the precision.
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Figure 6. Example of normalized velocity vexp/vStokes versus the non-dimensional gap ξ for
a sphere arriving (a) on a smooth and (b) on a rough wall with profile B (see table 1) .
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Figure 7. Profile B. All lengths are made non-dimensional by using λ/(2π) as a reference
length. In the model, § 4, the bottom length B is truncated and replaced by the larger top
length T . Similar approximations are made for the other profiles.

3. Theory for the shear flow close to a periodic wall
3.1. Description of the profiles

A difficulty of the description is that the top and bottom part of our corrugation
profiles (T and B) are different (see table 1 and figure 7). However, since a creeping
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flow avoids corners in which it would dissipate energy, it is anticipated that the lower
part (trough) of the profile is a dead-water region. We then use the approximation that
the lower part of the profile can be truncated and the bottom length B replaced by one
equal to the top length T (see figure 7), so that the profile becomes symmetric. This
approximation is not strong and has the advantage of allowing a simpler description
of the profile in terms of a Fourier series. Let the profile be described by Z = sf (X)
(figure 2), with −1 � f (X) � 1. As an example, a series of the form

f (X) =

M∑
m=0

f2m+1 cos[(2m + 1)X] (3.1)

with M = 3 is sufficient to gives a good description of profile B represented in figure 7,
and values calculated later use this representation (nevertheless, calculations were also
done with M = 4 and 5 for comparison).

Let us define some characteristic quantities for the truncated profile. Let parameter
p be the ratio of lengths of the flat top part T to an inclined section of the truncated
profile. From figure 7,

p =
T

π − T
.

The dimensionless height of the truncated profile is

2s = (π − T ) cot
α

2
=

π

1 + p
cot

α

2
.

The numerical values of the dimensionless quantities p and s for all profiles are
displayed in table 3 below.

3.2. Series solutions for the flow fields

We present here series solutions for the two cases of shear flows parallel and
perpendicular to corrugations. The procedure for accelerating the convergence of
series, § 3.3, is analogous for both cases.

Consider the case of a shear flow with rate of shear κ parallel to corrugations (see
figure 1). The velocity field, normalized by κλ/(2π), is of the form v(X, Z) eY , where
eY denotes the unit vector along the Y -axis. This case is simpler since the Stokes
equations then reduce to the Laplace equation for v(X, Z) (this would more generally
be true when starting from Navier–Stokes equations). A general form of solution
satisfying the condition at infinity is

v(X, Z) = Z + d0 +

∞∑
n=1

dne
−nZ cos nX. (3.2)

The equivalent smooth plane is at Z = −d0 so that the normalized shift is (see figure 2):

β = s + d0. (3.3)

The boundary condition on the rough surface Z = sf (X) is

0 = sf (X) + d0 +

∞∑
n=1

dne
−nsf (X) cos nX. (3.4)

Note that all dn coefficients in this equation are implicitly functions of s. By changing
s to −s, f to −f and using the condition that f (X + π) = −f (X) we show that the
d2m are even in s while the d2m+1 are odd. Next we expand all dn in powers of s, e.g.
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d0 takes the form

d0(s) =

∞∑
n=0

a0,ns
2(n+1). (3.5)

After substituting such expansions into (3.4) as well as expanding the function

e−nsf (X) cos nX

into Fourier series, we end up with a system of linear equations for the coefficients
ai,n. In particular, solving for a0,n allows us to find the shift from (3.3). Consider
now the flow perpendicular to corrugations. The velocity field is of the form
v = u(X, Z) eX + w(X, Z) eZ , where eX, eZ denote the unit vectors along the X-, Z-axes,
respectively. Stokes equations give the biharmonic equation for the stream function
ψ(X, Z). The solution for ψ that vanishes at infinity is written, following Hocking
(1976), in the form

ψ(X, Z) = 1
2
Z2 + d0Z + g0 +

∞∑
n=1

(dnZ + gn)e
−nZ cos nX, (3.6)

so that the velocity along X is

u(X, Z) =
∂ψ(X, Z)

∂Z
= Z + d0 +

∞∑
n=1

(−ndnZ + dn − ngn)e
−nZ cos nX. (3.7)

Like the parallel case, the equivalent smooth plane is at Z = −d0, so that the
normalized shift is also defined by (3.3). The no-slip boundary condition on the
profile Z = sf (X) is written as ψ = 0 and u = 0, giving two equations for the unknown
coefficients dn, gn. The dn, gn are sought as series in s. Again here, d0 is given by an
expansion like (3.5). Substituting the series for dn, gn into the boundary conditions
and expanding in s and in Fourier series provides linear equations for the unkown
coefficients in the series. Compared with the parallel case, the number of equations is
doubled, but the calculation is analogous.

3.3. Accelerating the convergence of series

Unfortunately, the series
∑∞

n= 0 a0,ns
2(n+1) is slowly convergent. However, as coefficients

a0,n are of alternating signs, the convergence can be accelerated by use of the Euler
transformation (see e.g. Knopp 1958)

a0,k → bk =

k∑
n=0

(
k
n

)
a0,n−k. (3.8)

In this way, we obtain

d0 =

∞∑
k=0

bkζ
k+1, (3.9)

where we define

ζ =
s2

1 + s2
. (3.10)

But the series in (3.9) is still slowly convergent as shown in table 2 for the example
case of the flow perpendicular to the corrugations of profile B (figure 7). But from the
existence of the limit β(s → ∞) = β∞ and relation (3.3) we infer that asymptotically
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k a0,ks
2(k+1) bkζ

k+1 ckζ
k+1

0 −1.3420 −5.8581 × 10−1 −5.8581 × 10−1

1 1.2808 −8.6040 × 10−2 9.3097 × 10−2

2 −1.7993 −6.0625 × 10−2 1.0751 × 10−2

3 2.6203 −3.0198 × 10−2 2.6410 × 10−3

4 −3.7880 −1.5121 × 10−2 9.0354 × 10−4

5 5.4210 −7.5908 × 10−3 4.8566 × 10−4

6 −7.7109 −3.8840 × 10−3 2.7037 × 10−4

7 1.0940 × 10 −2.0307 × 10−3 1.3659 × 10−4

8 −1.5512 × 10 −1.0809 × 10−3 6.1459 × 10−5

9 2.1995 × 10 −5.8221 × 10−4 2.4673 × 10−5

Table 2. The improvement in the convergence of the series when using the terms a0,ks
2(k+1),

bkζ
k+1, ckζ

k+1, in which a0,k , bk and ck are defined by (3.5), (3.8) and (3.16) respectively and ζ
is defined in (3.10). The case presented here corresponds to the flow perpendicular to profile B
(see table 1), that is here represented as the Fourier series of (3.1) with M =3. For this profile,
s = 1.14 (see table 3).

d0 → −s as s → ∞. Thus, in terms of ζ ,

∞∑
k=0

bkζ
k+1 ∼ − 1√

1 − ζ
, ζ → 1. (3.11)

Noting that the series
∑∞

k =0 ζ k+1/
√

k diverges for ζ → 1 like

∫ ∞

0

ζ x

√
x

dx =
2√

log 1/ζ

∫ ∞

0

e−t2 dt ∼
√

π√
1 − ζ

(3.12)

we deduce that asymptotically the coefficient bk should behave like

bk ∼ − 1√
πk

, k → ∞. (3.13)

This means that the asymptotic behaviour of the series under consideration is the
same as that of the polylogarithm function Li1/2 defined as (see Lewin 1981)

Li1/2(ζ ) ≡
∞∑

k=1

ζ k

√
k
. (3.14)

Once the asymptotic behaviour is known, we can make the convergence faster by
subtracting the asymptotic terms, i.e.

d0 =

∞∑
k=0

ckζ
k+1 − 1√

π
Li1/2(ζ ), (3.15)

with

ck = bk + 1/
√

π(k + 1). (3.16)

The above series converges fast for s � 2. This is shown for the example of table
2, where the series formed with cn is compared with the series formed with a0,n and
bn.
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p s ζ βexp βth‖ βth⊥ βth

A 0.16 1.35 0.65 0.57 ± 0.04 0.72 0.40 0.56
B 0.38 1.14 0.57 0.47 ± 0.02 0.60 0.34 0.47
C 0.057 1.49 0.69 0.57 ± 0.07 0.81 0.46 0.64
D 0.25 2.18 0.83 0.63 ± 0.04 0.80 0.39 0.60
E 0.18 2.31 0.84 0.63 ± 0.04 0.86 0.41 0.63

Table 3. Comparison of βexp (experiment) with βth (theory) for various profiles.

3.4. Results for the shift and comparison with other techniques

The results for the normalized shift β for the profiles described in table 1 are
displayed in table 3 for the cases of a flow parallel (βth‖) and perpendicular (βth⊥) to
the corrugations. As expected, it is observed that βth‖ is significantly larger than βth⊥,
that is the parallel flow penetrates the corrugations more easily. Indeed, for the flow
perpendicular to corrugations, it is expected that a recirculation or dead water region
exists in the bottom part.

The velocity of the flow parallel to the corrugations is harmonic and a solution may
also be obtained using the classical complex-variable technique. We used Schwarz–
Christoffel conformal mapping to transform the corrugation profile over a period to
a line segment, as done by Bechert & Bartenwerfer (1989) for other profiles. Using
this technique, we recover exactly the same results as with the expansion method of
the preceding sections. As anticipated above, it is also found that changing the shape
of the lower flat part does not alter much the final result for βth‖.

The flow perpendicular to corrugations can in principle be obtained with a complex-
variable technique, although with more difficulty. Here, as a check, we used the
commercial FEMLAB finite element software to recalculate the flow velocity of a
shear flow perpendicular to the profiles described in table 1. We used a box with
dimension 50λ and fitted the velocity profile with a straight line in the region [25λ, 50λ]
in order to obtain βth⊥. The results for βth⊥ are practically the same as in table 3;
only the last digit changes for some of the profiles. Flow fields were also plotted
from the results of the finite element calculation and a typical case, namely for profile
A, is shown in figure 8 (only one half of the profile). The discontinuous line shows
the position of the equivalent smooth plane; both our theoretical result and the
ones obtained with FEMLAB are superimposed. In the lower part of the profile, the
recirculation region appears clearly (dead-water area) as anticipated in the previous
calculation in § 3.1.

4. Drag force on a sphere approaching an anisotropic slip plane
Consider a sphere moving with velocity U normally to a rough wall with periodic

corrugations in one dimension. This wall is represented by an anisotropic slip plane
W at z = 0, i.e. a plane on which two different slip lengths bx, by apply in two
principal perpendicular directions x and y. By assumption, these slip lengths are
much smaller than the sphere radius a and the gap d between the sphere and the
wall. We then introduce the small parameter ε = Sup(bx, by)/Inf(a, d). In this model,
the velocity along z is zero on the slip plane; like the boundary conditions in the x-
and y-directions, this condition should be understood in an average sense.

Using the Lorentz reciprocal theorem, an expression for the drag force on the
sphere is obtained in § 4.1, in terms of an integral on the plane. It is then shown in
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Figure 8. Streamlines for a shear flow perpendicular to the corrugations; example case of
profile A. The minimum value of the stream function found in the centre of the recirculation
region is ψmin = −0.00624 and displayed values of the stream function are: ψ = −ψmin ×
[−0.8, −0.6, −0.4, −0.2, 0, 0.2, 2, 20, 40, 100, 200, 400, 600, 800]. The thick dashed line shows
the position of the equivalent smooth plane.

§ 4.2 that this expression may be written for the drag on a sphere close to an effective
plane on which the no-slip condition applies; this plane is displaced from the slip
plane by (bx + by)/2.

4.1. Expression for the drag force as an integral on the slip plane

From the assumption of small slip lengths, the fluid velocity v for the flow around
the sphere may be written as a perturbation solution v = v0 + v1, where v0 is the fluid
velocity for a sphere moving with velocity U normally to a no-slip plane located at
the same position z = 0 as the actual slip plane, and v1, the perturbation due to slip, is
such that |v1| � |v0|.

To summarize, the boundary conditions are the following:
(i) on the sphere S: v = U; v0 = U;
(ii) on the plane W :

vx = bx

∂vx

∂z
; vy = by

∂vy

∂z
; vz = 0; v0x = v0y = v0z = 0.
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Let σ 0, σ 1 be the stress tensors corresponding to v0, v1, respectively. Now apply the
Lorentz reciprocal theorem to the flow fields (v0, σ 0) and (v1, σ 1):∫

S+W

v0 · σ 1 · n dS =

∫
S+W

v1 · σ 0 · n dS (4.1)

where n is the unit vector along z. From the boundary conditions, the integral on
the left-hand side reduces to U · F1, where F1 is the contribution from the flow field
perturbation (v1, σ 1) to the drag on the sphere. Then, from the boundary conditions,
and the form of the perturbation solution, we obtain the result that, on the plane W ,

v1x = bx

∂v0x

∂z
+ o(ε); v1y = by

∂v0y

∂z
+ o(ε); v1z = 0

so that the integral on the right-hand side of (4.1) gives, to order ε,

bx

∫
W

∂v0x

∂z
[σ 0 · n]x dS + by

∫
W

∂v0y

∂z
[σ 0 · n]y dS.

Since the flow field (v0, σ 0) is axisymmetric, these two integrals on W are equal and
this result may be rewritten as

bx + by

2

∫
W

{
∂v0x

∂z
[σ 0 · n]x +

∂v0y

∂z
[σ 0 · n]y

}
dS.

From the continuity condition ∇ · v0 = 0 and the no-slip boundary condition for v0 on
W , ∂v0z/∂z = 0 there, so that we can write the result from the reciprocal theorem (4.1)
as

U · F1 =
bx + by

2

∫
W

∂v0

∂z
· σ 0 · n dS + o(ε). (4.2)

4.2. Equivalent no-slip plane

In this subsection, we write an expression for the drag force on a sphere centred at a
distance l + δl from a no-slip plane, in terms of the drag force when the distance is l.
The simple formula obtained here complements the preceding result and allows us to
find an equivalent no-slip plane.

Consider the following flow fields:
(i) (v0, σ 0) with boundary conditions
on the sphere S: v0 = U;
on the plane z = 0: v0 = 0.
(ii) (v′, σ ′) with boundary conditions
on the sphere S: v′ = U;
on the plane z = −δl: v′ = 0.

Let F0(l) and F0(l + δl) be the force on the sphere for these two flow fields,
respectively.

Applying the Lorentz reciprocal theorem using the sphere S and the plane P at
z = −δl for the flow boundaries∫

S+P

v0 · σ ′ · n dS =

∫
S+P

v′ · σ 0 · n dS. (4.3)

Applying the boundary conditions, we obtain

U · [F0(l + δl) − F0(l)] = −
∫

P

v0 · σ ′ · n dS.
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Dividing by δl and letting δl → 0, this becomes

U · dF0(l)

dl
=

∫
W

∂v0

∂z
· σ 0 · n dS (4.4)

where W represents the plane z = 0 as in the preceding subsection.
We remark that the integral in the right-hand side is the same as in (4.2) so that

the result for the drag force on a sphere approaching an anisotropic slip plane may
now be written in a simpler way:

U · [F0(l) + F1] = U ·
[

F0(l) +

(
bx + by

2

)
dF0(l)

dl

]
+ o(ε)

= U · F0(l + (bx + by)/2) + o(ε).

Thus, omitting terms of higher order in ε, the projection along z of the force is

F = F0

(
l +

bx + by

2

)
.

That is, the slip plane at a distance l from the sphere centre is equivalent to a no-slip
plane at a distance l + (bx + by)/2. The effective slip length is thus the average of the
slip lengths in the two principal perpendicular directions. This result is applied in
particular to our problem of a corrugated wall. Using the equivalence introduced in
equations (1.2) and (1.3), the effective shift length for the corrugated wall is the average
of the shift lengths for the motion parallel and perpendicular to the corrugations;
using the normalized quantities, with a subscript th to denote the theoretical results:

βth = 1
2
(βth‖ + βth⊥). (4.5)

5. Comparison of the experimental results with the model and discussion
The comparison of experimental data with the model is presented in table 3.

Theoretical values of the normalized shift are those for the flow parallel to the
corrugations βth‖, perpendicular to the corrugations βth⊥ and the effective shift βth,
equation (4.5). The error indicated for β is estimated by adding up the error from the
range of measurements (from column 6 in table 1) to δβ/2 (from column 7 in table 1).

For profiles A, B and E, theoretical results for β are quite close to the average
experimental values. For profile D, βth is within the experimental error bar for βexp .

For profile C, βth is at the upper bound of the experimental error bar, which is
larger than for the other profiles. This may be interpreted as follows. The process
for obtaining the βexp involved a matching far from the wall, in the region where
the precision is lower, as explained in § 2. The experimental error may then be
somewhat larger than for the other profiles. Moreover, since the profile is sharp and
the wavelength is large, there is a lower probability that the sphere would fall on the
tip, compared with the other profiles, so that the resulting error is δβ rather than
δβ/2 in this case. It is also observed that for both profiles C and D, the bottom flat
part of the profile presented in table 1 is such that the dimensionless value of B is
larger than for the other profiles. Recall that the theoretical value βth was calculated
using the assumption that the profile is symmetrical, thus adjusting the bottom flat
part B to the upper flat part T . Then, in particular when λ is large, i.e. for profile
C, the flow in the lower part of the groove may be responsible for the slightly lower
quality of the matching of the theoretical model.
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The theoretical description of the sharp wedges using a Fourier series with a few
cosines may also be questioned. The finite elements numerical calculation presented
in § 3.4 considered sharp angles and it was pointed out that the results for βth

are practically the same (only the last digit may change). On the other hand the
experimental profiles, as shown in the example micrograph of figure 4, do not have
very sharp angles and this may be improved in future experiments.

6. Conclusion
The anisotropy of the wedge-shaped groove patterns considered in this paper gives

different effective slip boundary conditions in the two perpendicular directions. The
two corresponding slip lengths were calculated from solutions of the Stokes equations
for creeping flow as series in terms of the slope of the grooves. From the linearity of
the Stokes equations, the cases of flows along and perpendicular to the grooves were
considered separately. The slip length was found to be larger in the former case. The
force on a sphere approaching such a surface perpendicularly was then obtained on the
basis of the preceding results and of the Lorentz reciprocity theorem, the wavelength
of the pattern being assumed to be much smaller than the gap between the sphere
and the surface. It was demonstrated that the surface is equivalent to an effective
smooth plane that is displaced from the top of the corrugations by a slip length
that is the average of the calculated slip lengths in the two perpendicular directions.

We measured the motion of a spherical particle settling towards some model
surfaces made by machining various grooves. Using laser interferometry, the particle
displacement was obtained with an accuracy of 0.1 µm, even for very small gaps
between the particle and the wall. It was then observed that, a few particle radii away
from contact, the particle motion is equivalent to that towards an effective smooth
plane. The position of this smooth plane (that also represents the slip length) could
then be obtained by matching the particle motion with that for a particle moving
towards a plane wall. Theoretical results for the slip length were found to be in good
agreement with experiment.

More precise data could be obtained with the same interferometric technique by
using other types of profiles with a well-defined geometry on the microscale. A faster
data acquisition system would also improve the precision in the fast part of the
trajectory, when the sphere is far from the wall. This is important for the matching
used to determine the slip length.

It may be remarked that the present theoretical analysis for creeping flow may be
used for larger Reynolds number provided that the gap between the sphere and the
wall is small enough compared with the sphere radius, so that the flow field in the gap
is in the lubrication regime. Moreover, from the above assumptions, the wavelength of
grooves should be small compared with the gap width. Thus, this wavelength should
be very small compared with the sphere radius. The same measurement technique
may also be used for this case, provided that the data acquisition system is fast
enough to record a comprehensive set of interferometric data.
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