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Starting from the second equilibrium equation in the BBGKY hierarchy under the Kirkwood
superposition closure, we implement a new method for studying the asymptotic decay of
correlations in the hard disk fluid in the high density regime. From our analysis and complementary
numerical studies, we find that exponentially damped oscillations can occur only up to a packing
fraction ���0.718, a value that is in substantial agreement with the packing fraction, ��0.723,
believed to characterize the transition from the ordered solid phase to a dense fluid phase, as inferred
from Mak’s Monte Carlo simulations �Phys. Rev. E 73, 065104 �2006��. Next, we show that the
same method of analysis predicts that the exponential damping of oscillations in the hard sphere
fluid becomes impossible when �=4n��3�1+H�1���34.81, where H�1� is the contact value of the
correlation function, n is the number density, and � is the sphere diameter in exact agreement with
the condition, ��34.8, which is first reported in a numerical study of the Kirkwood equation by
Kirkwood et al. �J. Chem. Phys. 18, 1040 �1950��. Finally, we show that our method confirms the
absence of any structural transition in hard rods for the entire range of densities below close
packing. © 2010 American Institute of Physics. �doi:10.1063/1.3491039�

I. INTRODUCTION

The second equilibrium equation in the BBGKY hierar-
chy establishes an exact relation between the pair and triplet
number density. Invoking the Kirkwood superposition ap-
proximation yields a nonlinear integral equation for the pair
correlation function.1,2 Interest in studying the analytic and
numerical properties of the resulting Yvon–Born–Green
and/or Kirkwood equation began with Kirkwood and
co-workers,3–6 and continues to the present day.7 Of particu-
lar interest is whether the closed equation provides an essen-
tially correct description of the fluid phase, and whether a
�possible� change in the analytic character of the solutions
signals a change from the fluid phase to a solid phase. It is to
the latter question that the methods of the present contribu-
tion are directed.

One approach to explore analytically the possibility of a
phase transition from the fluid phase to the solid phase is to
mobilize the theory of nonlinear integral equations, focusing
on theorems that establish the necessary and sufficient con-
ditions for the existence and uniqueness of solutions, and
bifurcation points.8–12 An alternative approach is to introduce
a moment expansion by means of which the Yvon–Born–
Green �YBG� equation can be cast into a nonlinear differen-
tial equation which may be used to analyze long-range
correlations.13,14 The present contribution is centered on a
new method of studying the asymptotic decay of correla-
tions, which was first introduced in Ref. 15 for the hard
sphere fluid.

In this paper, we focus on the hard disk fluid. The
method leads to the prediction of a structural transition in

both the hard sphere and hard disk fluids, and no transition in
the hard rod system �as must be the case�. We shall show that
the values of packing fractions at which the predicted tran-
sitions occur are in agreement with estimates derived from
numerical solution of the Kirkwood equation6 and recent
Monte Carlo simulations.16

II. THE SECOND EQUILIBRIUM HIERARCHY
EQUATION FOR HARD DISKS

We consider a gas of hard disks of diameter � at thermal
equilibrium with constant number density n and temperature
T. Let n2�r12� denote the number density of pairs of particles
situated at distance r12= �r1−r2�. Using the fact that n2�r12�
=0 for r12��, we introduce a dimensionless function y2�r12�
defined by

n2�r12� = n2��r12 − ��y2�r12� , �1�

where � is a unit step function.
We assume that n2�r12�→n2 when r12→�. The two-

particle dimensionless correlation function h2�r12� is then de-
fined by the cluster decomposition y2�r12�=1+h2�r12�, so that

n2�r12�
n2 = ��r12 − ���1 + h2�r12�� , �2�

h2�r12� is thus supposed to satisfy the asymptotic condition

lim
r12→�

h2�r12� = 0. �3�

The second equilibrium YBG hierarchy equation estab-
lishes an exact relation between n2�r12� and the reduced
three-particle number density n3�r1 ,r2 ,r3�. Introducing the
excluded volume factor we write the three-particle density asa�Electronic mail: jaroslaw.piasecki@fuw.edu.pl.
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n3�r1,r2,r3� = ��r12 − ����r13 − ��

	��r23 − ��n3y3�r12,r13,r23� , �4�

The function n3 depends only on the distances rij = �rij�= �ri

−r j�, and is a symmetric function of the three variables
r12,r13,r23. In the case of hard disks y2 is related to y3

through the second YBG hierarchy equation �see Appendix
A�

d

dr
y2�r� = n�� d�̂�r̂ · �̂����r − ��̂� − ��

	y3�r,�, �r − ��̂�� , �5�

where �̂ and r̂ are unit vectors ��̂ � = �r̂�=1. Putting r̂ · �̂
=cos
 we rewrite Eq. �5� in an explicit form

d

dr
y2�r� = n��

0

2�

d
 cos
 y3�r,�,�r2 − 2r� cos
 + �2�

	��r − 2� cos
� . �6�

When writing Eq. �6�, the equality

���r − ��̂� − �� = ��r − 2� cos
� ,

has been used.
The rigorous relation �6�, which is valid for r��, will

be the starting point for subsequent considerations.

III. THE KIRKWOOD SUPERPOSITION
APPROXIMATION

The Kirkwood superposition approximation consists in
replacing in Eq. �6� the three-particle density by the product
of two-particle densities corresponding to three different
pairs of particles

y3�r,�, �r − ��̂�� → y2�r�y2���y2��r − ��̂�� . �7�

Adopting Eq. �7� leads to a closed equation

d

dr
y2�r� = n�y2�r�y2���

	�
0

2�

d
cos
 y2��r2 − 2r� cos
 + �2�

	��r − 2�cos
� . �8�

It is convenient to rewrite Eq. �8� using the dimensionless
distance x=r /�. Denoting by Y�x�, the function

Y�x� = y2�x�� , �9�

we find that it satisfies the nonlinear equation

d

dx
ln Y�x� = n�2Y�1��

0

2�

d
 cos
 Y��x2 − 2x cos
 + 1�

	��x − 2 cos
� , �10�

valid in the region x�1. Equation �10� represents the closure
of the YBG hierarchy corresponding to the superposition ap-
proximation.

Our aim is to derive from Eq. �10� the equivalent inte-
gral equation satisfied by the dimensionless correlation func-
tion

H�x� = Y�x� − 1. �11�

To this end, we insert Eq. �11� into Eq. �10� finding

d

dx
ln�1 + H�x��

= n�2�1 + H�1��	�
0

2�

d
 cos
 ��x − 2 cos
�

+ �
0

2�

d
 cos
 H��x2 − 2x cos
 + 1�

	��x − 2 cos
�
 . �12�

In order to derive an integral equation for H�x� we inte-
grate Eq. �12� over the spatial interval �x ,��. Using the for-
mulae

�
0

2�

d
��x − 2 cos
�cos
 = − 2��2 − x��1 − � x

2
�2

,

�13�

�
x

�

dz��2 − z��1 − � z

2
�2

= ��2 − x�−
x

2
�1 − � x

2
�2

+ arccos
x

2
� , �14�

we get

ln�1 + H�x�� = 2n�2�1 + H�1���I��x� + I���x�� ,

where

I��x� = ��2 − x�−
x

2
�1 − � x

2
�2

+ arccos
x

2
� , �15�

and

I���x� = −
1

2
�

x

�

dz�
0

2�

d


	cos
 ��z − 2 cos
 �H��z2 + 1 − 2z cos
� .

�16�

It turns out that the angular integration in the formula for
I���x� can be explicitly performed �the calculation is pre-
sented in Appendix B�. One eventually finds

I���x� = − �
x−1

x+1

ds��s − 1�sH�s�arccos� x2 + s2 − 1

2xs
� .

�17�

In this way, we arrive at an integral equation
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ln�1 + H�x�� = 2n�2�1 + H�1��

		��2 − x�−
x

2
�1 − � x

2
�2

+ arccos
x

2
�

− �
x−1

x+1

ds��s − 1�sH�s�

	arccos� x2 + s2 − 1

2xs
�
 , �18�

representing the superposition closure for the correlation
function H�x�.

Our method of determining H�x� is based on the fact that
the solution of Eq. �18� satisfying the boundary condition
limx→� H�x�=0 can be obtained numerically by iterations.
Note that we can rewrite Eq. �18� in the following form:

H�x� = L�H�x�� , �19�

where L is the integral operator given by

L�H�x�� � − 1 + exp�2n�2�1 + H�1��

		��2 − x�−
x

2
�1 − � x

2
�2

+ arccos
x

2
�

− �
x−1

x+1

ds��s − 1�sH�s�

	arccos� x2 + s2 − 1

2xs
�
� . �20�

The above integral equation for H�x� was solved by a stan-
dard Neumann method with successive over-relaxation.17

The iterative solutions are then given by

Hn = �1 − ��Hn−1 + �L�Hn−1� . �21�

The relaxation parameter � was taken to be 0.25. The
iterations were continued until successive values of H�x=1�
differed by less than =10−5, except in the vicinity of the
threshold surface fraction �� �see Sec. V B�, where the con-
vergence was slow and the iterations were discontinued at
=10−2.

Examples of the correlation functions obtained in this
way are presented in Fig. 1. As it is seen, the decay of H�x�

becomes slower as the surface fraction is increased, and a
pronounced peak structure appears.

IV. LINEARIZATION OF KIRKWOOD’S EQUATION:
THE RING APPROXIMATION

Before continuing the analysis based on Eq. �18�, let us
make a comment on the relationship between the superposi-
tion approximation and the ring approximation, well known
from the kinetic theory �see Ref. 15 and references given
therein�.

Originally, the ring approximation was applied to the
study of long wavelength hydrodynamic phenomena, and
was defined by neglecting in the second equation of the dy-
namical BBGKY hierarchy all contributions from the three-
particle correlations. The three-particle correlation function
h3 is defined by the cluster decomposition of the density y3

y3�r12,r13,r23� = 1 + h2�r12� + h2�r13� + h2�r23�

+ h3�r12,r13,r23� . �22�

Neglecting h3 is thus equivalent to the approximation

y3�r12,r13,r23� � 1 + h2�r12� + h2�r13� + h2�r23� . �23�

It is important here to note that while rejecting in the cluster
decomposition �22� the three-particle correlations we never-
theless retain in the hierarchy equation, the full excluded
volume factor represented by the product of unit step func-
tions �see definition �4��. In fact, this factor represents the
exact lowest order term in the density expansion of the three-
particle number density, and is of fundamental importance
for the correct description of hard disks at low densities.

Comparing Eq. �23� with the superposition formula

y3�r12,r13,r23� � �1 + h2�r12���1 + h2�r13���1 + h2�r23�� ,

�24�

we see that the ring approximation corresponds exactly to the
linearization of the Kirkwood theory in h2.

The linearized form of Eq. �12� reads

d

dx
H�x� = n�2	− 2��2 − x��1 − � x

2
�2

�1 + H�1� + H�x��

+ �
0

2�

d
cos
 ��x − 2 cos
�

	H��x2 + 1 − 2x cos
�
 . �25�

In order to derive an integral equation for H�x�, we pro-
ceed as before by integrating Eq. �25� over the spatial inter-
val �x ,��. The result reads

H�x� = 2n�2�J��x� + J���x�� ,

where

2 4 6 8
x1

2

H

FIG. 1. Pair correlation function H�x� for the surface fraction �=n��2 /4
=0.35 �dashed line� and �=0.59 �solid line�.
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J��x� = ��2 − x�	−
x

2
�1 − � x

2
�2

+ arccos
x

2
�

	�1 + H�1�� + �
x

2

dz�1 − � z

2
�2

�H�z��
 , �26�

and

J���x� = −
1

2
�

x

�

dz�
0

2�

d
 cos
 ��z − 2 cos
�

	H��z2 + 1 − 2zcos
� = I���x� ,

�see Eq. �16��. Using again the calculation presented in Ap-
pendix B, we eventually find

J���x� = − �
x−1

x+1

ds��s − 1�sH�s�arccos� x2 + s2 − 1

2xs
� .

�27�

In this way we arrive at an integral equation

H�x� = 2n�2��2 − x�	−
x

2
�1 − � x

2
�2

+ arccos
x

2
�

	�1 + H�1�� + �
x

2

dz�1 − � z

2
�2

�H�z��

− 2n�2�

x−1

x+1

ds��s − 1�sH�s�arccos� x2 + s2 − 1

2xs
� ,

�28�

representing the ring approximation. Equation �28� can again
be solved numerically by iterations, and is expected to yield
relevant results in the low density regime.

The comparison of the results obtained with the full
Kirkwood approximation and its linearization is presented in
Fig. 2. Defining the surface fraction � as

� = n�
�2

4
, �29�

we plot here the compressibility factor Z��� given by

Z��� =
p

nkT
= 1 +

�

2
n�2�1 + H�1�� = 1 + 2��1 + H�1�� ,

�30�

where the contact value H�1� is also a function of �. For
comparison, we include here Z��� dependence as predicted
by the scaled particle theory �SPT�18

ZSPT��� =
1

�1 − ��2 . �31�

As it is seen, the iteration results agree with the SPT predic-
tions up to approximately �=0.4.19 For larger packing frac-
tions, the Kirkwood approximation tends to underestimate
the compressibility factor, whereas the ring approximation
overestimates it.

V. ASYMPTOTIC DECAY OF CORRELATIONS:
PREDICTING A STRUCTURAL TRANSITION

A. Breakdown of the method used for attractive
interactions

The fundamental information concerning the internal
structure of the system is contained in the spatial dependence
of correlations. In particular, the law governing the
asymptotic vanishing of correlations is of primary impor-
tance.

In order to determine the behavior of H�x� at large dis-
tances, it seems natural to follow the moment analysis pre-
sented in Refs. 13 and 14. The calculation would proceed as
follows.

For x�2, the Kirkwod equation �12� can be conve-
niently written as

d

dx
ln�1 + H�x�� = n�2�1 + H�1��� d�̂�x̂ · �̂�H��x − �̂�� .

�32�

When x�1, the power series expansion of H��x− �̂�� around
the point �x�=x yields nonzero contributions only from terms
involving odd powers of cos
= �x̂ · �̂�. The calculation up to
the third derivative of H yields the expansion

ln�1 + H�x��� = n�2�1 + H�1��

	�
0

2�

cos
	− cos
 H��x�

−
1

2
�cos
 − �cos
�3��H��x�

x
��

−
1

6
�cos
�3H��x� + ¯
 , �33�

where � denotes the derivative with respect to x.
Using the boundary condition limx→� H�x�=0 together

with the equalities

�
0

2�

d
�cos
�2 = �, �
0

2�

d
�cos
�4 =
3

4
� ,

and adopting for large distances the asymptotic formula

� � � � � �
�

�
�

�
�

�

� � � � �
�

�
� �

�
�
�
�

�

�

�

�

0 0.1 0.2 0.3 0.4 0.5 0.6
x0

5

10

Z

FIG. 2. Compressibility factor Z vs the surface fraction � for the full Kirk-
wood approximation �circles�, the ring approximation �squares�, and the
scaled particle theory �Eq. �31�, dashed line�.
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ln�1 + H�x�� � H�x� ,

we find a linear differential equation of the form

H��x� +
1

x
H��x� + �2H = 0, �34�

where

�2 = 8�1 +
1

n��2�1 + H�1��� � 0.

However, Eq. �34� is the equation for the Bessel function
J0��x�. The solution of Eq. �34� is thus an oscillating func-
tion whose amplitude decays as 1 /�x.

Unfortunately, the above result is in disagreement with
numerical predictions of exponentially damped oscillations.
Use of the moment expansion as developed in Ref. 13 leads
to erroneous results. Clearly one has to take into account the
whole infinite series in the expansion of H��x− �̂�� to get
reliable predictions. We have thus to give up this kind of
expansion, and look for a different approach.

In a broad outline, the failure of the moment expansion
developed in Refs. 13 and 14 to describe the structural tran-
sition in the hard disk fluid can be traced to the nature of the
governing intermolecular potential. The studies13,14 deal with
the description of correlations in the vicinity of the liquid-
vapor critical point, where attractive forces play a dominant
role. Using the moment expansion, one recovers at large dis-
tances the classical Ornstein–Zernike formula. The present
study deals with the fusion transition, where short-range, re-
pulsive forces play the critical role. The new method intro-
duced here �see Sec. V B� effectively accounts for the differ-
ence in the potential governing these two transitions and,
anticipating our later results, leads to an analytic prediction
of the packing fraction at which a structural transition occurs
in the hard disk �and hard sphere� fluid.

B. Prediction of a structural transition

Let us consider again the region x�2 where the Eq. �32�
holds. As limx→� H�x�=0, we can replace in Eq. �32� the
function ln�1+H�x�� by H�x�, and consider the equation

d

dx
H�x� =

A

2�
�

0

2�

d
 cos
 H��x2 − 2x cos
 + 1� , �35�

where

A = 2�n�2�1 + H�1�� .

We then use the expansion

�x2 − 2x cos
 + 1 = x − cos
 +
sin 
2

2x
+ ¯ , �36�

to arrive at the equation

d

dx
H�x� =

A

2�
�

0

2�

d
 cos
 H�x − cos
� , �37�

valid for x�1.
In order to determine the large x behavior of correla-

tions, we have thus to analyze the solution of Eq. �37�. We

notice that all derivatives of H�x� satisfy the same equation.
It is thus natural to consider H�x� as a linear combination of
exponential modes exp��x�, where � is a complex number.
The function exp��x� satisfies Eq. �37� provided � solves the
equation

� =
A

2�
�

0

2�

d
 cos
 exp�− � cos
� = − AI1��� , �38�

where I1��� is a modified Bessel function. The physically
acceptable solutions �=a+ ib are those with a negative real
part a�0 that assures the exponential damping of oscilla-
tions. The first root �with the smallest absolute value of a�
corresponding to the slowest decay of the correlation func-
tion is shown in Fig. 3. The values of ���� predicted with the
use of Eq. �38� are in good agreement with the decay of the
amplitude of H�x� determined by the iterative solution of
integral equation �19�. Plotting the absolute value of H�x� on
a logarithmic plot, and fitting it by the single mode �e��x, we
obtain values of �� that are slightly below those obtained by
solving Eq. �38�. For example, for �=0.3 we get ���−2.1
�cf. Fig. 4�, whereas the corresponding value of � for that
surface fraction is ��−2.02. Similarly, for �=0.55, we get,
respectively, ���−0.8 and ��−0.7. The fact that the values
of �� remain slightly below those of � can be understood by
noting that � corresponds to the slowest decaying mode,
whereas in the numerical data on H�x� we also see nonzero
contributions from other, faster decaying modes.

An interesting feature of the ���� dependence presented
in Fig. 3 is the fact that the root becomes purely imaginary at

4 8 12 16 20
A

�5

0

5

Re�Κ�,Im�Κ�

FIG. 3. The real part �solid line� and imaginary part �dashed line� of the root
of Eq. �38� corresponding to the slowest decaying mode.

2 4 6 8 10
x

10�10

10�8

10�6

10�4

0.01

1
H

FIG. 4. The absolute value of H�x� for �=0.3 together with a corresponding

fit of the form ae��x with ��=−2.1.
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A=A��15.1. This point can be made more precise by ana-
lyzing when Eq. �38� acquires a purely imaginary solution
�= ib. As I1�ib�= iJ1�b�, Eq. �38� implies the condition

J1�b�
b

=
1

2
�J0�b� + J2�b�� = −

1

A
, �39�

where the first equality follows from the recurrence relation
between Bessel functions Jn. The absolute minimum of the
sum of Bessel functions �J0�b�+J2�b�� equals �0.1323. The
necessary condition for the disappearance of damping has
thus the form

2

A
� 0.1323, or A = 2�n�2�1 + H�1�� � A�

�40�
A� = 15.1171 ¯ � 15.12.

The above inequality shows that the nature of correlations
could change for sufficiently high values of the surface frac-
tion � �Eq. �29�� occupied by hard disks. The determination
of the value of �� corresponding to the equality

A� = 8���1 + H�x = 1;���� = 15.12,

requires the knowledge of the contact value H�1� as a func-
tion of the surface fraction. We have studied this question
numerically. An accurate estimation of the precise value of ��

corresponding to A� is difficult because as we approach ��,
the iteration procedure demands an increasingly larger num-
ber of iterations to converge to a solution with the required
accuracy. Additionally, a computational domain over which
the solution is sought must also be progressively extended as
we approach ��, since the decay of H�x� is very weak there.
We estimated the value of �� by calculating A��� for several
values of � in the range of 0.5���0.6 and then extrapolat-
ing to larger values of �, as illustrated in Fig. 5. In this way,
we obtain the estimate of ���0.622.

Let us close this section with a comment on the ring
approximation. In order to find the asymptotic behavior of
correlations satisfying Eq. �28�, it is sufficient to consider the
linearized version of Eq. �35�. However, this is equivalent to
the replacement of the factor A=2�n�2�1+H�1�� by
2�n�2=8�. The inequality �40� becomes then

8� � 15.12, or � � 1.89, �41�

representing for � a physically impossible condition �beyond
close packing�. The ring approximation is unable to describe
a qualitative change in the hard disk correlation function. For
any accessible surface fraction, it predicts exponentially
damped oscillations.

C. Structural transition in a hard sphere fluid

The integral equation satisfied by the correlation func-
tion H�x� of a three-dimensional hard sphere fluid for x�1
has been analyzed in Ref. 15 within the ring approximation.
The frequencies of the exponential modes exp��x� describing
the long distance decay of correlations are in this case solu-
tions of the equation �see Eq. �22� in Ref. 15�

�2 = 4n��3� sh���
�

− ch���� . �42�

In passing to the Kirkwood superposition approximation, we
need only to replace the factor 4n��3 in the above equation
by �=4n��3�1+H�1��. This fact follows from the previ-
ously made remark that the ring approximation represents
exactly the linearized Kirkwood theory. In order to determine
the range of values of ��0 beyond which the exponential
damping becomes impossible we explore the possibility of
vanishing of the real part a of the complex number �=a
+ ib. Equation �42� reduces then to

b2 = ��cosb −
sin b

b
�, or � =

b3

b cosb − sin b
. �43�

The absolute minimum of the function

y�b� =
b3

b cosb − sin b
, �44�

in the region where y�b��0 equals

ymin = 34.81 ¯ . �45�

Hence, for ��34.81, Eq. �42� acquires purely imaginary so-
lutions and the exponential damping vanishes. It is quite re-
markable that 60 years ago, Kirkwood et al.6 concluded from
numerical studies of the integral equation for H�x� that when
� exceeds 34.8 the correlation function H�x� is not integrable
anymore. Our method provides a simple analytic confirma-
tion of this result.

D. The hard rod fluid: Testing the method

The rigorous calculation of the two-particle correlation
function for hard rods �see e.g., Ref. 20� shows that its struc-
ture corresponds to exponentially damped oscillations at all
possible densities. One finds

n��H�x� + 1� = ��
k=0

�

��x − �k + 1��
�k�x − �k + 1��k

k!

	exp�− ��x − �k + 1��� , �46�

where

�

�

�

�

�

�

�

�

�

�

�

0.5 0.52 0.54 0.56 0.58 0.6 0.62
x
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13
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16
A

FIG. 5. The extrapolation of A��� dependence. The points correspond to the
values of A obtained from the iterative procedure, and the dashed line is
given by A=A��15.12.
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� =
n�

1 − n�
.

In fact, the superposition law turns out to be exact for a
one-dimensional hard rod fluid,20 and the second equation of
the equilibrium hierarchy takes a particularly simple form

H��x� = n����x − 2�H�x − 1� − H�x� − ��2 − x��

	�H�1� + 1� . �47�

The formula �46� represents the solution of Eq. �47�. When
x�2, we find

H��x� = n��H�x − 1� − H�x���H�1� + 1� . �48�

Applying the same method as that used for hard disks, we
look for exponential modes exp��x� solving Eq. �48�. The
complex frequency � satisfies the equation

� = n��H�1� + 1��e−� − 1� = ��e−� − 1� . �49�

It turns out that all solutions of Eq. �49� can be expressed in
terms of the multivalued Lambert W function. Indeed, the
special function W�z� is defined on the complex plane by the
equation

z = W�z�exp�W�z�� . �50�

But, Eq. �49� can be rewritten as

�� + ��exp�� + �� = � exp � . �51�

It follows that

� = − � + W�� exp �� . �52�

The principal branch of Lambert function W0�z� obeys
W0�xex�=x for real x, thus �=0 for that branch. However,
other branches Wn�z� with n�0 give values of �n with a
negative real part corresponding to the decay of the correla-
tion function. The first five solutions, �n��� ,n=1, . . . ,5, are
presented in Fig. 6 as functions of n�=� / �1+�� �modes with
larger n decay faster�.

The negative real part of �n , n�0 is different from zero
for any accessible density, and vanishes only at close packing
where n�=1. There are thus no purely imaginary solutions
�= ib of Eq. �49�. This confirms the correctness of the
method, showing the absence of any structural transition in
one dimension over the whole range of densities below close
packing.

As illustrated in Figs. 7 and 8, the correlation function
H�x� rapidly approaches the asymptotic form given by the
slowest decaying mode Ae�1x. Note that not only the expo-
nential decay rate but also the oscillation period of the func-
tion agree with that given by Ae�1x starting from x�3�. This
shows that the other modes play a negligible role in influ-
encing the behavior of H�x� for intermediate and large x
values, thus lending further support to our approach of fo-
cusing on the slowest decay mode only.

VI. DISCUSSION AND CONCLUSIONS

The question of whether a system of particles interacting
via a purely repulsive potential �only� can undergo a phase
transition has been under continuous investigation since first
posed and addressed by Kirkwood over 70 years ago. For a
system of hard disks, the first numerical evidence was pro-
vided by Alder and co-workers.21,22 The data reported in Ref.
21 showed that the hard disk freezing transition occurred at a
density smaller than the density of closest packing �corre-
sponding to an area fraction of �0=� /�12=0.906 90�, and
suggested that the liquid to solid transition was first order.
The most recent Monte Carlo simulations �on a system of
4	106 disks� of Mak16 suggest that melting consists of a
continuous transition from the ordered solid to an intermedi-
ate �hexatic� phase23–27 at a packing fraction �=0.723, and

0.2 0.4 0.6 0.8 1
ns

�8

�6

�4

�2

0
Κ

FIG. 6. The real part of �n=−�+Wn�� exp ��, n=1, . . . ,5 �top to bottom� as
a function of n�=� / �1+��.

2 4 6 8
x

0

1

2

3

4

5
H

FIG. 7. The exact form of the correlation function for hard-rod fluid �solid�
at n�=0.8 and its asymptotic form H�x�=Ae�x with ���� calculated using
Eq. �52�.
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FIG. 8. The absolute value of H�x�−1 for hard rod fluid �solid� at n�=0.8
and the exponential asymptote H�x�=AeRe���x.
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either a very weak first-order or a continuous transition from
the intermediate phase to the fluid phase at a packing fraction
�=0.699.

From the analysis and numerical evidence presented in
Sec. V B, we have calculated the area fraction � at which a
structural change in the hard disk fluid can take place, viz.,
���0.622. Converting this area fraction to a packing fraction
gives ��=�� /�0�0.718. When compared to the estimate re-
ported by Mak for the transition from the ordered solid phase
to a dense fluid phase, ��0.723, one finds the two values
are in substantial agreement. Also of interest is our predic-
tion of a structural transition in a system of hard spheres. As
noted in Sec. V C, Kirkwood, Maum and Alder6 found that
for values of ��34.8, no solutions of the YBG and Kirk-
wood integral equations exist for which, in their notation,
x2�g�x�−1� is integrable. We find that the value of � beyond
which exponential damping becomes impossible is �
=34.81. Hence, the results for hard spheres appear to be in
exact agreement. When we consider a system of hard rods,
the analytic method developed here confirms the absence of
any structural transition in d=1 for the entire range of den-
sities below close packing �a result that was already known
to Rayleigh �Ref. 28� and Korteweg �Ref. 29��.

Our prediction of a structural phase transition is based
on the analysis of an integral equation whose derivation as-
sumed sufficiently fast decay of correlations. If a phase be-
comes ordered and correlations do not decay, the integral
equation to which our method was applied does not hold.
This can preclude the possibility of studying a region where
a new equilibrium phase may be formed. In particular, the
identification of a region intermediate between melting and
freezing �see following paragraph� and the characterization
of an ordered �solid� phase is certainly beyond the scope of
our approach. To study these questions within the Kirkwood
superposition approximation, one must go back to the origi-
nal YBG hierarchy equation �Kirkwood’s closure does not
assume the rapid decay of correlations�.

To develop this point further, there are three structural
aspects of the hard disk transition that are not captured by the
method developed in this paper. First, we find no evidence
for the existence of an intermediate, or hexatic, phase pre-
dicted by the Kosterlitz, Thouless, Halperin, Nelson, and
Young �KTHNY� theory of d=2 melting,23–27 and supported
by Mak’s Monte Carlo simulations. Second, we find no evi-
dence for the development of a shoulder on the second maxi-
mum of disk radial distribution function in the vicinity of the
freezing transition ��=0.686� reported by Truskett et al.30

based on molecular dynamics simulations, and later corre-
lated with structural rearrangements occurring at increasing
disk density.31–34 Third, we cannot confirm the existence of
regions of fivefold coordination in the dense fluid phase, first
predicted by Bernal35–37 based on his “ball and spoke” model
of a random assembly of hard-core particles, although it has
been conjectured that the hexatic phase might be correlated
with randomly dispersed regions of 5-, 6-, and 7-member
disk clusters forming percolated tessellations that span the
d=2 space.38

The larger point, however, relates to the original Kirk-
wood prediction, viz., that a system of particles interacting

via purely repulsive forces, here hard disks but also hard
spheres, can undergo a phase transition. Although not widely
accepted at first, following the work of Onsager on the
isotropic-nematic transition in a d=3 dimensional system of
thin hard rods,39 there developed a gradual realization that a
phase transition can be entropy driven. As elaborated by
Frenkel,40 in hard-core systems the entropy in the ordered
crystalline phase is actually larger than in the fluid phase;
quoting directly, “the entropy decreases because the density
is no longer uniform in orientation or position, but the en-
tropy increases because the free-volume per particle is larger
in the ordered than in the disordered phase.” The present
contribution provides further evidence for the essential cor-
rectness of Kirkwood’s insight.

APPENDIX A: DERIVATION OF EQ. „5… FROM THE
BBGKY HIERARCHY

Consider a gas of hard disks of mass m and diameter �.
We denote by j��r j ,v j�, j=1,2 , . . ., the one-particle state in
which a disk has position r j and velocity v j. The average
number density of s-particle clusters occupying at time t the
s-particle state �1,2 , . . . ,s� is called the s-particle reduced
distribution fs�1,2 , . . . ,s ; t�.

The dynamical evolution of the hard disk fluid is de-
scribed in the thermodynamic limit by the BBGKY hierarchy
equations. The second of them establishes a relation between
f2 and f3

� �

�t
+ v1 ·

�

�r1
+ v2 ·

�

�r2
− T̄�1,2�� f2�1,2;t�

=� d3�T̄�1,3� + T̄�2,3��f3�1,2,3;t� . �A1�

The effects of binary collisions are described by the operator

T̄�i , j�

T̄�i, j� = �� d�̂v12 · �̂��vij · �̂����rij − ��b�̂

− ��rij + ��� . �A2�

Here the Dirac �-distributions restrict the distances �rij� be-
tween the centers of the disks at the moment of impact to
their diameter �= ���. The vector �=��̂ is oriented perpen-
dicularly to the surface of colliding disks at the point of
impact. The action of the operator b�̂ consists in replacing
the velocities vi ,v j by their precollisional values vi� ,v j� cor-
responding to the inverse elastic collision. As in elastic col-
lisions the kinetic energy is conserved, in the case of prod-
ucts of Maxwell distributions


�v� = � m

2�kBT
�exp�− mv2/2kBT� ,

we find

b�̂�
�vi�
�v j�� = 
�vi��
�v j�� = 
�vi�
�v j� . �A3�

Hence, in the case of equilibrium reduced distributions
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fs�1,2, . . . ,s� = ns�r1,r2 ¯ rs�
�v1�
�v2� ¯ 
�vs� , �A4�

Eq. �A1� takes the form

�v1 ·
�

�r1
+ v2 ·

�

�r2
− �� d�̂v12 · �̂��rij − ���

	n2�r12�
�v1�
�v2�

= �� dr3dv3� d�̂�v13 · �̂��r13 − ��

+ v23 · �̂��r23 − ���n3�r12,r13,r23�

	
�v1�
�v2�
�v3� . �A5�

We can divide both sides of Eq. �A5� by the product

�v1�
�v2�, and perform the integration over the v3 variable.
Moreover, we introduce explicitly the excluded volume fac-
tors by using Eqs. �1� and �4�. The hierarchy equation be-
comes

�v12 ·
�

�r12
− �� d�̂v12 · �̂��r12 − �����r12 − ��y2�r12�

= n���r12 − ��� dr3� d�̂��v1 · �̂��r13 − ��

	��r23 − �� − ��y3�r12,�,r23�

+ v2 · �̂��r23 − ����r13 − ��y3�r12,r13,��� . �A6�

We now use the identity

v12 ·
�

�r12
��r12 − �� � �� d�̂v12 · �̂��r12 − �� , �A7�

which reduces the left hand side of Eq. �A6� to

L = ��r12 − ��v12 ·
�

�r12
y2�r12� . �A8�

On the right-hand side owing to the presence of
�-distributions, we can perform integration over variable r3,
thus obtaining

R = n���r12 − ��� d�̂v12 · �̂����r12 − ��� − ��

	y3�r12,�, ��r12 − ���� . �A9�

As the equality L=R must hold for any value of the relative
velocity v12, we finally find �when r12���

dy2�r12�
dr12

= n�� d�̂r̂12 · �̂���r12 − �� − ��

	y3�r12,�, �r12 − ��� , �A10�

which is Eq. �5� of Sec. II.

APPENDIX B: DERIVATION OF EQ. „17…

We perform here the angular integration in the contribu-
tion to the correlation function

I���x� = −
1

2
�

x

�

dz�
0

2�

d
 cos
 ��z − 2 cos
�

	H��z2 + 1 − 2z cos
�

= − �
x

�

dz�
0

�/2

d
cos
 ���z − 2 cos
�

	H��z2 + 1 − 2z cos
� − H��z2 + 1 + 2z cos
�� .

�B1�

Changing the order of integrations with the use of the
asymptotic decay of the correlation function we arrive at a
convenient formula

I���x� = − �
0

�/2

d
 cos
 �
x−cos


x+cos


ds��s − cos
�

	H��s2 + sin2 
� . �B2�

Putting then �=sin 
, we get

I���x� = − �
0

1

d�� ds��x + �1 − �2 − s���s − x + �1 − �2�

	H��s2 + �2���s − �1 − �2� . �B3�

We now introduce a new integration variable

z = �s2 + �2.

As zdz=sds, we find

I���x� = − �
0

1

d�� dz
z

�z2 − �2
H�z����z2 − �2

− �1 − �2����1 − �2 − �x − �z2 − �2��

= −� dz zH�z���z − 1�

	�
0

1

d�
1

�z2 − �2
���1 − �2 − �x − �z2 − �2�� .

�B4�

Here the inequality �1−�2� �x−�z2−�2� is equivalent
to

�z2 − �2 �
x2 + z2 − 1

2x
,

which leads to the formula

I���x� = −� dzzH�z���z − 1�

	�
0

1

d�
1

�z2 − �2
���z2 − �2 −

x2 + z2 − 1

2x
� .

�B5�

Putting �=z�, we find
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I���x� = −� dz zH�z���z − 1�

	�
0

1/z

d�
1

�1 − �2
���1 − �2 −

x2 + z2 − 1

2xz
� . �B6�

The change of the integration variable w=�1−�2 yields the
formula

I���x� = −� dz zH�z���z − 1�

	��1−1/z2

1 dw
�1 − w2

��w −
x2 + z2 − 1

2xz
�

= −� dz zH�z���z − 1�

	�
�x2+z2−1�/2xz

1 dw
�1 − w2

��1 −
x2 + z2 − 1

2xz
�

= −� dz zH�z���z − 1���1 − �x − z�2�

		�

2
− arcsin� x2 + z2 − 1

2xz
�
 . �B7�

Finally, we arrive at the result

I���x� = − �
x−1

x+1

dz zY�z���z − 1�arccos� x2 + z2 − 1

2xz
� ,

�B8�

used in Eq. �17�.
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