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Abstract The creeping flow along a periodic rough surface is calculated as a series
in the slope of the roughness grooves. On a scale much larger than the grooves, this
flow is equivalent to that over a smooth plane which is shifted from the top of the
riblets. The convergence of the series for the shift distance in term of the slope is
accelerated by use of Euler transformation and of the existence of a limit for large
slope. The case of a flow along the grooves is presented in detail. The result for the
shift is typically valid for a slope up to 2. A flow perpendicular to grooves can be
treated in a similar way. Asymptotic behaviour for large slope depends on the profile
shape.

Flow past a wall that is rough
Is a problem to do off-the-cuff;

When the surface is toothed,
It’s effectively smoothed,

By a mapping that’s complex enough.

1. Introduction
Modelling the flow of a viscous fluid along a rough surface is relevant

for various applications and for a better understanding of fundamental
problems like modelling the boundary condition of a porous material (see
e.g. Taylor 1971), reducing the shear stress of a turbulent boundary layer
as compared with that on a smooth surface (Bechert & Bartenwerfer
1989, Luchini, Manzo & Pozzi 1991).

The rough surface considered here has periodic corrugations with
wavelength λ along one dimension. The corrugation profile is symmet-
ric, but its shape is otherwise not restricted. Normalising distances with
λ/(2π), and using the notation shown in the figure, the conditions for
the profile f(x) are:
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(i) f(x+ 2π) = f(x) and (ii) f(x+ π) = −f(x)

A pure shear flow at infinity (viz. on a macroscopic scale) is applied
along the surface. The size of the roughness and the fluid velocity on that
scale are here assumed to be small compared with those on the macro-
scopic scale, so that the Reynolds number is small compared with unity
and the creeping flow equations apply. A major problem is to ascertain
an ”equivalent” boundary condition to be applied on the macroscopic
scale. That is, our goal is to show that the flow at infinity is equivalent
to a pure shear flow along a smooth plane located at a distance βλ/(2π)
below the top of the corrugations. Here, β denotes the normalised shift.

2. Earlier results
Two sets of problems may be considered: parallel flows and cross-flows

with respect to the grooves. Both are well documented.
For flows parallel to the grooves, the fluid velocity is harmonic, as ex-

plained below. Richardson (1971) calculated in particular by conformal
mapping and Schwarz-Christoffel transformation an equivalent slip ve-
locity for a flow along a row of parallel and equidistant thick semi-infinite
slabs (his formula 4.4). From that formula, we derive the following nor-
malised shift for semi-infinite plates of zero thickness1: β = 2 log 2.
Bechert & Bartenwerfer (1989) calculated flows along various profiles
(sawtooth, trapezoidal valleys, blade riblets viz. wall attached barri-
ers) by conformal mapping. Luchini, Manzo & Pozzi (1991) used the
numerical boundary element technique to solve flows along sinusoidal,
scalloped and sawtooth profiles. Wang (1994) calculated in particular
the flow along blade riblets by a collocation technique.

1Note that there is a misprint in the slip velocity he gives for that case (a factor 2 is missing),
but the result follows easily from his equation (4.4) which is correct. There is also a misprint
in Hocking’s (1976) quotation of Richardson’s (1971) result: a factor 4 is missing. The
same result as in (Richardson 1971) was obtained independently by Bechert & Bartenwerfer
(1989) from the limit of a sawtooth profile and again by Jeong (2001), using the Wiener-Hopf
technique. Jeong remarks he recovers Richardson’s (1971) result but without pointing out
the misprint in that paper. We have redone the calculation by conformal mapping as a check.
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For cross-flows, the Stokes equations have to be solved. Richard-
son (1973) calculated the cases of sinusoidal and scalloped profiles by
conformal mapping. Hocking (1976) provided an interesting series solu-
tion that he applied to the sinusoidal profile, improving over Richard-
son (1973). However his solution leads to numerical problems for large
slopes. He then calculated the case of an infinite slope, viz. of a row
of semi-infinite plates of zero thickness, by the Wiener-Hopf technique,
with the result2 : β = 0.5569. Luchini, Manzo & Pozzi (1991) ap-
plied the numerical boundary element technique to the same profiles as
for the parallel flows. Davis (1993) considered in particular the case of
blade riblets. He used a distribution of singularities over the riblets and
solved a Fredholm integral equation for this distribution. Wang (1994)
solved this problem independently by a collocation technique. Tuck &
Kouzoubov (1995) treated the sinusoidal profile using (Hocking 1976)
type of solution together with a collocation technique.

Our approach is to use a solution in the spirit of (Hocking 1976), to
expand as a series in the slope and to accelerate the convergence of the
series so as to extend its application range. This approach is in principle
valid for any profile with limited slope.

3. The expansion method
We will present here the case of a flow parallel to grooves, since the

formulation then is simpler. The velocity is normalised by κλ/2π, where
κ denotes the shear gradient at infinity. The velocity field is of the form
v(x, y)~ez, where ~ez denotes the unit vector perpendicular to the (x, y)
plane. Stokes equations then reduce to Laplace equation for v(x, y)
(this would more generally be true when starting from Navier-Stokes
equations). A general form of solution satisfying the condition at infinity
is

v(x, y) = y + d0 +
∞∑
n=1

dne
−ny cosnx. (1)

The equivalent smooth plane is at y = −d0 so that the normalised shift
is (cf. Figure):

β = s+ d0. (2)

2Unaware of this paper, other authors redid this calculation independently also with Wiener-
Hopf technique: (Luchini, Manzo & Pozzi 1991) with the result β = 0.556475; and (Jeong
2001) with the result β = 0.5567.
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The boundary condition on the rough surface y = sf(x) reads:

0 = sf(x) + d0 +
∞∑
n=1

dne
−nsf(x) cosnx. (3)

Note that all di coefficients in this equation are implicitly functions of
s. By changing s to −s, f to −f and using assumption (ii) one shows
that d2m’s are even in s while d2m+1’s are odd. Next one expands di’s
in powers of s, e.g. d0 takes the form

d0(s) =
∞∑
n=0

a0,ns
2(n+1). (4)

After substituting such expansions into (3) as well as expanding the
function e−nsf(x) cosnx into Fourier series, one ends up with a system
of linear equations for the coefficients ai,n. In particular, solving for a0,n

allows us to find the shift from (2) and (4).
Alas, the series (4) is slowly convergent. As an example, in Table 1 we

present the first ten a0,n’s for the profile f(x) = cosx. However, as coef-
ficients a0,n are of alternating signs, the convergence can be accelerated
by use of the Euler transformation (see eg. Knopp 1958)

a0,k → bk =
k∑

n=0

 k
n

a0,n−k. (5)

In this way, one obtains:

d0(s) =
∞∑
k=0

bk

(
s2

1 + s2

)k+1

. (6)

Now from the existence of the limit β(s → ∞) = β∞ and relation
(2) one infers that asymptotically do(s) → −s as s → ∞. Denoting
z = s2/(1 + s2), one gets:

∞∑
k=0

bkz
k+1 ∼ − 1√

1− z
, z → 1 (7)

so that asymptotically the coefficient bk should obey:

bk ∼
−1√
πk
, k →∞. (8)

This means that the asymptotic behaviour of the series under consider-
ation is the same as that of the polylogarithm function Li1/2 defined as
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(see Lewin 1981)

Li1/2(z) ≡
∞∑
k=1

zk√
k
. (9)

Once the asymptotic behaviour is known, we can make the convergence
faster by subtracting the asymptotic terms, i.e.

d0(s) =
∞∑
k=0

ck

(
s2

1 + s2

)k+1

− 1√
π

s2

1 + s2
Li1/2

(
s2

1 + s2

)
, (10)

with c0 = b0 and

ck = bk + 1/
√
πk for k = 1, 2, . . . . (11)

The above series is fast convergent for s ≤ 2. In Table 1 the coefficients
bn/2n+1 and cn/2n+1 are given for the profile f(x) = cosx. The factor
1/2n+1 corresponds to setting s = 1 in the series (6) and (10).

The cross-flow problem can be treated in an analogous way. In that
case, Stokes equations give the biharmonic equation for the stream func-
tion. The number of equations then is doubled.

Table 1. The coefficients a0,n, bn/2
n+1 and cn/2

n+1 for the profile f(x) = cosx as
defined by Eqs. (4), (5) and (11) respectively.

n a0,n bn/2
n+1 cn/2

n+1

0 −5. · 10−1 −2.5 · 10−1 −2.5 · 10−1

1 1.25 · 10−2 −9.375 · 10−2 4.730 · 10−2

2 −5.7292 · 10−2 −3.841 · 10−2 1.146 · 10−2

3 3.1033 · 10−2 −1.662 · 10−2 3.743 · 10−3

4 −1.8363 · 10−2 −7.437 · 10−3 1.379 · 10−3

5 1.1583 · 10−3 −3.403 · 10−3 5.389 · 10−4

6 −7.6990 · 10−3 −1.581 · 10−3 2.184 · 10−4

7 5.3257 · 10−3 −7.422 · 10−4 9.080 · 10−5

8 −3.8684 · 10−3 −3.511 · 10−4 3.850 · 10−5

9 2.8903 · 10−3 −1.671 · 10−4 1.660 · 10−5

10 −2.2217 · 10−3 −7.986 · 10−5 7.255 · 10−6

4. Summary
The use of series expansion was until now restricted, since numerical

problems arose when the slope was not small (Hocking 1976). This tech-
nique of accelerating the convergence of series thus provides an extension
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of such solutions in a domain of practical interest : results obtained for
the normalised shift are typically valid for s < 2.

Our numerical results also suggest that the asymptotic behaviour of
β(s) for s → ∞ may depend on the shape of the corrugation crests. In
case of the sawtooth profile one expects that β(s)−β∞ ∼ a/s whereas for
crests with vanishing first derivative the asymptotic behaviour is more
like β(s)− β∞ ∼ b/

√
s.

Finding the constants a and b would provide the β(s) dependence
on the whole s range, by combining the precise results of the previous
section with asymptotic expansions.
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