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Memory effects in collective dynamics of Brownian suspensions
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We obtain macroscopic equations for average suspension velocity and particle currentin a Brownian
suspension valid on long time scales for which the memory effects are important. The coefficients
in these equations depend solely on local properties of the medium. This formalism allows one to
obtain well-defined theoretical expressions for transport coefficients, free of the integrals diverging
with the size of the system. As an example, the expression for long-time collective diffusion
coefficient is derived and the memory contribution to this coefficient is estimated.
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I. INTRODUCTION actions. In fact zero wave number value of the memory func-
tion picks up a contribution from the motion of a system as a

Suspensions of interacting Brownian particles display avhole. This contribution depends on shape of the container
rich diversity of dynamical behavior which is the subject of and is given by integrals which diverge with the size of the
ongoing theoretical studies and experiments. However, theystem. To remove it, the equations should be supplemented
analysis of Brownian suspensions is hindered by complicatedy the condition that the system as a whole is at rest, i.e., the
nature of interparticle interactions which include directcontainer walls are kept immobilgero net flux condition
forces(such as Coulomb or van der Waas well as indi-  For incompressible fluid, this condition is equivalent to
rect interactions mediated by the solvent. These so-called
hydrodynamic interactions are truly complex: They are long
ranged, nonlinear in nature, and cannot be expressed as a
sum of two-body terms. Instead, they are characterized by
either the friction matriXwhich gives the forces and torques Herev(r) is equal to the fluid velocity if is inside the fluid
acting on the particles in terms of their velociliesr its  and coincides with the rigid body motion whereveties
inverse, mobility matrix, which relates velocities to the inside the particle. The proof of the above relation is given in
forces. Appendix A.

For a typical colloidal suspension, the time scales probed  Notably, a similar problem occurs when calculating the
by dynamic light scattering and sedimentation experimentflow field in a suspension with periodic boundary
are much longer than both the particle velocity relaxationconditions®!° Here the solution of Stokes equations contains
time (Tvzazpp/n) and the viscous relaxation timer,(  terms which diverge with the size of the system. To get rid of
=aZp¢/ 7). Herep, andp; are the particle and fluid density, them, one either supplements the equations with the rigid
respectivelya is the particle radius, ang is the viscosity of ~ wall boundary condition at the outer boundary of the syStem
the fluid. In this time regime, the main role in the suspensioror counterbalances the forces acting on particles with a force
dynamics is played by the Brownian motion. A characteristicdensity exerted on the fluid, so that the total force acting on
time scale of this process is a structural relaxation time, the suspension vanish&slt can be shown that both proce-
=a?/D,, i.e., the time required for a particle to diffuse over dures lead to the zero net flux conditi¢h1).
its radius D, is the single-particle diffusion coefficient It is not always easy to take the conditigh.1) into

In general, transport coefficients have different values iraccount while calculating transport coefficients. For a sedi-
the short-time regiméi.e., for timest short with respect to mentation coefficient such a procedure has been successfully
7 but still long with respect to botfr, and 7,) in which  carried out by NoZiees]* Felderhof;? and Noetinge?. They
particles have hardly moved and for long times>¢g) have obtained macroscopic equations for average suspension
when the relaxation of the distribution of particle positionsvelocity and sedimentation velocity with the coefficients de-
becomes important. This relaxation gives rise to the memorpending on local properties of the suspension only. The
effects described by an appropriate memory function. Thershape and size of the system enter the equations solely
the difference between short- and long-time transport coeffithrough the boundary conditions. As it has been pointed
cients can be expressed in terms of the small wave numbeout'>*3the situation here is reminiscent of that encountered
k—0, limit of the memory functiort:> However, this limitis  in the theory of dielectrics, which are described in terms of
often cumbersome to carry out and, in particular, it is notpolarizationP and electric fieldE. Even though the fields,
equal to thek=0 value of the memory function. This type of which are obtained by solving Maxwell's equations, are
discontinuity atk=0 is a common feature of calculations of strongly dependent on geometry of the system, the coeffi-
transport coefficients in suspensioms inseparably con- cients in the constitutive equatiorisuch as dielectric con-
nected with the presence of long-range hydrodynamic interstan} are local properties of the medium.

fv(r)dr=0. (1D
\%
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Our goal is to apply similar considerations to the analy-where X=(R{,R,, ... ,Ry\), R; being the position ofith
sis of memory effects in dynamics of colloidal suspensionsparticle andF—the force acting on it. Nexi3=1/kgT and
We show that also in this time regime, when the relaxation oD(X) is the diffusion matrix, which by the generalized Ein-
the distribution of particle positions must be taken into ac-stein relation
count, the suspension can be described by macroscopic equa- it
tions with local coefficients. This time, however, coefficients Djj= I‘BT/"iJ (2.2)

attain frequency dependent terms. In particular, we obtain & ~onnected with the translational mobility matg. The

well-defined expression for long-time collective diffusion co- |tter is obtained by solving the hydrodynamic problem of

efficient, which is free of any discontinuities &&=0 and finding the velocities of the particleg);,i=1,... N, in

estimate its value numerically. terms of the forces acting on thefin the absence of torques
The paper is organized as follows: In Sec. Il, the

memory formalism is applied to the dynamics governed by U _E e 2.3

Smoluchowski equation. In particular, memory function for 4 Mty '

collective diffusion of Brownian particles is introduced. In

the following section basic characteristics of hydrodynamicln general, due to hydrodynamic interactions, the mobility

interactions in a suspension are given. The presence of hynatrix depends on configuratiod and is nondiagonal in

drodynamic interactions is crucial for existence of nonzerdParticle indices(the exact definition ofu will be given in

memory effect in collective diffusion: It may be provéd Sec. ll.

that the memory function vanishes for suspensions so dilute  The basic correlation function probing the collective dy-

that either hydrodynamic interactions can be totally ne-namics of the suspension is the intermediate scattering func-

glected or the two-body approximation for mobility matrix tion

used. In Sec. IV we analyze the particle current and convec- 1

tive flow induced in the system by external disturbances both  F(k,t)=lim —(c(k,0)c(—k,1)), (2.4

in short-time and long-time regime. We find that the response = N

kernels are long ranged and diverge with the size of the hich is the autocorrelation function of microscopic densit

system. To circumvent that problem a special reglJ|arizati0|¥lvuctuations P y

scheme, similar in spirit to that presented by Felderhof in

Ref. 12, is devised. For short-time response kernels, the c(k,t)=C(k,t)—(C(k,1)), (2.5

regularization scheme is outlined in Secs. V and VI. Next, in

Sec. VIl the regularization scheme is constructed for kerneldvith

describing time-dependent response of the system. This leads

to macroscopic equations for average velocity fields with — C(k,t)=>, ekRi(®), (2.6)

local frequency-dependent coefficients derived in Sec. X. !

Next, in Sec. Xl the problem of long-time diffusion is revis- In the abovek is the wave vectomR;(t)—the position ofith
ited and the expression for collective diffusion memory func'particle at timet, andc(k)=c(k,0). Bracketg--) stand for
tion in terms of regularized response kernels is derived. Fizpa average ovér the equilibriu,m distribution

nally, the numerical results for the memory contribution to
long-time collective diffusion coefficient are presented in Peq(X)=e‘B"’(X)/Q, (2.7

Sec. XIl. . o .
where @ is the normalization constant arf{ X)—potential

of interparticle interactions. NextC is the adjoint Smolu-
Il. MEMORY EFFECTS chowski operator obeying
The system under consideration consistdNofdentical

spherical particles of radissimmersed in an incompressible DPedX) ... =Peg(X) L. .

fluid of shear viscosityy. The particle Reynolds number is Finally, lim., stands for the thermodynamic limit in which

assumed to be small so that the inertial effects are negligiblghe size of the sample goes to infinity while densities of
and the fluid can be described by Stokes equations. As it wagxtensive parameters are kept constant.

mentioned in the Introduction, the time scales of interest are  For convenience, we will adopt the following bra-ket
much longer than both the particle velocity relaxation timenptation

7, and the viscous relaxation timg,. On these time scales

the fluid motion is governed by stationary Stokes equations _

whereas the evolution of the particle distribution function in (Al J dXPeqX)AX) 29
the configuration spacd}(X,t), is described by the gener-

alized Smoluchowski equatibh and

|B)=B*(X), (2.9

J
—P(X,t)=D(X)P(X,t), . . .
at X0 (X)PXY where star denotes complex conjugation. Thus the equilib-

NG p (2.2 rium distributionP is always placed at the left-hand side
’D(X)E_Z —.Dy(X)- [_JrﬁFi} of an expression. In the_ above r_10tat|0n, the expres(éam)
i7=10JR JR for intermediate scattering function can be rewritten as
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1 1 1
F(k,t)=lim =(c(k)|e®c(k)). (2.10 M(k,z)= ————(c(K)| LQ——QL]c(k)).
* S(k) (k) z-L
The t=0 value ofF(k,t) defines the static structure factor (2.18
S(k) Here the Laplace transform is defined as
1 o0
S(k)=lim N<c(|<)|c(k)>. (2.11 M(k,2)=f0 M(k,t)e *'dz,
The time derivative of intermediate scattering function andQ is the projection operator,
can be written ds lc(k))(c(k)|
Q=1- sk (2.19

J
EF(k’t): ~ QR+ (k) onto the subspace of dynamic variables orthogonal(tg

and £ is the orthogonal part of the operatdr,

t
X | drM(k,7)F(k,t— 1), 2.1 N
fo Mk nF(et=7) 213 £=QcLQ. (2.20
with the first cumulant)(k) defined by However, evaluation of diffusion coefficients with the use of
Egs. (2.14) and (2.195 is nontrivial because of the long-
_ dlogF(k,t) 213 wavelength k—0, limit involved. Namely, due to the pres-

Q(k)= g

ence of hydrodynamic interactions in the system, the diffu-
) o sion matrix D;; has nonzero nondiagonai#j) elements,
and the memory functioM (k,t). In the limitt—0 only an  \yhich decay with interparticle distand®; asR;;” with y
instantaneous response described by the fun€lit) gov-  —; > 3 sych long-ranged interactions can cause discontinu-
erns the evolution of-(k,t). For small wave numbers the ity in memory function ak=0 so that in general it is not
decay rate of intermediate scattering function in this timepossible to identify lim_oM(k) with M(k=0) which

regime is characterized by the short-time collective diffusiony g4 be desirable for practical reasons. As it was mentioned

t=0

coefficient in the Introduction, the discontinuity can be removed if one
Q(k) ensures that the zero net flux conditioh.1) is fulfilled.

D= IimT. (2.149 However, it is hard to take this condition into account while

k=0 using the memory function formalism. One of the ways of

For long times,t> g, the effects of the relaxation of the dealing with this problem is to use an alternative way of
distribution of particle positions must be taken into account®Ptaining transport coefficients: by investigating the linear

The corresponding long-time diffusion coefficidht reads  response of the system to external disturbances. It turns out
then that it is possible to incorporate the zero net flux con-
Q(k)

dition (1.1) directly into the equations.
k However, before applying the linear response theory, let
us review the basic facts about hydrodynamic interactions as
The collective diffusion coefficient can be also assessed in ¢hey are playing a crucial role in determining the dynamics
different way. Namely, as it was first pointed out by of the system.
Einstein'® D, may be obtained by studying the current in-

duced in the system by an external force applied to the par-
ticles. The corresponding relation reads IIl. HYDRODYNAMIC INTERACTIONS

keT The dynamics of colloidal suspension has many-body
D.===K, (2.16  character due to the presence of hydrodynamic interactions.
S(0) . o .

As mentioned at the beginning of Sec. Il the flow in our
where the sedimentation coefficigfitis given by the ratio of system is governed by the stationary Stokes equations. In
sedimentation velocity to the acceleration of external fieldthis case the relation between the forces and torques acting
As the time scales involved in sedimentation experiments aren the particles and their velocities is linear. In the absence
usually considerably longer than the structural relaxatiorpf external flow, this relation defines the friction matgx

. (2.19

D.= lim

1—j M(k,7)d7
k—0 0

time the diffusion coefficient obtained in that way can be F U
identified withD'.. (T)zg Q), (3.9
We return to the memory function equatid®.12). In
frames of Zwanzig—Mori projection operator formalis®  with
the first cumulant can be shown to be &g
1 g: ( grt é«rr) .
0=~ ggig (el £leck), (2.17

Here F=(F,T) is the 6N-dimensional vector comprising
whereas the memory functidin the Laplace domajreads the forces and torques acting on the eachNoparticles:
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(F. T)=(F{,Fy, ... Fn.T1,....Ty) whereastd= (U, Q) , L
is the vector built from the translational and rotational ve- V() =Ui(N)=Vo(r)+ | G(r,r")-fi(r")dr

locities of the particleg{=(U,, ... Uy, Q;,...,Qy). The

matrices{PY (p,gq=t or r) are the 3Nk 3N Cartesian ten- +E G(r,r’)-f;(r")dr’
sors, and the superscripgtsandr correspond to the transla- J#i
tional and the rotational components, respectively. reS, i=1, N, 3.8

As it was shown by Mazur and Beded®ii the particles
are impenetrable to the flow and the stick boundary condiwhere the contributions ta;(r) from the force density on
tions at their surfaces are assumed, then validity of Stokete particlei:[fi(r)=f(r)6;(r)] and on the particleg #i
equations may be forma”y extended inside the partic|es: have been Singled out. The first of these terms can be written
using the one-particle friction operatdg(i) [defined by Eq.

pV2v—Vp+fy(r)+f(r)=0, (3.7) for a single sphefeas
v (3.2 [Zgl(i)fi](r)zfG(r.r’)-fi(r’)dr’ res, (@9
v(N=u(n=U+Qx(r—Ry) for [r—Rj|<a, - :

whereas the second one is used to define the Green operator
p(r)=0 for |[r—Rj|<a. G(ij)*®

Heref,(r) is an external force density applied to the fluid, . Ef N E(rdr! i
such as gravity. Nexf(r) is an induced force density local- [GADIT) Gr.r")-fi(rHdr’ i#] res.
ized on the particle surfacé$? (3.10

The total force and torque with which particles act on agquation(3.8) can be rewritten in a compact way as
fluid are then given by

Ui_Vo:E_ (Z,1+ 9)ijf;, (3.1
Fisz(r)ﬁi(r)dr, J
(3.3 where
Ti:f (r—R;)xXf(r)6;(r)dr, Zij=Zo()i; Gij=G(ij)(1—- &) (3.12
are the NK N operator matrices in the particle indices. Here
where and below we use the script letter€{,G,F, .. .) for ob-

jects acting in the particle index space. Subsequently, we

6i(r)=6(a=[r=Ri) G4 further simplify the notation by omitting the sum over par-
is the characteristic function of the partidgle ticle indices. Under this notation, E(8.11) becomes simply

The solution of hydrodynamic equatiori8.2) can be U—v,=( 2,1+ G)f 3.13
written as o e ’ '

with

v(r)zvo(r)+fG(r,r’)~f(r’)dr’, (3.5 u=(Uyg,...,Uy), (3.19
where v,(r) is the flow in absence of the particles and f=(f1, .. ). (3.19
G(r,r’) is the Green tensor. For an unbounded fi@id,r") Comparing Eq.(3.13 with Eqg. (3.7) yields the following
is given by the Oseen tens@, expression for the friction kernel

G(r,r'")=Gy(r—r'"), 1

Z=—. (3.1
3.6 Z, '+
1 1+fF r 39 0o TY
Go(f)E% R The forces and the torques acting on the particles are ob-

tained from the force density by Eq. (3.3), which can be
From now on we follow the formalism and notation de- written in the operator language as
vised by Felderhof, Cichocki, and their co-workéts® .

From linearity of Stokes equations one infers that the force F="Pt, 317
density can be expressed as where the tensor projection operatgt= (P!, P') is given
by
f(r):jZ(r-r,)'[V(r,)_Vo(r,)]dr,, (3.7 ’P}(r)=0i(r)1, i=1,... N

(3.18

with the friction kernelZ(r,r"). This kernel can be assessed Pi(r)= 0i(r)€np,(r—Ri),.
by the following procedure. Let us consider some point on
the surface ofth sphere € S;. Expressiorn(3.5) for the flow
velocity v(r), which in this case must be equalugr), can
be written as a sum of the following terms: =PZP. (3.19

With the use ofP the relation between the friction ma-
trix £ and the friction kernelZ can be written as
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For exampleZt, is given by
‘fz:f f drdr’ 6,(r)Z(r,r')6,(r")=P'ZP. (3.20
To solve the integral equatiof8.13), the velocity field

[ui(r)—vo(r)]res;I and force densitie$; are expanded in
terms of irreducible multipole¥ In this way the problem is

Collective dynamics of Brownian suspensions 3333
whereC is the transpose af operator
C=ZPpu, (3.27
while the convective friction kerneZ?’ is given by
Z=Z- ZPuPZ. (3.28

reduced to an infinite system of linear algebraic equations foFor further considerations, we need the scattering expansions
matrix elements, which are labeled by the particle numbepf the above introduced kernels in terms of one-particle op-

and by three multipole indicels m, o, wherel=1,2,. ..,
while m=—1,...,+I, ando=0,1,2.

In particular, the lowest force multipol§. —;,—¢ is
proportional to the total forcd=, acting onith particle
whereas the multipol§. —, ,—; is proportional to the total
torqueT;. In the case of velocity field the multipolés-1;

o=0,1 correspond to particle translational and rotational ve-
locities, respectively. Hence in the multipole formalism the

operatorP is a projector on subspate1; 0=(0,1).
An explicit form of the operatore€, andG in multipole

notation can be found, e.g., in Ref. 25. Here we only mention

that the matrix elemen®(l,o;l’,0";R;;) describing an in-
fluence of the force multipolel (,o’) onith sphere on the
velocity multipole (,o) on the jth sphere for the case of

infinite space decays with an interparticle distance as

Rj_i('+I tote'=1) Hence the interactions between low mul-

tipoles are of infinite range as they contain terR)s” with
vy=1,2,3.

Returning to the analysis of hydrodynamic operators, let
us now find forces acting on particles in the presence of the

ambient flow. From Eq(3.7) one gets in this case

F=tU-P2Z2v,. (3.2)

The above formalism can also be used to solve the mobility

problem: finding velocities of the particle&( for given
forces F and flowv, . In this case, the relatiof8.21) gives

U= F+"P2v,=pF+Cv,, (3.22
which defines the mobility matriy,

n=C (3.23
together with the convection kerné|,

C=uPZ. (3.29

The mobility matrix u allows us to find translational and

rotational velocities of particles in terms of forces and

torques acting on them in the absence of an external flow
u, [(F
o M)
o )
Finally, let us consider a problem of finding the force

densityf for given forcesF+ 0 and ambient flow, . In this
case, from Eqs(3.21) and(3.7) we obtain

(3.29
wt ot

ﬂrt '

f=CF-2v,, (3.26)

erators and the Green opera@ranalogous to Eq3.16) for
the friction kernel.

For example, for the convective friction kern& one
gets the expression

o

Z=Z214GZ,) 1= 2, Zo(-GZ)" (329

whereas the mobility operator can be written as
1
n=pot pePZ,——— G2, P,
1+GZ,
= ot 2, o PZo(~G2) G2 Py, (330
where
__1 3.3
ILO - PZOP ( . D

is the one-particle mobility matrix wherea&, is one-
particle convective friction matrix, given by a relation analo-
gous to Eq(3.28

Z,=Z,— ZPu,PZ,. (3.32

The matrix Z, differs from Z, only in =1 subspace.
Moreover, since

PZopo="P, (3.33

one concludes thaZ,P="PZ,=0.

Finally, formulas for the kernel& and € introduced
above reatf

[

c= ZyPpo— zgzopﬂoz k§=:O (— zog) k2"0791"0 )
(3.39

C=pn,PZ,— /LO'PZng= kZO Mo PZ,(— gzo) k.
(3.39

From now on we are going to denote translational part of
mobility matrix u' simply by u, as onlyu' appears in sub-

sequent considerations. Analogous convention is to be
adopted when writing other hydrodynamic operators like

and C. Here we would also be concerned only with their

translational parts, but we are not going to denote ther@'by
andC' in order to keep the notation simple.
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IV. LINEAR RESPONSE FOR SMOLUCHOWSKI aP(X,1) P
DYNAMICS —r  DoP=— o {[REM) +CVo(1)]Peq}

In this section we apply the linear response theory to 4.7
generalized Smoluchowski equation. Our aim here is tol'he solution with initial conditionsP=0 for t= —o is
evaluate the mean force density and particle current inducegiven b
by external disturbances: imposed flow figl{r) and exter- y
nal forces€=(E4, ... Ey). t N

To begin with, let us notice that in the presence of the  SP(X,t)= —Peqf dt’eftt )(W-F,B]:
flow v, (r) and external force€ the Smoluchowski operator o
D(X,t) (2.1) acquires additional terms and re&tls T HEM)+Cvy(t))]. (4.9

N
9 . . .
_ e 7 This allows us to rewrite the expressions {dé¢r, X)), and

D(X,t)= -D;i (X)- + B(F;+E; ) t

(X0= 2 GeDy(X)-| o +BFHE) ), 28
[9 .
TR, G Vo 4. <J<r>>t=f dr'TYje(r,rE D)+ Y, (r,r WVo(r' )]
Next, let us find the mean particle current and force density. t
The former is given by the following ensemble average +f dr’fﬁ dt’'[Xe(r,r',t—=t")E(r',t")
N
(j(r,X))tE<izl Ri(S(r—Ri)> X (1, =t V(1 E) 1=+ ()
(4.9
N
=(> cR-a(r—R-)> : (4.2)
<i=1 TR A= [ AT el B 0+ Y (1 ol 1)

where the symbo{ ), denotes the average ove(X,t). In-

t

serting the explicit form of adjoint Smoluchowski operator +f dr’f dt'[Xse(r,r' ,t—t")E(r',t")
yields -

j(r,X)) = % ( 2L Fre] ux F X (1 UVo(r U104 (D,

Grx={ 21|87 5% - m(X) (410

where an auxiliary force fieldE(r,t) was introduced, such
+C(X)V0] o(r=Ri |, (4.3  that
i t

where{ }; stands forith componen(in particle indexe)sof Ei(t):J 8(r—Ry)E(r,t)dr (4.1

the operator in brackets. For example

and we have singled out instantaneous and retarded part of
{Ep(X)}i=2 B =2 mij-Ej, (44 system’s respongeorresponding to averaging ovBg, and
: : SP in Eq. (4.6), respectively. The former appears immedi-
where the symmetry of mobility matrix has been used in theytely afterE or v, is turned on and follows the change of the
last equality. external perturbation, while the latter describes memory ef-
By considerations similar to the above one can also findects due to the change of the distribution function induced
the mean force density. As it has been shown in Ref. 28 it iy external forces.

given by the formula Instantaneous response kernels introduced abové®read

N

s

-C(X)—E‘:,’(X)vo> .

(f(r,X)>t=<(ﬁ‘1&iX+.7-‘+8 t
(4.9

1

YJE(r,r'):<

In deriving the linear response formulas for the system of N

Brownian particles the approach due to Felderhof and Yjv(r,r’)=<z 5(r—Ri)Ci(r’)>, (4.12b

Joneé® is adopted. It is assumed that particles were at =1

equilibrium in the infinite past so that the probability distri- N

bution P(X,t— —x) is equal toP.4(X) given by EQq.(2.7). v "N &(r).8(r' =R 412
Subsequently the field€ andv, are turned on and the re(r.r) 121 (000" =Ry) /. (4.129

distribution changes to

P(X,1)=Peg(X) + SP(X,1), (4.6 Vi (rr)=(=Z(r.r"), (4.129

with §P(X,t) obeying(to the linear order ir€ andyv,) whereas time-dependent response kerKedge given by
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N
Xie(r,r' t)y=—pB" < > s(r—R)[p-V]e A(1,2,...,N)=Z a(i)+i2<j a(i,j)
i,j=1
x[(ﬁ+3ﬂ.ﬂ]j5(r'—Rj)>, (4.133 +i<j2<k a(i,j,k)+--, (5.3
N wherea(i, ... ,is) comprises all the terms in the scattering
va(r,r’,t)=—,81<2 5(r_Ri)[ﬂ'§]ie£t {s_erifas o_f}A which involve each and every particle
=1 I1,00, ., 1gs.
Hence the integral takes the form,
x<v*+/m-cu'>>, (4.139
|—Z fa(lz s)n(1,2,...,s)d1d2---ds,
Xig(r,r',t)=—p" <C(r) Vet . o o .(5'4)
where thes particle partial distribution function is given by
N
X D [(6+/3$)-,;],—5(r’—R,—)>, N(ry,ro, ... fg= <| .2, i o(ri—Ri)
=1 10025 s
(4.130

S X6(r=R; ) +6(rs—Ri) ), (5.9
Xip(r,r',t)=—B"HC(r)- Ve (V+BF)-C(r')),
(4130  which in a shorthand notation will be denoted as
(1,2, ...s). The sumX’ in the above expression is sup-

where the symbol§¥ andV denote the operatar 9X actin
1o the left and 1o the right, respectively. J pied with the condion that all the partile incceg,

In the next sections we study the internal structure of the _ - 8 are different each from the other. The partial dis-
response kernels in a detailed way. Particular attention wﬂF”bUt'on function can be decomposed according to the clus-
be paid to identification and subsequent removal of Iongter structuré’
range terms in the kernels, which make the relatiGh9) n(1)=h(1),

and(4.10 nonlocal.
n(1,2=n(1)n(2)+h(1,2),

V. CLUSTER STRUCTURE n(1,2,3=n(1)n(2)n(3)+n(1)h(2,3)+n(2)h(1,3)

_ . +n(3)h(1,2+h(1,2,3, ..., (5.6
The kernelsy and X defined in Eqs(4.12 and (4.13 ) ) _
contain integrals of the form where thes particle correlation functiom(1,2,...,s) goes
to zero as one drags any subset of particteld,2,. . . ,s}
= | AX.r.r )P (X)dX, 5.1 away from the rest.
f ( JPedX) ®.D With the above decompositions one can write the inte-

where A stands for an operator such asV N a(r grall in Eqg. (5.1 as the sum of terms of the general form

—R)mijo(r' —R;) or Z(r,r'). To analyze the structure of B o ) o )
these expressions let us rewrtéX,r,r') in form of mul- Ts(A'C)_f Alinida, .. dg)C(in,ia, .. is)d1d2- - ds,
tiple scattering serié—i.e., as a sum of terms, each con- (5.7
taining the product of one particle operators and Green Op\7vherec(i iy

Jg) is a product of a number of correla-
erators [cf. Egs. (3.29, (3.30, (3.349 and (3.39]. For ) P

tion functions involving particles{iy, ..., whereas

example Eq(3.29 gives for the convective friction kernel, Aiq,is, i) is one of the scattering sequences making
Z(1.N)jj=Zo(1) 8= Zo(1)G(i] ) Zo(j) (1= &;) upa(ip,iz, ... is).
+> Zo()G(K) Zo(K)G(K)) Zo() ++ -, VI. REDUCTION OF INSTANTANEOUS
k

RESPONSE KERNELS

(5.2 This section is devoted to detailed analysis of the kernels
with the condition that no label should be repeated in sucY which describe the instantaneous response of the system to
cession. Successive terms in the sefte®) have clear physi- external disturbances. In particular, we prove that the re-
cal interpretation—they correspond to increasing number oéponse kernels are long-ranged and therefore the response is
subsequent reflections of the velocity field by intermediatedependent on shape and size of the system. Next, it is dem-
spheres propagating the interaction. onstrated how to describe the system’s response using short-

The next step is to group the terms in the scatteringanged kernels by rewriting equations in terms of mean sus-
series according to the particles involved. In this wlagan  pension velocity(v(r)) rather than the imposed flow field
be represented as Vo(T).
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A. Internal structure of the terms and so, for example, two-particle correlation function can be

To begin with, we introduce a number of formal defini- written as

tions which will help us to analyze the internal structure of  (1(1—P,,0)2)=(12)—(1)(2)
termsTg(A,c) as given by Eq(5.7). First of all, an operator

G(iy,ixr1) will be called a connection line of a term =n(1,29—n()n(2)=h(1,2). (6.6)
Ts(A,c) if the latter can be written as The functionh(C,|C,|---|Cy) defined in Eq.(6.3) is
called the block distribution functiott. For example
TS(A:C)ZJ A1(|1, e ulk)Cl(Ila sl k) h(1|23|45)=<1(1— Punc)zs(l_ Punc)45>
X Gl ) Aol - d9)Caliken, - - - o) — (12345 —(1)(2345 — (123(45)
Xd1ld2---ds, (6. +(1)(23)(45)
i.e., after the removal o6(i,,iy 1) the termT4(A,c) be- =n(1,2,3,4,5-n(1)n(2,3,4,5
comes a product of two independent integrals. The term
T«(A,c) with one or more connection lines will be called —n(1,2,3n(4,5+n(1)n(2,3)n(4,5),
reducible and the one without any connection lines— (6.7

irreducible. Next, a connection line which appears first in a
scattering sequendstarting from the leftwill be calledan
articulation line . In an analogous way we define reducibility

which vanishes whenever the parti¢lg or the group{4,5
is dragged away from the rest of the particles.
Note that if there are no nodal lines in the scattering

;Of;n;{zl(;, sg;’itér(iinkg'i:fguznﬁ%g él’ilziﬁ.e.c.)f’i Se)l gcr:]z.tel;iitg ussé_ structl_Jre of a_givgrs—parti_cle term,. therh becomes the full
queNceA (i i, ... iJ) if the latter can be written in the s-particle partial distribution functiom(1,2,...,s).
form
Aliq,in, ... o C. Long-range character of the kernels
=Aq(igsins - i)G(irike DA kagy e (6.2 The kernelsY(r,r') in Eq. (4.12 are of a very long

) ) ) range since the reducible terms in their expansions behave
Next, scattering sequences with one or more nodal lines Wilhsymptotically agr —r’| ~* with k<3. To prove it, note that
be calledS-reducible. in every reducible term there is at least one connection line:

Nodal lines divide the particles in a given scattering se4et it be G(ij) joining particlesi andj. One of the following
quence on the set afodal blocksC;: C, denotes the set of pg|gs.

particles to the left of the first nodal lin€,—the particles
between the first and second nodal line, and so on. Note th
the definition of the nodal line assures tiian C;=0 if only

(1) The connection lineG(ij) joins two Z, operators:
¥ (i) andZ,(j). But, sinceZ,P=PZ,=0, in the multi-

i+j. The nodal structure of sequenddiy,i,, ..., will ~ Pole formalism all the components oZy(I=1m,q;l’

be written in the formC,|C,|---|Cy. =1m’,c’), except forZ,(I=1m,c=2;l"=1m’,0' =2),
vanish. This, together with  the fact that

B. Block distribution function G(l,m,o;l",m’,o";R) decays aR~(*!"*o+o'~1) |eads to

Consider all irreducible term¥,(A,c) which share the the conclusion that the leading term in the connection line

same scattering sequence and differ only in correlation func?€naves ag;; * (for1=1"=2 ando=0"=0). .
tion. Note that a task of summing all such terms boils down  (2) The connection line joins th&, operator withZ,, . In
to finding the sum of their correlation functions. However, this case the leading term behavesRys” (for I=11"=2
the irreducibility of the term requires that whenever there isand 0=0;0'=0). Here the prime variables refer to thg
is a nodal line in the scattering sequence, the particles to theperator.
left of it cannot be totally uncorrelated from particles to the (3) The connection line joins tw@d, operators. Then the
right. Therefore the sum of the correlation functions that weleading term behaves &ﬁ‘il (forI=1"=1 ando=0¢'=0).
are looking for is given by However this is the case only for the terms representipg
_ (as only this kernel has more than odg operator in its
h(C4|Cal++[Cl) =(C1(1~Pync Co(1 = Pype)- - scattering sequengeAs there are exactly tw@, operators
(1= Puno)Ci)- (6.9 in Y, one at the beginning and one at the end of the scat-
tering sequenckef. Egs.(4.129 and(3.30] the only scatter-
ing structure that allows fole’il connector is a two-particle
term of the form

So=mo(1)P(1)Z5(1)G(12Zo(2) P(2) mo(2). (6.9

It should be stressed that long-range elements are absent
in irreducible terms. Namely, consider a long-range bond
linking particlesi andj in an irreducible ternKK. As the term
(AP, B)=(A)(B). (6.5 isirreducible, one of the following holds:

Here C4|C,|---|C, describes the nodal structure of,
whereas the operatd? . is the “uncorrelating operator”
introduced by Michef&

Punc=) (6.4

which has the property of statistically uncorrelating the vari-
ables at its left from those at its right, i.e.,
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(1) Particlesi andj are connected by a correlation func- Al )= PZ(—GZ.)"=A(l;
tion. In this case the long-range connector betwieand j (130) = #oPZof o' =Alle).
causes no trouble, as the correlation function decays rapidly A(R;,) = —(=24G)"Z,.
asi is dragged away fron. o )

(2) Particlesi andj are connected by some other bond !N the limit of a macroscopic system the sum offj} terms
(G operatoy or a path of bonds coming through other par-1S equal toYy, . Therefore in this limit the following holds:
ticles. But thenK contains more than two bonds and there-
fore its scattering sequence is different fr@&n[Eqg. (6.8)]. J Y (r,r")ve(r’)

This in turn implies that each of the two bonds betweand
j decays at least aB 2. Together they decay &R * or i o
faster, which assures convergence. = | Yo (r,r)vo(r’)dr

(6.13

+f Y}rvr(r,r”)G(r”,r”’)YfU(r”’,r’)vo(r’)dr”dr’.

(6.19

D. Reduction of long-range kernels

In the following we concentrate on the analysis of the
terms making up the kernél;c. Due to Eq.(4.123 this ~ Adding Eq.(6.12 to the above equation gives
kernel is expressed in terms of the mobility tengarthe
scatterir}g structurg of which is given by H§.30. First, !et ' <j(r)>inst:f [Ye(r,r)E( )+ Y, (r,r )ve(r')1dr’
us consider reducible terms. Each of them can be written in
the form of the product: _ .

:f [Yig (r,r E(r )+ Y (rr)ve(r’)]dr’
TJ-E(r,r’)=f Lig(r,r)G(r”,r”)Rje(r”,r")dr"dr",

(69) +f dr”dr”’Y}rvr(r,r”)G(r”,r"’)
whereT;e stands for the term under consideratibg, is its
part to the left of the articulation line arf@e is the part to ><( f dr'Y e(r" rE(r")
the right of it. The definition of articulation line implies that eV

lje is irreducible.
The terms making up;e have the following scattering +va(r”’,r’)vo(r’)). (6.15
structure:
5 o n However, the expression in brackets is just the instanta-
A(lje)=moPZo(—GZy)", n=0,1,..., (610 neous force densityf(r))"! [see Eq(4.10]. Hence, intro-
wheren is the number of5 operators in the term. Similarly, ducing an instantaneous suspension velocity as
the structure oR;e terms reads

ARE)=(~28)"Zs Phto. 6.1 (V)= vo(r) + f dr'G(r,r)(f(r))™,  (6.16

Note that the scattering structure Bfe given by Eq.  we can rewrite Eq(6.15 in the compact notation in the
(6.11) is the same as the scattering structure of the terms dbrm,
the kernelY ¢ [cf. Egs.(4.129 and(3.34)]. Therefore in the inst irr ir /e xinst
thermodynamic limit the sum of aRje terms equals (e. =Y EERY (VT (6.17
Similarly, the scattering structure ofg is the same as Note that the kernels in the above equation are short ranged,

that of the kernel;, [cf. Egs.(4.12h and(3.39]. Thus in a5 gl their terms are irreducible and therefore devoid of soli-

irreducible terms making upY;,, which we are going to In an exactly analogous manner one may carry out the
denote byYj, . Hence in the thermodynamic limit reduction of instantaneous kernels in Hg.10 for force
density and arrive at the expression
J' Y]-E(I’,I")E(I”)dl" inst ire irr inst
(D =YieE+ Y (V){ . (6.18
=J je (r,r)E(r")dr’ VIl. EFFECTIVE EQUATIONS

FOR SHORT-TIME DYNAMICS

+f Y (r )G, r") Y gg(r”,r)E(r")dr dr"dr". ‘We have expressed the instantaneous particle current
(){"*"in terms of the short-range kerneld" acting on the
6.12  external fieldE and mean suspension velocity);"*'. Be-
A similar reduction can be performed on the kerig|, . cause of their short range, the kern€l§ are independent of
Writing down the decompositions analogous to Egj9 we  the shape and size of the sample provided that it is macro-
obtain the termd;, and R;, with the following scattering scopic. In this case, however, one can equally well assume
structures: that the sample is infinite. It would not affect the kernels
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Y (r,r") but greatly facilitate the calculations as the hydro- 1 o n
dynamic Green function for an infinite systé@6) can now G(k)= ,Tkz(l_ kk), (7.10
be used.

To obtain the transport coefficients, let us transform thes© that the velocity field in this case may be written as
equations intok space and analyze their long-wavelength _ 1 L _
limit. The Fourier transform of Eq(6.17) for the homoge- k2<V(k)>'tnSt:;(1— KK)[(f(k)){" (k)] (7.1
neous system reads

) _ _ . , Inserting the instantaneous force dengity}"' as given by
()= Y (K EK) + Yy (K)(v(k))™". (7. Eq.(6.18 yields t
In the limit (k—0) the tensoh(}rvr takes a particularly simple . 1 . A .
form. Namely, Eqs(4.12h and(3.35 yield k2<V(k)>'tnSt=;(1— kK)[fo(k)+ YTg(K)E(k) + Y¥, (k)
N
Yiik=0)= <2 5(R)[ 1P Z, )™ (712

Next we investigate the lowest ordgD(1)] term in the ex-
A , , pansion of the operatoré;¢ (k) and Yy, (k) in wave num-
~MPZ,G(1+ Z,G) “Z,]i(r') ) dr'.  per, SinceY' is adjoint toY'!""

irr

fE ju
(7.2 YiE(k=0)=Y]J (k=0)=nL. (7.13
However, since bothZ,(i;r’) and zo(i'r’) vanish forr’ To find k=0 value onif'Ur(k) we recall the scattering struc-
outside of the particlé, the above expression is equivalent :ﬁr? of this operator. From Eq&.12d and(3.29) it follows
to a

N

Y}L’(k=0>=<zl S(R)[ o PZ, P Vi k=0== [ (21 g2y o)

(7.149

. 12 " Here the scattering sequence ends Wi} operator, hence
~mPZ2.G(1+ Z2,9) "Z,Pli| - the same reasoning as that following the Ef2) leads to
the conclusion that
(7.3 _
. . . Y§, (k=0)=0. (7.15
Using the fact thatZ,P'=0 one gets finally _
Therefore the smak expansions of operato;z and Y,

N irr
<E 6<Ri>uo<i>7><i>zo<i>'Pt<i>> read
- YiE(K) =nl+Kiyet--,

Y|y (k=0)

N .
<E 5(Ri)>1=nl. (7.4) YT (k)= —K2y, 4. (7.18
=1

The tensoryy, andy;e can be decomposed, similarlyyg, ,
The next nonvanishing term in the expansionYgf(k) in k in longitudinal and transverse part. Finally, using the fact that

is the second-order one, (1—kk)v(k) =v(k), due to the incompressibility condition,
[ _ Eq. (7.12 can be rewritten as
YT (k) =n1+ K2y, + (75 E0-(7.12 _ B
with the tensory;, of the form K2(n+yt,)(V(K)){"'= (1= KK)[fo(k) +nE(K)
Yio=Yjokk+y, (1= kk), (7.6 +K?YieE(K)]. (7.1
wherey}, andy|, are scalars. Because of the incompressibil-Because of the symmetry between the operatgrsand e
ity constraint, the coefficienty{¢ is equal toy], introduced earlier. This is
. the manifestation of the Onsager symmetry guessed by
k-(v(k))"*'=0, (7.7 Nozieres™
the first term in Eq.7.6) does not contribute to Ed7.1). An interesting aspect of Eqé7.8) and(7.17) is the natu-
Hence in the smalk limit this equation can be rewritten as ral appearance of the particle current relative to the suspen-
. i i i sion flow
(100X =n(v(k))"™ =y jeB(K) + k2], (v(k) )™, et et -
(7.8 Jg =) = ndv(k)){"™ (7.18
with yje given by and the total external foroger unit volume exerted on the
ierr(k: 0)=yel. (7.9 suspension

Let us now turn to the equation for the suspension velocity. Fio=fo+NE. (7.19

The Fourier transform of the hydrodynamic Green functionReturning to the real space, the system of E@s8) and
for an infinite space reads (7.17) can be cast into the form
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Jidnst= ijE—y}UV2<v>i”St, (7.20a  the kernels that makes the reduction complicated. Therefore,
_ _ let us focus on the evolution operator first. To begin with, the
—(7+Yt,) VAV)'=Fio— gracp—yie(VE™! adjoint Smoluchowski operator
—grad divE'?), (7.200 L=[g YWtF] u¥ 8.1)

where use has been made of the fact that longitudinal part of
i . IS decomposed as
the forceF,,; is compensated by a pressure gradient

A N
—ikp(k) =kk-Fof(k). (7.2 L£(12...N)=> LD)+6L(1.2...N), (82
Equation(7.200 can be further rewritten using E¢7.203 =

to expressk in terms ofJy. Keeping the lowest terms in where L(i) is the one-particle operator
wave vector, we get

H 2
oy Byl T2, (22a TP &
t w2/ sinst with Vi2 denoting the Laplacian with respect B . It is
—(7+Y5,) V)t worth noting thatC, does not introduce any correlation be-
t tween the particles. Now the evolution operator can be writ-

=Fior—gradp— %(V%}{,”S‘— grad divalsY).  (7.22h  ten as a series
iE

The dynamics described by the above set of equations is  e£t— g(t)+ fthS(t_ 7)8LS(T)
relatively complex. First of all, there are direct effects: The 0

diffusion current is induced by an external fof€epplied to ¢ ,

the particles whereas the suspension velocity field is induced + f dff dr'S(t—7)8LS(7— ') LS(T)+- -,
by the overall external force acting on the particles and the 0 0

fluid, Fy,. The effective viscosity of the suspension is modi- (8.4
fied by the presence of the particles and reads

7= n+yt, . (7.23

N

However, there are also cross effects linking the suspension g12 .. N:t)=]] S(i:t) (8.5)

velocity with the diffusion current. These are given by the i

termsy;, VZ(v"™") and (/ie/yje) V234 and describe the nd

processes in which inhomogeneities in suspension velocitg

field drive the diffusion current and vice versa. The above  gj;t)=geLo()t, (8.6)

equations were first derived by Noms'! in a rather phe-

nomenological way. The throughout derivation was given byNext, one performs the scattering expansion of the operators

Felderhot?3* and Noetinger. Felderhof used a technique A, B, and £. Then, after inserting the expansions into

called renormalized cluster expansidto derive Eqs(6.17) (Aef'B) one ends up with the representation of the retarded

and(6.18 and proved that all response kernels in these equaesponse kernel as a sum of terms of the following structure:

tions are short ranged. The reduction presented in this paper

can be seen as a simplified version of this technique. On the RS(A,C)=f dl---dsfthledrz---

other hand, Noetinger worked from the very start in the Fou- 0 0

rier space. He performed only partial reduction of the kernels

a_m(_j therefore was left with a number of_cumbersdmeo an_ldTnAl(t)S(t— 7) 6L (71)S(71— 75)

limits to calculate. Nevertheless he obtained the same equa- 0

tions as Felderhof and here, although written in a slightly

different languagdas he used the hydrodynamic formalism

of Mazur, van Saarlos, and Beenakké&r®). whereA’, B’, andéL’ stand for some elements of the scat-
tering expansions o&, B, andd L, respectively, and is the
number of particles appearing in the given term. The time

VIIl. REDUCTION OF RETARDED variables have been added to time-independent operators

RESPONSE KERNELS 6L', A’, andB’ just to indicate their positions relative to the
evolution operators in the above integral.

Our next task is to perform the reduction of the retarded  The next task is to perform the reduction Bf(A,c)
response kernel¥ given by Eq.(4.13. The general form of along similar lines to the approach presented in Sec. VI D—
these kernels is i.e., by identification of long-ranged connection lines. The

X = t definition of a connection line is analogous to that in instan-

=(AeF'B), _ Y :
taneous response terms: an oper&gi, i 1) is called the
with two operatorsA andB on both sides of the evolution connection line of a termR¢(A,c) if the latter can be written
operatore!. It is precisely the presence of this operator inas

where

X 6L (1) "+~ S(7q)B' (), 8.7
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RS(A,C)=fAl(il,iz,...,ik)cl(il,iz,...,ik) 8910
5,6

XG(ikvik+l)A2(ik+11 e !is)
X Coplinsys - igdld2:--ds, 8.9

so that after the removal dB(iy,iy. 1) the termRg(A,c)
becomes a product of two independent integrals. Integrals 34,7
over time have been omitted in the above expression as the'
are irrelevant to our definition. The nodal line and nodal
blocks for termsR¢(A,c) are defined analogously to the in-

stantaneous response case. However, because of the fact tt
retarded response terms consist of a number of individual
operatorsA’, SL'(r;),6L'(7,), ... thenodal structure of 1,2
R(A,c) is usually very complicated and in general it is
impossible to apply the concept of block distribution func-
tion here. To facilitate analysis of the nodal structure of re-
tarded response kernels a special diagrammatic techfique

has been developed. One of the important elements of this L .
analysis is a concept of a proper term. To define it, let u simpler. For example, the NSG of the te(®10 is given in

consider a term R, with a scattering structure ﬁ:|g. 2. It isa simple chain—a tree with two terminal verti-
ces only. It can be prové@that all the proper terms share

FIG. 1. Nodal structure of the term given by E§.11).

A(iq,is, ..., i) and a nodal lineS(iy,iy. 1) such that such a structure
Ay, i) =Aq(ig,in, o i) G(iy ik 1) Thus in proper terms nodal lines divide the particles
XAy, - g) (8.9 111 s into nodal blocksC;,C,, ... which can be or-

dered according to the place in the chain. This means that the
The termRg will be called proper if all the operators in nodal structure can again be written in the form

which the particle; fromliq,io, ... iy} appear _have Iarg_er or C,|Cyl...|Ck, whereC,,C,,....,C, come one after an-
equal time coordinates than these in whih,,....is}  other in the time integral8.7). For such a structure a block
appear. For example a term of the form distribution function can again be defined by £6.3).
¢ " . Unfortunately, these concepts cannot be applied in the
f drj drzf drsh(iq,io,is)A(i1,is;t) case of improper terms. However, it may be shdfthat in
0 0 0 the thermodynamic limit the sum of all improper terms mak-
X G(ip,i3)Ap(izia;)S(t—71) 0L (i3,i4,i5;71) ing up a given retarded response kernel vanishes. Therefore
in the subsequent analysis we can safely consider proper
X S(1y—7)0L4(i3,i5;72)G(is,ig) 6L y(i6,i7;72) terms only. Because of their chainlike form, it is relatively
Lo easy to sum the proper terms which share a similar nodal
X S(73)B(i6,17,18;73) (810 structure. For example, for the proper terms making up the
is proper whereas kernelX;e [Eq. (4.133] one gets the following:
t T T . . . . . .
f de 1dT2J Zdr3h(i1,i2,i5)A1(i1,i2;t)G(i2,i3) (.1) _Terms with an Qrtlculatlon line iA block sum up in
0 0 0 the limit of macroscopic system to

XA(i3,i4;1)S(t—71)6L1(i5,i6;71)G(i6,i7)
X 8L5(i7,i3;71)S(71— 72) 6L3(i3,i4,17;72)G(i7,ig)

X 8L y(ig,ig;72)S(73)B' (ig,ig,i10;73) (8.11

is not proper. In other words, for proper terms the division of
the particles by a nodal line is consistent with the ordering
induced by time dimension. Note that the definition of a
proper term concerns only the scattering structurBdnthe

correlation structure is irrelevant here. 34,5

“Properness” has a particularly simple interpretation if
one presents the nodal structure of an operator in a graphice
way. For example, the term given by E®.11 can be de-
picted schematically as in Fig. 1.

In graph theory such a structure is calledree: a con-
nected graph which do not contain any circuitse lack of
circuits stems directly from the definition of the nodal line
The nodal structure grapiNSG) of the proper terms is even FIG. 2. Nodal structure graph of the term given by E&10.

6,7,8

1,2
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Yljv GX¢e(t). (8.12 < >ret J‘t dt’ [Xm(t t’ )E(t )+X'"(t t’ )<V>|ns

(2) Terms with an articulation line idL block sum up to

t

fdrx'" (t— )GXe(7). 8.13 YR VE f dtXjy (t= )Wy

(3) The sum of terms with an articulation line insiée - Jt dt’[X}E(t—t’)E(t’)JrX'” —t" ) (V)]
block is equal to —oo

X" () GY e (8.14) +Y(we, (8.21)
Using the above resu'ts the kerr)é]'E may be Written as Where the retarded part Of the mean SUSpenSion Ve|OCity iS

given by
t .

Xie(t)=X[E (1) + Y]y GXe(t) + fodfx}g(t—r)exfE(r) (V)Iet= (V) — (V)INst=G(fyret. (8.22

. Finally, using expressiof6.17) for (j)i"*' the total particle

rr

+X|iv (OGYre. (8.19 current can be written as

In an analogous way it is possible to prove that _ _ t _

= VizEO+Yi ) [ avDdge-te)

Xju(O)= X[ (1) + Y] GX, (1) + f v (t=7)GX,(7) |
+ X (1=t (V) ] (8.23

ju

+ X7 (DGYy, . (8.16  Note that the above equation relatg) to the fieldsE and

After inserting these equations into E4.9) we get the fol- (v) in terms of short-ranged, irreducible response kernels

lowing expression for the retarded part of the particle currenf nly.

ret irr irr
dt [ XU (1=t )E(t")+XIT (t—t")vo(t’
f [ JE() (E=t)Ve(t)] IX. FORCE DENSITY

i t The same decomposition procedure can be performed on
Irr ’ _ 4! !
Y Gj dU[Xpe(t—t)E’) the kernelX;g andX;,, Eq.(4.13. Proceeding analogously
. to the previous case, we obtain
t—t’
+ Xg (t=t")Vo(t") ]+ Lcdt’ fo dr Xee(t) =X{E() + YT GXg(t)
X X (t=t" = 1) G[ Xe( D E(t") + X, (T)Vo(t')] J drX T (t— 7)GXe( 1)+ X (1) GY g,
t .
+f_ dt’x;g(t_t,)G[YfEE(t,)'f‘YfUVO(t,)]. va(t): |rr(t)+Y|rrGva(t)
t
®17 +f I (1= 1)GXp, (1) +X{T (DG,
The third term can be simplified by first changing the vari-
ables of integration tot(,t"=t’+ 7), then changing the or- 9.1
der of integration, and finally using the fact thaf. Eq.

and for the force density

(4.10]

t
ﬁ;dt’[xfE(t"—t')E(t’)+va(t"—t')vo(t’)]=<f>{f;‘t. (D= YiREm+ Vi f- IIXFE (=B

(8.18 X (=t ) (V) ]. 9.2
By this means the above-mentioned term can be cast into thEhe above result can be inserted into the Stokes equation to
form yield, after the Fourier transform,
t _
Jiwdt”X}U(t—t”)G(f}[,?t. (8.19 k2<v(k)>t=—(1 Kk)| fo(k,t)+ YILE(K,1)
Equation(8.17) can be further simplified by noting that due , ,
to Egs.(6.16 and(4.10), +Y i (v(K)) f dt'[X{E(k t—t)E(t)
GLY (eE(t') +Y 1, Vo(t)]= (W)=, (8.20
" e XU (K, =t )(v(K))y ] } 9.3
Hence Eq(8.17) takes the form
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X. FULL EFFECTIVE EQUATIONS

In this section we obtain the effective equations govern-
ing the dynamics of Brownian suspensions on long-time
scales when the memory effects are important. Our starting
point are Eqs(8.23 and (9.3) for the particle current and
suspension velocity, respectively. The structure of the equa-
tions can be seen most clearly after the Fourier transform in

time
J(k, ) =YL (KEK,0)+ Y] (K)V(K o)
+ X (K, ) E(k, @)+ Xy (K, 0)V(K,o),
(10.2)

K2V (K, w)= %(1— KK)[fo(k, )+ YL (K)E(K, @)

YT (K)V (K, @) + XL (k,w)E(k, )
+X{ (K,@)V(K,o)], (10.2

where

1 (= )
V(K, @)= Ef_ww(k»te'wtdt, (10.3

and analogously fod(k,w»). The kernelsX=(Ae*'B) are
transformed as

X(w)= j:(Ae['tB>ei“’tdt. (10.4)

Using the expansion ik of the kernelsy (k) derived in Sec.

VII together with analogous expansions for the kerngk)

XIE (K@) =Xjg(w) 1+, (10.5
X3 (K,@) = K2y (@) -+, (10.6
t (K,0)= =k, (@) +-, (10.7
T (k) =K3Xge(w)+- -+, (10.8

P. Szymczak and B. Cichocki

—[p+yi +x (0)]VAV(K, )

t t
Yiet Xie(w)

=Fioi( @) —gradp(w) — m

X[V214(w)—grad divly(w)], (10.10b
where as beforgcf. Egs.(7.18 and (7.19]
Jo(@)=J(w)—nE(w) (10.13
and
Fiol @) =fo(w) +nE(w). (10.12

As it can be seen, the inclusion of the retarded response
terms in the effective equations adds new elements in com-
parison with the instantaneous response described by Eqg.
(7.22: the effective viscosity and the effective mobility co-
efficient attain the frequency-dependent temhl$ and g,
respectively. Also the cross terms linkidg with the Laplac-
ian of V and the Laplacian oV with E gain the new,
frequency-dependent contribution$, and x;z, which are
equal to each other due to the Onsager symmetry. The over-
all picture remains the same: We get E40.9bH for the
velocity which must be solved firgfor given boundary con-
ditions). Then, once we have the velocity field, we calculate
the particle current with respect to it with use of the Eq.
(10.93. Note that all the coefficients in the above equations
are obtained from the short-range response kernels and there-
fore they are well-defined, local characteristics of the system.

XI. COLLECTIVE DIFFUSION COEFFICIENT

The expressions for short-range response kernels ob-
tained in Secs. VID and VIII are a good starting point for
calculating transport coefficients of a Brownian suspension.
Here we illustrate this procedure by deriving well-defined
formulas for short- and long-time collective diffusion coeffi-
cient.

To this end, we recall an alternative way of obtaining
diffusion coefficient mentioned in Sec. II: by analyzing the
current induced in the system by an external force acting on

one arrives at the following equations for the diffusion cur-particles. Formuld2.16 together with Eq(4.9) imply that

rent and force density for small but finike

Ja(k, @) =[yje+Xje(w)JE(K,0)

+K(1-kK)[y!, + X, (@) IV(K,0), (10.93
K[ 74y}, + X, (0) V(K o)
= (1—kk){fo(k,0) + nE(k,®)
+K Y Xie(@) JE(K, @)}, (10.9b

T
S_ | B .

and
D' =i ke T Ly fxd’x K,t' 11
o= M sy 3| VT |, dUXe(kt) ], (112

respectively. Further simplification is achieved by comparing
the expressiof(10.]) for the particle current with the Fourier

wherex},, denotes as before the transversal part of the optransform of Eq(4.9) which—in the absence of the imposed

eratorx,,. Finally, we transform back into the spatial do-
main obtaining the set of equations in the form analogous to

Eq. (7.22

3g(@) =[¥je+Xje(@)E(@) ~ [y}, + X, (@) IV2V(K,0),
(10.10a

flow v,—reads

Ik, 0) =Y e(KE(K,0)+ Xk o)EKwo). (113

Analyzing the smallk behavior of both Eqs(10.1) and
(11.3 and using the zero net flux condition for the average
suspension velocity, Eq1.1), one concludes that
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lim Y.e(k)=y; 11. 1
o Vie(l=Yie 1.4 M(t)=lim M(k,t)= — —X;(1). (1.8
k—0 Yie
and
lim Xje(k,t)=xe(t) (115 N Note that in the above formulas both the diﬁu_sion coef-
K0 ficients and the memory function are expressed in terms of

the fast decaying, short-range kernels. Therefore, they de-
pend only on the local characteristics of the suspension and
not on the shape and size of the system. However, there is a

where Eqs(7.9) and(10.5 have been used. Thus the collec-
tive diffusion coefficients can be identified with

< keT price to pay: The expressions for the irreducible terms mak-
Dc:mym (11.6 ing up the response kernels become increasingly more com-
plex with the number of particles involved. An example may
and be found in Ref. 39 where the three particle terms making up
ke w the instantaneous response ker¥igl are analyzed. One of
DCZM ij+f XjE(t,)dt,}: (11.7  the tools which facilitates the analysis is a diagrammatic
0 technigue developed in Ref. 38.
where nok—0 limit is performed. Let us now analyze the memory contribution to long-

A similar formula can be obtained for the long- time diffusion coefficient in some detail. First, by inserting
wavelength limit of the memory function. Namely, by com- the explicit expressions for the transport kernels given by
paring Eqs(11.6 and(11.7) with relations(2.14) and(2.15 Egs. (4.129 and (4.133 into the relation(11.8 for the
one concludes that memory function we get

((Z g, k[V+BF]I] Mik) - (2 mp[VI+BFmI] Mlp(t ) >|rr
ﬂ<2lj 1Tr/’«|1> "

M(t)= (11.9

It is instructive to calculate the memory function in the ab-However, the virial expansion of the denominator of Eq.
sence of hydrodynamic interactions, i.e., when the mobility(11.9 is known to be in the forf'®
matrix is of the form

Irr
— 24 ...
;Lij=p,05ij . (1110 3N,U«o<|2—1 Tr”“lj> _18(1+el¢+82¢ + )
In this limit M(t) reads simply (11.14
For example for hard-sphere suspensions the paranmsters
,6,39,41
S Fir 2 Fu), (1119  ande; read
3N,u0 ihj=1 kil
e,=—6.546, e,=21.918. (11.15

where the irreducibility requirement in the average is re-
laxed, since in the absence of hydrodynamic interactions th&US We concentrate on the numerator of El.9 and
terms are devoid of alG connectors, not only the solitary CONsider the function

ones. However, the sums in vertices of Efjl1.11) vanish 2 s

since the sum of all interparticle forces is equal to zero.  T(1,2 )= 2{ E (Vi+ BFj) - ik

Therefore in systems without hydrodynamic interactions the 3NBuglijk=1

short- and long-time collective diffusion coefficients are s

equal. [ > (Vi BFm) (1)
On the other hand, when the hydrodynamic interactions I,mp=1 " :

cannot be neglected there is a nonzero contribution from the

. ) L =12.... 11.1
memory effects tdD.. The magnitude of this contribution ST ( 9
can be measured by the dimensionless faafr The successive terms in its cluster expansion,
DS-D; (= ° -
= S :f M(t")dt’. (11.12 T(1,2,....s0)=> T(i;t)+> T(i,jit)+-,
D: 0 i=1 i<i
For a dilute suspension, the memory function may be ana- s=1.2..., (11.19
lyzed by means of the virial expansion in the volume frac- . . . .
tion: determine the subsequent terms in the virial expansion
(11.13 of M(t). In particular, one-particle contributions,
M (t)=my(t)+my(t) p+mg(t) p?+---. (11.13  T(i;t)=T(i;t), vanish since in this casg is again of the
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form (11.10. To analyze the two-particle term we use fol- simple to prove that the three-particle contribution is non-
lowing symmetries of two-body hydrodynamic matrites zero, for example by calculating an initial valog(0) for a
hard-sphere gas

Vi po= = Vo pio= =V pyy, 3

2
Vi p1= = Vo = = Vo g, m3(0)=f ddeRs( > Vi'/uij) W(1,2,3, (11.29

ij=1

The above relations give whereW(1,2,3) is unity for nonoverlapping configurations

2 of the spheres and vanishes otherwise. This integral could be
> Vi =0. (11.18  performed numerically using full hydrodynamic interactions
k= involving three spheres, following the scheme presented in
Moreover, using the symmetries of the two-body mobility Ref. 43. The calculation givesi3(0)=1.42+0.02. Interest-
matrix and the fact that a sum of interparticle forces in theingly enough, a good estimate of; could be obtained by
system vanishes, one gets considering the long interparticle distance asymptotics. It

, turns out® that the main contribution comes from strongly

E ooy =0 (11.19 asymmetric configurations in which two of the particlésr
gl M= ' example, 1 and)2are much closer to each other than they are
to the third. In this case the integrand function in EQL.24
The two relationg11.18 and(11.19 yield scales asymptotically &,;' . The integration of asymptotic
T(i,j:t)=0. (11.20 terms givesm$%(0)~1.9 which is of the order ofng(0)

itself. The asymmetry of the configuration is the key element
Since the one-particle termigi;t) vanish one concludes that here, since the divergence of the mobility matrix summed
alsoT(i,j:t)=0. The above analysis together with relation Over all particles
(11.19 leads to the conclusion that the two lowest terms in
the virial expansion of the memory function vanish: di:; Vi mi (11.25

my (1) =my(t)=0. (11.29 which appears in Eq11.24 vanishes for all regular configu-
Let us now study the three-particle term. First, we notice thafations of the particles, such as periodic lattices, and thus can
from the fact that the one- and two-particle operafbfit) be considered as a measure of asymmetry of the configura-

andT(i,j;t) vanish, and from Eq(11.17, one obtains ton.

T(1,2,31)=T(1,2,3). (11.22  XI. NUMERICAL CALCULATION
OF THE MEMORY FACTOR
Another useful property of three-particle term is thall: the

nonzero three-particle terms making uf(1,2,31)) are We have numerically estimated the values of the

irreducible and thereforéT(1,2 3t)>irr =(T(1,2,31)). memory factor for hard-sphere suspensions using Brownian
Proof The kernel (T(1’2'31t)> can be written as dynamics simulations in periodic boundary conditions.
(A(1,2,385'B(1,2,3)). Howe’vér the sum of all the terms The use of periodic boundary conditions simplifies con-

¢ siderably the expression for the memory function. Namely,

in which eitherA or B does not depend on the positions o - : g X L
all three particles but only one or two of them vanishes?s it was mentioned in the Introduction, when deriving the

because of the symmetries mentioned above. What remair‘fgc’bi”ty matrix for a perio_dic system_one_adds the constraint
are the terms in which particlegd,2,3 are connected with that ths% loqft suspension  velocity in whole sample
each other by at least one bondAnand one inB. All such v
terms are irreducible. O

Thus one could relax the irreducibility condition while
calculating the virial coefficientng. An explicit expression
for this quantity is

vanishe as otherwise the divergences in the fluid ve-
locity field appear. In that way Eql.1) is automatically
satisfied which, in turn, implies that we can relax the irre-
ducibility condition in Eg.(11.9 and the expression for
M(t) in the case of hard spheres takes a relatively simple

form
1 N
Ma(0)= ——rr— J dRy, J dRys (N ol Vi (001 [V (D) per
sam aS Fo Mn)= B(Ei'\,‘j=lTrﬂij>per - (129
« 2 (V+BF) - my where the symbol ), stands for the average over hard-
x| i Pk sphere configurations with periodic boundary conditions.

It is reasonable to calculatd (t) in two steps. First one
e~ B(R12.R13 computes an initial value of the memory functibh(t=0)
‘ and then carries out the calculations of the mean relaxation
(11.23 time 7y=M(t=0)"1[{M(t)dt. The reason behind this is
' thatM (0) can be calculated with great precision by means of
At this time, there is no apparent reason why the above coequilibrium averaging only, while the relaxation time re-
efficient should vanish. On the contrary, it is relatively quires Brownian dynamic simulations which are much more

3

.mE (Vi BFa) - (1)
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TABLE I. The initial values of the memory functiokl (t=0), mean relax-
ation timery, , and memory factoA for hard-sphere suspension of volume
fraction ¢ obtained from equilibrium Monte Carlo averaging and Brownian
dynamics simulations.

N
sz vf(r)dr+2 u;(r)dr, (A.2)
Vi i=1 JV;

whereV; denotes the volume occupied by the fluid whereas

¢ D, 'a?M(t=0) Doa ?7y A V; stands for the volume of thgh particle. Nexty; is a fluid
0.01 (1.580.05)x10 * flow field, while fieldsu;(r) describe rigid body motion of
0.1 (1.7£0.1)x 10 2 particlei [cf (3.2)]. However,
02  (9.260.3)x10°2  (1.25+0.25)x10°!  (1.0+0.3)x10 2
03  (24:0.15)x10°! (1.20:025)x10°1  (3=1)x 102 _s _(Xavp) _y s (A3)
04  (5.4:03)x10°'  (0.90:0.2)x10°!  (5+1.5)x10°2 Va™ %aplp xXg “ Xy :
0.45  (6.70.2)x10°!

Since the last term on the right-hand side of the above equa-
tions vanishes for incompressible velocity fields, we can re-
write Eq. (A2) in the form

expensive numerically. Therefore, as it was noted by Zwan- N

z?g and Ailawadi*® such a two-step prpcedure in_creases con- | _ \4; vi-nrdo+ E (U—V;)-nrdo,

siderably an accuracy of the numerically obtained memory W i=1Js

function.

(A.4)

where Gauss theorem has been used to convert the volume

The details of the calculations are given elsewH&fé.
Here we just point out that the main difficulty we faced

turned out to be the calculation of the divergence of mobility

matrix V-u needed in Eq(12.1) for the memory function.
Although in principle the divergence gi may be obtained
by a “brute-force” numerical differentiation, such a scheme
is not only extremely time consuming and memory consum
ing but also inaccurate. Instead, we have devised a scheme
calculating the divergence of mobility matrix in an analytical
way with use of the multipole expansion metHd.

The final results of the numerical calculations are given,

in Table 1. They show that the memory factor is nonzero
relatively small, but increases with the volume fraction
reaching the value of 5% at the volume fracti¢r 0.4. This

result is in qualitative an agreement with experimental datas,
(cf. Ref. 15. The presence of nonzero memory factor dis-
proves the conjecture by Dhont in Ref. 2 that the coIIectivez

diffusion coefficient is independent of time.

Xlll. SUMMARY

. . . .14
We have derived the macroscopic equations governing
the long-time dynamics of Brownian suspensions analogous

to those derived by Felderh&,Nozigres!* and Noetinget

but with inclusion of memory effects caused by the relax-
ation of the distribution function. The coefficients in these,,

equations are given by well-defined expressions, free of d

integrals to surface integrals. Harédenotes the walls of the
container and is a unit vector normal to the surface, point-
ing outwards.

However, since there is no flow through the container
walls nor through the surfaces of the spheres and the con-
tainer is at rest we conclude that all the integrals in @d})

%?nlsh and finallyl =0.
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