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We obtain macroscopic equations for average suspension velocity and particle current in a Brownian
suspension valid on long time scales for which the memory effects are important. The coefficients
in these equations depend solely on local properties of the medium. This formalism allows one to
obtain well-defined theoretical expressions for transport coefficients, free of the integrals diverging
with the size of the system. As an example, the expression for long-time collective diffusion
coefficient is derived and the memory contribution to this coefficient is estimated.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1767994#

I. INTRODUCTION

Suspensions of interacting Brownian particles display a
rich diversity of dynamical behavior which is the subject of
ongoing theoretical studies and experiments. However, the
analysis of Brownian suspensions is hindered by complicated
nature of interparticle interactions which include direct
forces~such as Coulomb or van der Waals! as well as indi-
rect interactions mediated by the solvent. These so-called
hydrodynamic interactions are truly complex: They are long
ranged, nonlinear in nature, and cannot be expressed as a
sum of two-body terms. Instead, they are characterized by
either the friction matrix~which gives the forces and torques
acting on the particles in terms of their velocities! or its
inverse, mobility matrix, which relates velocities to the
forces.

For a typical colloidal suspension, the time scales probed
by dynamic light scattering and sedimentation experiments
are much longer than both the particle velocity relaxation
time (tv5a2rp /h) and the viscous relaxation time (th

5a2r f /h). Hererp andr f are the particle and fluid density,
respectively,a is the particle radius, andh is the viscosity of
the fluid. In this time regime, the main role in the suspension
dynamics is played by the Brownian motion. A characteristic
time scale of this process is a structural relaxation time,tR

5a2/Do , i.e., the time required for a particle to diffuse over
its radius (Do is the single-particle diffusion coefficient!.

In general, transport coefficients have different values in
the short-time regime~i.e., for timest short with respect to
tR but still long with respect to bothtv and th) in which
particles have hardly moved and for long times (t@tR)
when the relaxation of the distribution of particle positions
becomes important. This relaxation gives rise to the memory
effects described by an appropriate memory function. Then,
the difference between short- and long-time transport coeffi-
cients can be expressed in terms of the small wave number,
k→0, limit of the memory function.1,2 However, this limit is
often cumbersome to carry out and, in particular, it is not
equal to thek50 value of the memory function. This type of
discontinuity atk50 is a common feature of calculations of
transport coefficients in suspensions3–8 inseparably con-
nected with the presence of long-range hydrodynamic inter-

actions. In fact zero wave number value of the memory func-
tion picks up a contribution from the motion of a system as a
whole. This contribution depends on shape of the container
and is given by integrals which diverge with the size of the
system. To remove it, the equations should be supplemented
by the condition that the system as a whole is at rest, i.e., the
container walls are kept immobile~zero net flux condition!.
For incompressible fluid, this condition is equivalent to

E
V
v~r !dr50. ~1.1!

Herev~r ! is equal to the fluid velocity ifr is inside the fluid
and coincides with the rigid body motion whereverr lies
inside the particle. The proof of the above relation is given in
Appendix A.

Notably, a similar problem occurs when calculating the
flow field in a suspension with periodic boundary
conditions.9,10 Here the solution of Stokes equations contains
terms which diverge with the size of the system. To get rid of
them, one either supplements the equations with the rigid
wall boundary condition at the outer boundary of the system9

or counterbalances the forces acting on particles with a force
density exerted on the fluid, so that the total force acting on
the suspension vanishes.10 It can be shown that both proce-
dures lead to the zero net flux condition~1.1!.

It is not always easy to take the condition~1.1! into
account while calculating transport coefficients. For a sedi-
mentation coefficient such a procedure has been successfully
carried out by Nozie´res,11 Felderhof,12 and Noetinger.5 They
have obtained macroscopic equations for average suspension
velocity and sedimentation velocity with the coefficients de-
pending on local properties of the suspension only. The
shape and size of the system enter the equations solely
through the boundary conditions. As it has been pointed
out11,13 the situation here is reminiscent of that encountered
in the theory of dielectrics, which are described in terms of
polarizationP and electric fieldE. Even though the fields,
which are obtained by solving Maxwell’s equations, are
strongly dependent on geometry of the system, the coeffi-
cients in the constitutive equations~such as dielectric con-
stant! are local properties of the medium.
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Our goal is to apply similar considerations to the analy-
sis of memory effects in dynamics of colloidal suspensions.
We show that also in this time regime, when the relaxation of
the distribution of particle positions must be taken into ac-
count, the suspension can be described by macroscopic equa-
tions with local coefficients. This time, however, coefficients
attain frequency dependent terms. In particular, we obtain a
well-defined expression for long-time collective diffusion co-
efficient, which is free of any discontinuities atk50 and
estimate its value numerically.

The paper is organized as follows: In Sec. II, the
memory formalism is applied to the dynamics governed by
Smoluchowski equation. In particular, memory function for
collective diffusion of Brownian particles is introduced. In
the following section basic characteristics of hydrodynamic
interactions in a suspension are given. The presence of hy-
drodynamic interactions is crucial for existence of nonzero
memory effect in collective diffusion: It may be proved14

that the memory function vanishes for suspensions so dilute
that either hydrodynamic interactions can be totally ne-
glected or the two-body approximation for mobility matrix
used. In Sec. IV we analyze the particle current and convec-
tive flow induced in the system by external disturbances both
in short-time and long-time regime. We find that the response
kernels are long ranged and diverge with the size of the
system. To circumvent that problem a special regularization
scheme, similar in spirit to that presented by Felderhof in
Ref. 12, is devised. For short-time response kernels, the
regularization scheme is outlined in Secs. V and VI. Next, in
Sec. VIII the regularization scheme is constructed for kernels
describing time-dependent response of the system. This leads
to macroscopic equations for average velocity fields with
local frequency-dependent coefficients derived in Sec. X.
Next, in Sec. XI the problem of long-time diffusion is revis-
ited and the expression for collective diffusion memory func-
tion in terms of regularized response kernels is derived. Fi-
nally, the numerical results for the memory contribution to
long-time collective diffusion coefficient are presented in
Sec. XII.

II. MEMORY EFFECTS

The system under consideration consists ofN identical
spherical particles of radiusa immersed in an incompressible
fluid of shear viscosityh. The particle Reynolds number is
assumed to be small so that the inertial effects are negligible
and the fluid can be described by Stokes equations. As it was
mentioned in the Introduction, the time scales of interest are
much longer than both the particle velocity relaxation time
tv and the viscous relaxation timeth . On these time scales
the fluid motion is governed by stationary Stokes equations
whereas the evolution of the particle distribution function in
the configuration space,P(X,t), is described by the gener-
alized Smoluchowski equation15

]

]t
P~X,t !5D~X!P~X,t !,

~2.1!

D~X![ (
i , j 51

N
]

]Ri
•Di j ~X!•F ]

]Rj
1bFi G ,

where X5(R1 ,R2 , . . . ,RN), Ri being the position ofi th
particle andFi—the force acting on it. Next,b51/kBT and
D~X! is the diffusion matrix, which by the generalized Ein-
stein relation

Di j 5kBTmi j
t t ~2.2!

is connected with the translational mobility matrixmtt. The
latter is obtained by solving the hydrodynamic problem of
finding the velocities of the particles,Ui ,i 51, . . . ,N, in
terms of the forces acting on them~in the absence of torques!

Ui5(
j

mi j
t tFj . ~2.3!

In general, due to hydrodynamic interactions, the mobility
matrix depends on configurationX and is nondiagonal in
particle indices~the exact definition ofm will be given in
Sec. III!.

The basic correlation function probing the collective dy-
namics of the suspension is the intermediate scattering func-
tion

F~k,t !5 lim
`

1

N
^c~k,0!c~2k,t !&, ~2.4!

which is the autocorrelation function of microscopic density
fluctuations

c~k,t !5C~k,t !2^C~k,t !&, ~2.5!

with

C~k,t !5(
i

eik"Ri (t). ~2.6!

In the abovek is the wave vector,Ri(t)—the position ofi th
particle at timet, andc(k)[c(k,0). Bracketŝ¯& stand for
the average over the equilibrium distribution

Peq~X!5e2bf(X)/Q, ~2.7!

whereQ is the normalization constant andf(X)—potential
of interparticle interactions. Next,L is the adjoint Smolu-
chowski operator obeying

DPeq~X! . . . 5Peq~X!L . . . .

Finally, lim` stands for the thermodynamic limit in which
the size of the sample goes to infinity while densities of
extensive parameters are kept constant.

For convenience, we will adopt the following bra-ket
notation

^Au5E dXPeq~X!A~X! ~2.8!

and

uB&5B* ~X!, ~2.9!

where star denotes complex conjugation. Thus the equilib-
rium distributionPeq is always placed at the left-hand side
of an expression. In the above notation, the expression~2.4!
for intermediate scattering function can be rewritten as
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F~k,t !5 lim
`

1

N
^c~k!ueLtuc~k!&. ~2.10!

The t50 value ofF(k,t) defines the static structure factor
S(k)

S~k!5 lim
`

1

N
^c~k!uc~k!&. ~2.11!

The time derivative of intermediate scattering function
can be written as1

]

]t
F~k,t !52V~k!F~k,t !1V~k!

3E
0

t

dtM ~k,t!F~k,t2t!, ~2.12!

with the first cumulantV~k! defined by

V~k!52
] logF~k,t !

]t U
t50

~2.13!

and the memory functionM (k,t). In the limit t→0 only an
instantaneous response described by the functionV~k! gov-
erns the evolution ofF(k,t). For small wave numbers the
decay rate of intermediate scattering function in this time
regime is characterized by the short-time collective diffusion
coefficient

Dc
s5 lim

k→0

V~k!

k2 . ~2.14!

For long times,t@tR , the effects of the relaxation of the
distribution of particle positions must be taken into account.
The corresponding long-time diffusion coefficientDc

l reads

Dc
l 5 lim

k→0

V~k!

k2 F12E
0

`

M ~k,t!dtG . ~2.15!

The collective diffusion coefficient can be also assessed in a
different way. Namely, as it was first pointed out by
Einstein,16 Dc may be obtained by studying the current in-
duced in the system by an external force applied to the par-
ticles. The corresponding relation reads

Dc5
kBT

S~0!
K, ~2.16!

where the sedimentation coefficientK is given by the ratio of
sedimentation velocity to the acceleration of external field.
As the time scales involved in sedimentation experiments are
usually considerably longer than the structural relaxation
time the diffusion coefficient obtained in that way can be
identified withDc

l .
We return to the memory function equation~2.12!. In

frames of Zwanzig–Mori projection operator formalism17,18

the first cumulant can be shown to be

V~k!52
1

NS~k!
^c~k!uLuc~k!&, ~2.17!

whereas the memory function~in the Laplace domain! reads

M ~k,z!5
1

S~k!V~k!
^c~k!uLQ

1

z2L̂
QLuc~k!&.

~2.18!

Here the Laplace transform is defined as

M ~k,z!5E
0

`

M ~k,t !e2ztdz,

andQ is the projection operator,

Q512
uc~k!&^c~k!u

S~k!
, ~2.19!

onto the subspace of dynamic variables orthogonal toc(k)
andL̂ is the orthogonal part of the operatorL,

L̂5QLQ. ~2.20!

However, evaluation of diffusion coefficients with the use of
Eqs. ~2.14! and ~2.15! is nontrivial because of the long-
wavelength,k→0, limit involved. Namely, due to the pres-
ence of hydrodynamic interactions in the system, the diffu-
sion matrix Di j has nonzero nondiagonal (iÞ j ) elements,
which decay with interparticle distanceRi j as Ri j

2g with g
51,2,3. Such long-ranged interactions can cause discontinu-
ity in memory function atk50,1 so that in general it is not
possible to identify limk→0 M (k) with M (k50) which
would be desirable for practical reasons. As it was mentioned
in the Introduction, the discontinuity can be removed if one
ensures that the zero net flux condition~1.1! is fulfilled.
However, it is hard to take this condition into account while
using the memory function formalism. One of the ways of
dealing with this problem is to use an alternative way of
obtaining transport coefficients: by investigating the linear
response of the system to external disturbances. It turns out
then that it is possible to incorporate the zero net flux con-
dition ~1.1! directly into the equations.

However, before applying the linear response theory, let
us review the basic facts about hydrodynamic interactions as
they are playing a crucial role in determining the dynamics
of the system.

III. HYDRODYNAMIC INTERACTIONS

The dynamics of colloidal suspension has many-body
character due to the presence of hydrodynamic interactions.
As mentioned at the beginning of Sec. II the flow in our
system is governed by the stationary Stokes equations. In
this case the relation between the forces and torques acting
on the particles and their velocities is linear. In the absence
of external flow, this relation defines the friction matrixz

SFT D5z S U
V D , ~3.1!

with

z5S z tt z tr

z rt z rr D .

Here F̃5(F,T ) is the 6N-dimensional vector comprising
the forces and torques acting on the each ofN particles:
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(F,T)5(F1 ,F2 , . . . ,FN ,T1 , . . . ,TN) whereasŨ5(U,V)
is the vector built from the translational and rotational ve-
locities of the particlesŨ5(U1 , . . . ,UN ,V1 , . . . ,VN). The
matricesz pq (p,q5t or r ) are the 3N33N Cartesian ten-
sors, and the superscriptst and r correspond to the transla-
tional and the rotational components, respectively.

As it was shown by Mazur and Bedeaux19 if the particles
are impenetrable to the flow and the stick boundary condi-
tions at their surfaces are assumed, then validity of Stokes
equations may be formally extended inside the particles:

h“2v2¹p1fo~r !1f~r !50,

“"v50,
~3.2!

v~r !5ui~r !5Ui1Vi3~r2Ri ! for ur2Ri u<a,

p~r !50 for ur2Ri u<a.

Here fo(r ) is an external force density applied to the fluid,
such as gravity. Next,f~r ! is an induced force density local-
ized on the particle surfaces.19,20

The total force and torque with which particles act on a
fluid are then given by

Fi5E f~r !u i~r !dr ,

~3.3!

T i5E ~r2Ri !3f~r !u i~r !dr ,

where

u i~r !5u~a2ur2Ri u! ~3.4!

is the characteristic function of the particlei .
The solution of hydrodynamic equations~3.2! can be

written as

v~r !5vo~r !1E G~r ,r 8!•f~r 8!dr 8, ~3.5!

where vo(r ) is the flow in absence of the particles and
G(r ,r 8) is the Green tensor. For an unbounded fluidG(r ,r 8)
is given by the Oseen tensorGo

G~r ,r 8!5Go~r2r 8!,
~3.6!

Go~r ![
1

8ph

11 r̂ r̂

r
, r̂5

r

r
.

From now on we follow the formalism and notation de-
vised by Felderhof, Cichocki, and their co-workers.21–24

From linearity of Stokes equations one infers that the force
density can be expressed as

f~r !5E Z~r ,r 8!•@v~r 8!2vo~r 8!#dr 8, ~3.7!

with the friction kernelZ(r ,r 8). This kernel can be assessed
by the following procedure. Let us consider some point on
the surface ofi th sphererPSi . Expression~3.5! for the flow
velocity v~r !, which in this case must be equal toui(r ), can
be written as a sum of the following terms:

v~r !5ui~r !5vo~r !1E G~r ,r 8!•f i~r 8!dr 8

1(
j Þ i

E G~r ,r 8!•f j~r 8!dr 8

rPSi , i 51, . . . ,N, ~3.8!

where the contributions toui(r ) from the force density on
the particle i :@ f i(r )5f(r )u i(r )# and on the particlesj Þ i
have been singled out. The first of these terms can be written
using the one-particle friction operatorZo( i ) @defined by Eq.
~3.7! for a single sphere# as

@Zo
21~ i !f i #~r ![E G~r ,r 8!•f i~r 8!dr 8 rPSi , ~3.9!

whereas the second one is used to define the Green operator
G( i j )25

@G~ i j !f j #~r ![E G~r ,r 8!•f j~r 8!dr 8 iÞ j rPSi .

~3.10!

Equation~3.8! can be rewritten in a compact way as

ui2vo5(
j

~Zo
211G! i j f j , ~3.11!

where

Zoi j5Zo~ i !d i j Gi j 5G~ i j !~12d i j ! ~3.12!

are the N3N operator matrices in the particle indices. Here
and below we use the script letters (Zo ,G,F, . . . ) for ob-
jects acting in the particle index space. Subsequently, we
further simplify the notation by omitting the sum over par-
ticle indices. Under this notation, Eq.~3.11! becomes simply

u2vo5~Zo
211G!f, ~3.13!

with

u5~u1 , . . . ,uN!, ~3.14!

f5~ f1 , . . . ,fN!. ~3.15!

Comparing Eq.~3.13! with Eq. ~3.7! yields the following
expression for the friction kernel

Z5
1

Zo
211G . ~3.16!

The forces and the torques acting on the particles are ob-
tained from the force densityf by Eq. ~3.3!, which can be
written in the operator language as

F̃5Pf, ~3.17!

where the tensor projection operatorP5(Pt,Pr) is given
by

Pi
t~r !5u i~r !1, i 51, . . . ,N

~3.18!Pi
r~r !5u i~r !eabg~r2Ri !g .

With the use ofP the relation between the friction ma-
trix z and the friction kernelZ can be written as

z5PZP. ~3.19!
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For examplez12
tt is given by

z12
tt 5E E drdr 8u1~r !Z~r ,r 8!u2~r 8!5PtZPt. ~3.20!

To solve the integral equation~3.13!, the velocity field
@ui(r )2vo(r )# rPSi

and force densitiesf i are expanded in
terms of irreducible multipoles.26 In this way the problem is
reduced to an infinite system of linear algebraic equations for
matrix elements, which are labeled by the particle number
and by three multipole indicesl , m, s, where l 51,2,. . . ,
while m52 l , . . . ,1 l , ands50,1,2.

In particular, the lowest force multipolef i ; l 51,s50 is
proportional to the total forceFi acting on i th particle
whereas the multipolef i ; l 51,s51 is proportional to the total
torqueT i . In the case of velocity field the multipolesl 51;
s50,1 correspond to particle translational and rotational ve-
locities, respectively. Hence in the multipole formalism the
operatorP is a projector on subspacel 51; s5(0,1).

An explicit form of the operatorsZo andG in multipole
notation can be found, e.g., in Ref. 25. Here we only mention
that the matrix elementG( l ,s; l 8,s8;Rj i ) describing an in-
fluence of the force multipole (l 8,s8) on i th sphere on the
velocity multipole (l ,s) on the j th sphere for the case of
infinite space decays with an interparticle distance as

Rji
2( l 1 l 81s1s821) . Hence the interactions between low mul-

tipoles are of infinite range as they contain termsRji
2g with

g51,2,3.
Returning to the analysis of hydrodynamic operators, let

us now find forces acting on particles in the presence of the
ambient flow. From Eq.~3.7! one gets in this case

F̃5z•Ũ2PZvo . ~3.21!

The above formalism can also be used to solve the mobility
problem: finding velocities of the particlesŨ for given
forcesF̃ and flowvo . In this case, the relation~3.21! gives

Ũ5z21F̃1z21PZvo[mF̃1Cvo , ~3.22!

which defines the mobility matrixm,

m5z21, ~3.23!

together with the convection kernelC,

C5mPZ. ~3.24!

The mobility matrix m allows us to find translational and
rotational velocities of particles in terms of forces and
torques acting on them in the absence of an external flow

S U
VD5mSFT D ,

~3.25!

m5S mtt mtr

mrt mrr D .

Finally, let us consider a problem of finding the force
densityf for given forcesF̃Þ0 and ambient flowvo . In this
case, from Eqs.~3.21! and ~3.7! we obtain

f5C̃F̃2Ẑvo , ~3.26!

whereC̃ is the transpose ofC operator

C̃5ZPm, ~3.27!

while the convective friction kernelẐ27 is given by

Ẑ5Z2ZPmPZ. ~3.28!

For further considerations, we need the scattering expansions
of the above introduced kernels in terms of one-particle op-
erators and the Green operatorG, analogous to Eq.~3.16! for
the friction kernel.

For example, for the convective friction kernelẐ one
gets the expression

Ẑ5Ẑo~11GẐo!215 (
k50

`

Ẑo~2GẐo!k, ~3.29!

whereas the mobility operator can be written as

m5mo1moPZo

1

11GẐo

GZoPmo

5mo1 (
k50

`

moPZo~2GẐo!kGZoPmo , ~3.30!

where

mo5
1

PZoP
~3.31!

is the one-particle mobility matrix whereasẐo is one-
particle convective friction matrix, given by a relation analo-
gous to Eq.~3.28!

Ẑo5Zo2ZoPmoPZo . ~3.32!

The matrix Ẑo differs from Zo only in l 51 subspace.
Moreover, since

PZomo5P, ~3.33!

one concludes thatẐoP5PẐo50.
Finally, formulas for the kernelsC and C̃ introduced

above read20

C̃5ZoPmo2ẐGZoPmo5 (
k50

`

~2ẐoG!kZoPmo ,

~3.34!

C5moPZo2moPZoGẐ5 (
k50

`

moPZo~2GẐo!k.

~3.35!

From now on we are going to denote translational part of
mobility matrix mtt simply by m, as onlymtt appears in sub-
sequent considerations. Analogous convention is to be
adopted when writing other hydrodynamic operators likeC
and C̃. Here we would also be concerned only with their
translational parts, but we are not going to denote them byC̃t

andCt in order to keep the notation simple.
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IV. LINEAR RESPONSE FOR SMOLUCHOWSKI
DYNAMICS

In this section we apply the linear response theory to
generalized Smoluchowski equation. Our aim here is to
evaluate the mean force density and particle current induced
by external disturbances: imposed flow fieldvo(r ) and exter-
nal forcesE5(E1 , . . . ,EN).

To begin with, let us notice that in the presence of the
flow vo(r ) and external forcesE the Smoluchowski operator
D(X,t) ~2.1! acquires additional terms and reads28

D~X,t ![ (
i , j 51

N
]

]Ri
•Di j ~X!•F ]

]Rj
1b~Fi1Ei !G

1
]

]Ri
•Ci~X!•vo . ~4.1!

Next, let us find the mean particle current and force density.
The former is given by the following ensemble average

^ j ~r ,X!& t[K (
i 51

N

Ṙid~r2Ri !L
5K (

i 51

N

LRid~r2Ri !L
t

, ~4.2!

where the symbol̂ & t denotes the average overP(X,t). In-
serting the explicit form of adjoint Smoluchowski operator
yields

^ j ~r ,X!& t5K (
i 51

N H S b21
]

]X
1F1ED •m~X!

1C~X!voJ
i

d~r2Ri !L
t

, ~4.3!

where$ % i stands fori th component~in particle indexes! of
the operator in brackets. For example

$E"m~X!% i5(
j

Ej•mj i 5(
j

mi j •Ej , ~4.4!

where the symmetry of mobility matrix has been used in the
last equality.

By considerations similar to the above one can also find
the mean force density. As it has been shown in Ref. 28 it is
given by the formula

^f~r ,X!& t5 K S b21
]

]X
1F1ED •C~X!2Ẑ~X!voL

t

.

~4.5!

In deriving the linear response formulas for the system of
Brownian particles the approach due to Felderhof and
Jones29,30 is adopted. It is assumed that particles were at
equilibrium in the infinite past so that the probability distri-
bution P(X,t→2`) is equal toPeq(X) given by Eq.~2.7!.

Subsequently the fieldsE and vo are turned on and the
distribution changes to

P~X,t !5Peq~X!1dP~X,t !, ~4.6!

with dP(X,t) obeying~to the linear order inE andvo)

]dP~X,t !

]t
2DdP52

]

]X
•$@mE~ t !1Cvo~ t !#Peq%.

~4.7!

The solution with initial conditiondP50 for t52` is
given by

dP~X,t !52PeqE
2`

t

dt8eL(t2t8)S ]

]X
1bFD

•@mE~ t8!1Cvo~ t8!#. ~4.8!

This allows us to rewrite the expressions for^f(r ,X)& t and
^ j (r ,X)& t as

^ j ~r !& t5E dr 8@Y jE~r ,r 8!E~r 8,t !1Y j v~r ,r 8!vo~r 8,t !#

1E dr 8E
2`

t

dt8@X jE~r ,r 8,t2t8!E~r 8,t8!

1X j v~r ,r 8,t2t8!vo~r 8,t8!#[^ j & t
inst1^ j & t

ret ,

~4.9!

^f~r !& t5E dr 8@Y f E~r ,r 8!E~r 8,t !1Y f v~r ,r 8!vo~r 8,t !#

1E dr 8E
2`

t

dt8@X f E~r ,r 8,t2t8!E~r 8,t8!

1X f v~r ,r 8,t2t8!vo~r 8,t8!#[^f& t
inst1^f& t

ret ,

~4.10!

where an auxiliary force fieldE(r ,t) was introduced, such
that

Ei~ t !5E d~r2Ri !E~r ,t !dr ~4.11!

and we have singled out instantaneous and retarded part of
system’s response@corresponding to averaging overPeq and
dP in Eq. ~4.6!, respectively#. The former appears immedi-
ately afterE or vo is turned on and follows the change of the
external perturbation, while the latter describes memory ef-
fects due to the change of the distribution function induced
by external forces.

Instantaneous response kernels introduced above read29

Y jE~r ,r 8!5K (
i , j 51

N

d~r2Ri !mi j d~r 82Rj !L , ~4.12a!

Y j v~r ,r 8!5K (
i 51

N

d~r2Ri !Ci~r 8!L , ~4.12b!

Y f E~r ,r 8!5K (
j 51

N

C̃~r ! jd~r 82Rj !L , ~4.12c!

Y f v~r ,r 8!5^2Ẑ~r ,r 8!&, ~4.12d!

whereas time-dependent response kernelsX are given by
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X jE~r ,r 8,t !52b21K (
i , j 51

N

d~r2Ri !@m•¹Q # ie
Lt

3@~¹W 1bF!•m# jd~r 82Rj !L , ~4.13a!

X j v~r ,r 8,t !52b21K (
i 51

N

d~r2Ri !@m•¹Q # ie
Lt

3~¹W 1bF!•C~r 8!L , ~4.13b!

X f E~r ,r 8,t !52b21K C̃~r !•¹Q eLt

3(
j 51

N

@~¹W 1bF!•m# jd~r 82Rj !L ,

~4.13c!

X f v~r ,r 8,t !52b21^C̃~r !•¹Q eLt~¹W 1bF!•C~r 8!&,
~4.13d!

where the symbols¹Q and¹W denote the operator]/]X acting
to the left and to the right, respectively.

In the next sections we study the internal structure of the
response kernels in a detailed way. Particular attention will
be paid to identification and subsequent removal of long-
range terms in the kernels, which make the relations~4.9!
and ~4.10! nonlocal.

V. CLUSTER STRUCTURE

The kernelsY and X defined in Eqs.~4.12! and ~4.13!
contain integrals of the form

I 5E A~X,r ,r 8!Peq~X!dX, ~5.1!

where A stands for an operator such as( i , j 51
N d(r

2Ri)mi j d(r 82Rj ) or Ẑ(r ,r 8). To analyze the structure of
these expressions let us rewriteA(X,r ,r 8) in form of mul-
tiple scattering series20—i.e., as a sum of terms, each con-
taining the product of one particle operators and Green op-
erators @cf. Eqs. ~3.29!, ~3.30!, ~3.34! and ~3.35!#. For
example Eq.~3.29! gives for the convective friction kernel,

Ẑ~1..N! i j 5Ẑo~ i !d i j 2Ẑo~ i !G~ i j !Ẑo~ j !~12d i j !

1(
k

Ẑo~ i !G~ ik !Ẑo~k!G~k j !Ẑo~ j !1¯,

~5.2!

with the condition that no label should be repeated in suc-
cession. Successive terms in the series~5.2! have clear physi-
cal interpretation—they correspond to increasing number of
subsequent reflections of the velocity field by intermediate
spheres propagating the interaction.

The next step is to group the terms in the scattering
series according to the particles involved. In this wayA can
be represented as

A~1,2,. . . ,N!5(
i

a~ i !1(
i , j

a~ i , j !

1 (
i , j ,k

a~ i , j ,k!1¯, ~5.3!

wherea( i 1 , . . . ,i s) comprises all the terms in the scattering
series of A which involve each and every particle
$ i 1 ,i 2 , . , i s%.

Hence the integralI takes the form,

I 5(
s51

N
1

s! E a~1,2,. . . ,s!n~1,2,. . . ,s!d1d2¯ds,

~5.4!

where thes particle partial distribution function is given by

n~r1 ,r2 , . . . ,r s!5K ( 8
i 1 ,i 2 , . . . ,i s

d~r12Ri 1
!

3d~r22Ri 2
!¯d~r s2Ri s

!L , ~5.5!

which in a shorthand notation will be denoted as
^1, 2, . . . s&. The sum(8 in the above expression is sup-
plied with the condition that all the particle indicesi k , k
51, . . . ,s are different each from the other. The partial dis-
tribution function can be decomposed according to the clus-
ter structure31

n~1!5h~1!,

n~1,2!5n~1!n~2!1h~1,2!,

n~1,2,3!5n~1!n~2!n~3!1n~1!h~2,3!1n~2!h~1,3!

1n~3!h~1,2!1h~1,2,3!, . . . , ~5.6!

where thes particle correlation functionh(1,2,. . . ,s) goes
to zero as one drags any subset of particles,$1,2,. . . ,s%
away from the rest.

With the above decompositions one can write the inte-
gral I in Eq. ~5.1! as the sum of terms of the general form

Ts~L,c!5E L~ i 1 ,i 2 , . . . ,i s!c~ i 1 ,i 2 , . . . ,i s!d1d2¯ ds,

~5.7!

wherec( i 1 ,i 2 , . . . ,i s) is a product of a number of correla-
tion functions involving particles$ i 1 , . . . ,i s% whereas
L( i 1 ,i 2 , . . . ,i s) is one of the scattering sequences making
up a( i 1 ,i 2 , . . . ,i s).

VI. REDUCTION OF INSTANTANEOUS
RESPONSE KERNELS

This section is devoted to detailed analysis of the kernels
Y which describe the instantaneous response of the system to
external disturbances. In particular, we prove that the re-
sponse kernels are long-ranged and therefore the response is
dependent on shape and size of the system. Next, it is dem-
onstrated how to describe the system’s response using short-
ranged kernels by rewriting equations in terms of mean sus-
pension velocitŷ v(r )& rather than the imposed flow field
vo(r ).
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A. Internal structure of the terms

To begin with, we introduce a number of formal defini-
tions which will help us to analyze the internal structure of
termsTs(L,c) as given by Eq.~5.7!. First of all, an operator
G( i k ,i k11) will be called a connection line of a term
Ts(L,c) if the latter can be written as

Ts~L,c!5E L1~ i 1 , . . . ,i k!c1~ i 1 , . . . ,i k!

3G~ i k ,i k11!L2~ i k11 , . . . ,i s!c2~ i k11 , . . . ,i s!

3d1d2¯ds, ~6.1!

i.e., after the removal ofG( i k ,i k11) the termTs(L,c) be-
comes a product of two independent integrals. The term
Ts(L,c) with one or more connection lines will be called
reducible and the one without any connection lines—
irreducible . Next, a connection line which appears first in a
scattering sequence~starting from the left! will be calledan
articulation line . In an analogous way we define reducibility
for the scattering sequenceL( i 1 ,i 2 , . . . ,i s) only. Let us,
namely, call G( i k ,i k11) a nodal line of a scattering se-
quenceL( i 1 ,i 2 , . . . ,i s) if the latter can be written in the
form

L~ i 1 ,i 2 , . . . ,i s!

5L1~ i 1 ,i 2 , . . . ,i k!G~ i k ,i k11!L2~ i k11 , . . . ,i s!. ~6.2!

Next, scattering sequences with one or more nodal lines will
be calledS-reducible.

Nodal lines divide the particles in a given scattering se-
quence on the set ofnodal blocksCi : C1 denotes the set of
particles to the left of the first nodal line,C2—the particles
between the first and second nodal line, and so on. Note that
the definition of the nodal line assures thatCiùCj50” if only
iÞ j . The nodal structure of sequenceL( i 1 ,i 2 , . . . ,i s) will
be written in the formC1uC2u¯uCk .

B. Block distribution function

Consider all irreducible termsTs(L,c) which share the
same scattering sequence and differ only in correlation func-
tion. Note that a task of summing all such terms boils down
to finding the sum of their correlation functions. However,
the irreducibility of the term requires that whenever there is
is a nodal line in the scattering sequence, the particles to the
left of it cannot be totally uncorrelated from particles to the
right. Therefore the sum of the correlation functions that we
are looking for is given by

h~C1uC2u¯uCk!5^C1~12Punc!C2~12Punc!¯

~12Punc!Ck&. ~6.3!

Here C1uC2u¯uCk describes the nodal structure ofL,
whereas the operatorPunc is the ‘‘uncorrelating operator’’
introduced by Michels32

Punc5& ^, ~6.4!

which has the property of statistically uncorrelating the vari-
ables at its left from those at its right, i.e.,

^APuncB&5^A&^B&. ~6.5!

and so, for example, two-particle correlation function can be
written as

^1~12Punc!2&5^12&2^1&^2&

5n~1,2!2n~1!n~2!5h~1,2!. ~6.6!

The function h(C1uC2u¯uCk) defined in Eq.~6.3! is
called the block distribution function.33 For example

h~1u23u45!5^1~12Punc!23~12Punc!45&

5^12345&2^1&^2345&2^123&^45&

1^1&^23&^45&

5n~1,2,3,4,5!2n~1!n~2,3,4,5!

2n~1,2,3!n~4,5!1n~1!n~2,3!n~4,5!,

~6.7!

which vanishes whenever the particle$1% or the group$4,5%
is dragged away from the rest of the particles.

Note that if there are no nodal lines in the scattering
structure of a givens-particle term, thenh becomes the full
s-particle partial distribution functionn(1,2,. . . ,s).

C. Long-range character of the kernels

The kernelsY(r ,r 8) in Eq. ~4.12! are of a very long
range since the reducible terms in their expansions behave
asymptotically asur2r 8u2k with k<3. To prove it, note that
in every reducible term there is at least one connection line:
let it beG( i j ) joining particlesi and j . One of the following
holds.

~1! The connection lineG( i j ) joins two Ẑo operators:
Ẑo( i ) and Ẑo( j ). But, sinceẐoP5PẐo50, in the multi-
pole formalism all the components ofẐo( l 51,m,s; l 8
51,m8,s8), except forẐo( l 51,m,s52;l 851,m8,s852),
vanish. This, together with the fact that
G( l ,m,s; l 8,m8,s8;R) decays asR2( l 1 l 81s1s821), leads to
the conclusion that the leading term in the connection line
behaves asRji

23 ~for l 5 l 852 ands5s850).
~2! The connection line joins theZo operator withẐo . In

this case the leading term behaves asRji
22 ~for l 51;l 852

and s50;s850). Here the prime variables refer to theẐo

operator.
~3! The connection line joins twoZo operators. Then the

leading term behaves asRji
21 ~for l 5 l 851 ands5s850).

However this is the case only for the terms representingY jE

~as only this kernel has more than oneZo operator in its
scattering sequence!. As there are exactly twoZo operators
in Y jE , one at the beginning and one at the end of the scat-
tering sequence@cf. Eqs.~4.12a! and~3.30!# the only scatter-
ing structure that allows forRji

21 connector is a two-particle
term of the form

So5mo~1!P~1!Zo~1!G~12!Zo~2!P~2!mo~2!. ~6.8!

It should be stressed that long-range elements are absent
in irreducible terms. Namely, consider a long-range bond
linking particlesi and j in an irreducible termK. As the term
is irreducible, one of the following holds:
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~1! Particlesi and j are connected by a correlation func-
tion. In this case the long-range connector betweeni and j
causes no trouble, as the correlation function decays rapidly
as i is dragged away fromj .

~2! Particlesi and j are connected by some other bond
~G operator! or a path of bonds coming through other par-
ticles. But thenK contains more than two bonds and there-
fore its scattering sequence is different fromSo @Eq. ~6.8!#.
This in turn implies that each of the two bonds betweeni and
j decays at least asR22. Together they decay asR24 or
faster, which assures convergence.

D. Reduction of long-range kernels

In the following we concentrate on the analysis of the
terms making up the kernelY jE . Due to Eq.~4.12a! this
kernel is expressed in terms of the mobility tensorm, the
scattering structure of which is given by Eq.~3.30!. First, let
us consider reducible terms. Each of them can be written in
the form of the product:

TjE~r ,r 8!5E I jE~r ,r 9!G~r 9,r-!RjE~r-,r 8!dr 8dr-,

~6.9!

whereTjE stands for the term under consideration,I jE is its
part to the left of the articulation line andRjE is the part to
the right of it. The definition of articulation line implies that
I jE is irreducible.

The terms making upI jE have the following scattering
structure:

L~ I jE!5moPZo~2GẐo!n, n50,1,. . . , ~6.10!

wheren is the number ofG operators in the term. Similarly,
the structure ofRjE terms reads

L~RjE!5~2ẐoG!nZoPmo . ~6.11!

Note that the scattering structure ofRjE given by Eq.
~6.11! is the same as the scattering structure of the terms of
the kernelY f E @cf. Eqs.~4.12c! and~3.34!#. Therefore in the
thermodynamic limit the sum of allRjE terms equalsY f E.

Similarly, the scattering structure ofI jE is the same as
that of the kernelY j v @cf. Eqs.~4.12b! and ~3.35!#. Thus in
the limit N→` the sum of all I jE equals the sum of all
irreducible terms making upY j v , which we are going to
denote byY j v

irr . Hence in the thermodynamic limit

E Y jE~r ,r 8!E~r 8!dr 8

5E Y jE
irr ~r ,r 8!E~r 8!dr 8

1E Y j v
irr ~r ,r 9!G~r 9,r-!Y f E~r-,r 8!E~r 8!dr 8dr 9dr-.

~6.12!

A similar reduction can be performed on the kernelY j v .
Writing down the decompositions analogous to Eq.~6.9! we
obtain the termsI j v and Rj v with the following scattering
structures:

L~ I j v!5moPZo~2GẐo!n5L~ I jE!,
~6.13!

L~Rj v!52~2ẐoG!nẐo .

In the limit of a macroscopic system the sum of allRj v terms
is equal toY f v . Therefore in this limit the following holds:

E Y j v~r ,r 8!vo~r 8!

5E Y j v
irr ~r ,r 8!vo~r 8!dr 8

1E Y j v
irr ~r ,r 9!G~r 9,r-!Y f v~r-,r 8!vo~r 8!dr 9dr 8.

~6.14!

Adding Eq.~6.12! to the above equation gives

^ j ~r !& t
inst5E @Y jE~r ,r 8!E~r 8!1Y j v~r ,r 8!vo~r 8!#dr 8

5E @Y jE
irr ~r ,r 8!E~r 8!1Y j v

irr ~r ,r 8!vo~r 8!#dr 8

1E dr 9dr-Y j v
irr ~r ,r 9!G~r 9,r-!

3S E dr 8Y f E~r-,r 8!E~r 8!

1Y f v~r-,r 8!vo~r 8! D . ~6.15!

However, the expression in brackets is just the instanta-
neous force densitŷf(r )& t

inst @see Eq.~4.10!#. Hence, intro-
ducing an instantaneous suspension velocity as

^v~r !& t
inst5vo~r !1E dr 8G~r ,r 8!^f~r 8!& t

inst , ~6.16!

we can rewrite Eq.~6.15! in the compact notation in the
form,

^ j & t
inst5Y jE

irr E1Y j v
irr ^v& t

inst . ~6.17!

Note that the kernels in the above equation are short ranged,
as all their terms are irreducible and therefore devoid of soli-
tary G connectors.

In an exactly analogous manner one may carry out the
reduction of instantaneous kernels in Eq.~4.10! for force
density and arrive at the expression

^f& t
inst5Y f E

irr E1Y f v
irr ^v& t

inst . ~6.18!

VII. EFFECTIVE EQUATIONS
FOR SHORT-TIME DYNAMICS

We have expressed the instantaneous particle current
^ j & t

inst in terms of the short-range kernelsY irr acting on the
external fieldE and mean suspension velocity^v& t

inst . Be-
cause of their short range, the kernelsY irr are independent of
the shape and size of the sample provided that it is macro-
scopic. In this case, however, one can equally well assume
that the sample is infinite. It would not affect the kernels
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Y irr (r ,r 8) but greatly facilitate the calculations as the hydro-
dynamic Green function for an infinite system~3.6! can now
be used.

To obtain the transport coefficients, let us transform the
equations intok space and analyze their long-wavelength
limit. The Fourier transform of Eq.~6.17! for the homoge-
neous system reads

^ j ~k!& t
inst5Y jE

irr ~k!E~k!1Y j v
irr ~k!^v~k!& t

inst . ~7.1!

In the limit (k→0) the tensorY j v
irr takes a particularly simple

form. Namely, Eqs.~4.12b! and ~3.35! yield

Y j v
irr ~k50!5E K (

i 51

N

d~Ri !@moPZo

2moPZoG~11ẐoG!21Ẑo# i~r 8!L irr

dr 8.

~7.2!

However, since bothZo( i ;r 8) and Ẑo( i ;r 8) vanish for r 8
outside of the particlei , the above expression is equivalent
to

Y j v
irr ~k50!5K (

i 51

N

d~Ri !@moPZoPt

2moPZoG~11ẐoG!21ẐoPt# i L irr

.

~7.3!

Using the fact thatẐoPt50 one gets finally

Y j v
irr ~k50!5K (

i 51

N

d~Ri !mo~ i !P~ i !Zo~ i !Pt~ i !L irr

5K (
i 51

N

d~Ri !L 15n1. ~7.4!

The next nonvanishing term in the expansion ofY j v(k) in k
is the second-order one,

Y j v
irr ~k!5n11k2yj v1¯ , ~7.5!

with the tensoryj v of the form

yj v5yj v
l k̂k̂1yj v

t ~12 k̂k̂!, ~7.6!

whereyj v
l andyj v

t are scalars. Because of the incompressibil-
ity constraint,

k•^v~k!& inst50, ~7.7!

the first term in Eq.~7.6! does not contribute to Eq.~7.1!.
Hence in the smallk limit this equation can be rewritten as

^ j ~k!& t
inst2n^v~k!& t

inst5yjEE~k!1k2yj v
t ^v~k!& t

inst ,
~7.8!

with yjE given by

Y jE
irr ~k50!5yjE1. ~7.9!

Let us now turn to the equation for the suspension velocity.
The Fourier transform of the hydrodynamic Green function
for an infinite space reads

G~k!5
1

hk2 ~12 k̂k̂!, ~7.10!

so that the velocity field in this case may be written as

k2^v~k!& t
inst5

1

h
~12 k̂k̂!@^f~k!& t

inst1fo~k!#. ~7.11!

Inserting the instantaneous force density^f& t
inst as given by

Eq. ~6.18! yields

k2^v~k!& t
inst5

1

h
~12 k̂k̂!@ fo~k!1Y f E

irr ~k!E~k!1Y f v
irr ~k!

3^v~k!& t
inst#. ~7.12!

Next we investigate the lowest order@O~1!# term in the ex-
pansion of the operatorsY f E

irr (k) andY f v
irr (k) in wave num-

ber. SinceY f E
irr is adjoint toY j v

irr ,

Y f E
irr ~k50!5Y j v

irr ~k50!5n1. ~7.13!

To find k50 value ofY f v
irr (k) we recall the scattering struc-

ture of this operator. From Eqs.~4.12d! and~3.29! it follows
that

Y f v
irr ~k50!52E ^Ẑo~11GẐo!21~r50,r 8!& irr dr 8.

~7.14!

Here the scattering sequence ends withẐo operator, hence
the same reasoning as that following the Eq.~7.2! leads to
the conclusion that

Y f v
irr ~k50!50. ~7.15!

Therefore the smallk expansions of operatorsY f E andY f v
read

Y f E
irr ~k!5n11k2yf E1¯ ,

~7.16!
Y f v

irr ~k!52k2yf v1¯ .

The tensorsyf v andyf E can be decomposed, similarly toyj v ,
in longitudinal and transverse part. Finally, using the fact that
(12 k̂k̂)v(k)5v(k), due to the incompressibility condition,
Eq. ~7.12! can be rewritten as

k2~h1yf v
t !^v~k!& t

inst5~12 k̂k̂!@ fo~k!1nE~k!

1k2yf E
t E~k!#. ~7.17!

Because of the symmetry between the operatorsY j v andY f E

the coefficientyf E
t is equal toyj v

t introduced earlier. This is
the manifestation of the Onsager symmetry guessed by
Nozières.11

An interesting aspect of Eqs.~7.8! and~7.17! is the natu-
ral appearance of the particle current relative to the suspen-
sion flow

Jd
inst5^ j ~k!& t

inst2n^v~k!& t
inst ~7.18!

and the total external force~per unit volume! exerted on the
suspension

Ftot5fo1nE. ~7.19!

Returning to the real space, the system of Eqs.~7.8! and
~7.17! can be cast into the form
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Jd
inst5yjEE2yj v

t ¹2^v& t
inst , ~7.20a!

2~h1yf v
t !¹2^v& t

inst5Ftot2 gradp2yf E
t ~¹2Einst

2grad divEinst!, ~7.20b!

where use has been made of the fact that longitudinal part of
the forceFtot is compensated by a pressure gradient

2 ikp~k!5 k̂k̂"Ftot~k!. ~7.21!

Equation~7.20b! can be further rewritten using Eq.~7.20a!
to expressE in terms of Jd . Keeping the lowest terms in
wave vector, we get

Jd
inst5yjEE2yj v

t ¹2^v& t
inst , ~7.22a!

2~h1yf v
t !¹2^v& t

inst

5Ftot2gradp2
yf E

t

yjE
~¹2Jd

inst2grad divJd
inst!. ~7.22b!

The dynamics described by the above set of equations is
relatively complex. First of all, there are direct effects: The
diffusion current is induced by an external forceE applied to
the particles whereas the suspension velocity field is induced
by the overall external force acting on the particles and the
fluid, Ftot . The effective viscosity of the suspension is modi-
fied by the presence of the particles and reads

heff5h1yf v
t . ~7.23!

However, there are also cross effects linking the suspension
velocity with the diffusion current. These are given by the
terms yj v

t
“

2^vinst& and (yf E
t /yjE) “2Jd

inst and describe the
processes in which inhomogeneities in suspension velocity
field drive the diffusion current and vice versa. The above
equations were first derived by Nozie`res11 in a rather phe-
nomenological way. The throughout derivation was given by
Felderhof12,34 and Noetinger.5 Felderhof used a technique
called renormalized cluster expansion35 to derive Eqs.~6.17!
and~6.18! and proved that all response kernels in these equa-
tions are short ranged. The reduction presented in this paper
can be seen as a simplified version of this technique. On the
other hand, Noetinger worked from the very start in the Fou-
rier space. He performed only partial reduction of the kernels
and therefore was left with a number of cumbersomek→0
limits to calculate. Nevertheless he obtained the same equa-
tions as Felderhof and here, although written in a slightly
different language~as he used the hydrodynamic formalism
of Mazur, van Saarlos, and Beenakker7,36,37!.

VIII. REDUCTION OF RETARDED
RESPONSE KERNELS

Our next task is to perform the reduction of the retarded
response kernelsX given by Eq.~4.13!. The general form of
these kernels is

X5^AeLtB&,

with two operatorsA and B on both sides of the evolution
operatoreLt. It is precisely the presence of this operator in

the kernels that makes the reduction complicated. Therefore,
let us focus on the evolution operator first. To begin with, the
adjoint Smoluchowski operator

L5@b21¹W 1F#•m•¹W ~8.1!

is decomposed as

L~1,2,. . . ,N!5(
i 51

N

Lo~ i !1dL~1,2,. . . ,N!, ~8.2!

whereLo( i ) is the one-particle operator

Lo~ i !5Do“ i
2 , ~8.3!

with “ i
2 denoting the Laplacian with respect toRi . It is

worth noting thatLo does not introduce any correlation be-
tween the particles. Now the evolution operator can be writ-
ten as a series

eLt5S~ t !1E
0

t

dtS~ t2t!dLS~t!

1E
0

t

dtE
0

t

dt8S~ t2t!dLS~t2t8!dLS~t!1¯ ,

~8.4!

where

S~1,2,. . . ,N;t !5)
i

N

S~ i ;t ! ~8.5!

and

S~ i ;t !5eLo( i )t. ~8.6!

Next, one performs the scattering expansion of the operators
A, B, and dL. Then, after inserting the expansions into
^AeLtB& one ends up with the representation of the retarded
response kernel as a sum of terms of the following structure:

Rs~L,c!5E d1¯dsE
0

t

dtE
0

t1
dt2¯

E
0

tn21
dtnA8~ t !S~ t2t1!dL8~t1!S~t12t2!

3dL8~t2! ¯ S~tn!B8~tn!, ~8.7!

whereA8, B8, anddL8 stand for some elements of the scat-
tering expansions ofA, B, anddL, respectively, ands is the
number of particles appearing in the given term. The time
variables have been added to time-independent operators
dL8, A8, andB8 just to indicate their positions relative to the
evolution operators in the above integral.

The next task is to perform the reduction ofRs(L,c)
along similar lines to the approach presented in Sec. VI D—
i.e., by identification of long-ranged connection lines. The
definition of a connection line is analogous to that in instan-
taneous response terms: an operatorG( i k ,i k11) is called the
connection line of a termRs(L,c) if the latter can be written
as
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Rs~L,c!5E L1~ i 1 ,i 2 , . . . ,i k!c1~ i 1 ,i 2 , . . . ,i k!

3G~ i k ,i k11!L2~ i k11 , . . . ,i s!

3c2~ i k11 , . . . ,i s!d1d2¯ds, ~8.8!

so that after the removal ofG( i k ,i k11) the termRs(L,c)
becomes a product of two independent integrals. Integrals
over time have been omitted in the above expression as they
are irrelevant to our definition. The nodal line and nodal
blocks for termsRs(L,c) are defined analogously to the in-
stantaneous response case. However, because of the fact that
retarded response terms consist of a number of individual
operatorsA8, dL8(t1),dL8(t2), . . . the nodal structure of
Rs(L,c) is usually very complicated and in general it is
impossible to apply the concept of block distribution func-
tion here. To facilitate analysis of the nodal structure of re-
tarded response kernels a special diagrammatic technique38

has been developed. One of the important elements of this
analysis is a concept of a proper term. To define it, let us
consider a term Rs with a scattering structure
L( i 1 ,i 2 , . . . ,i s) and a nodal lineG( i k ,i k11) such that

L~ i 1 ,i 2 , . . . ,i s!5L1~ i 1 ,i 2 , . . . ,i k!G~ i k ,i k11!

3L2~ i k11 , . . . ,i s!. ~8.9!

The term Rs will be called proper if all the operators in
which the particles from$ i 1 ,i 2 , . . . ,i k% appear have larger or
equal time coordinates than these in which$ i k11 , . . . ,i s%
appear. For example a term of the form

E
0

t

dtE
0

t1
dt2E

0

t2
dt3h~ i 1 ,i 2 ,i 5!A18~ i 1 ,i 2 ;t !

3G~ i 2 ,i 3!A28~ i 3 ,i 4 ;t !S~ t2t1!dL8~ i 3 ,i 4 ,i 5 ;t1!

3S~t12t2!dL18~ i 3 ,i 5 ;t2!G~ i 5 ,i 6!dL28~ i 6 ,i 7 ;t2!

3S~t3!B8~ i 6 ,i 7 ,i 8 ;t3! ~8.10!

is proper whereas

E
0

t

dtE
0

t1
dt2E

0

t2
dt3h~ i 1 ,i 2 ,i 5!A18~ i 1 ,i 2 ;t !G~ i 2 ,i 3!

3A28~ i 3 ,i 4 ;t !S~ t2t1!dL18~ i 5 ,i 6 ;t1!G~ i 6 ,i 7!

3dL28~ i 7 ,i 3 ;t1!S~t12t2!dL38~ i 3 ,i 4 ,i 7 ;t2!G~ i 7 ,i 8!

3dL48~ i 8 ,i 9 ;t2!S~t3!B8~ i 8 ,i 9 ,i 10;t3! ~8.11!

is not proper. In other words, for proper terms the division of
the particles by a nodal line is consistent with the ordering
induced by time dimension. Note that the definition of a
proper term concerns only the scattering structure inRs , the
correlation structure is irrelevant here.

‘‘Properness’’ has a particularly simple interpretation if
one presents the nodal structure of an operator in a graphical
way. For example, the term given by Eq.~8.11! can be de-
picted schematically as in Fig. 1.

In graph theory such a structure is calleda tree: a con-
nected graph which do not contain any circuits~the lack of
circuits stems directly from the definition of the nodal line!.
The nodal structure graph~NSG! of the proper terms is even

simpler. For example, the NSG of the term~8.10! is given in
Fig. 2. It is a simple chain—a tree with two terminal verti-
ces only. It can be proved38 that all the proper terms share
such a structure.

Thus in proper terms nodal lines divide the particles
i 1 , . . . ,i s into nodal blocksC1 ,C2 , . . . which can be or-
dered according to the place in the chain. This means that the
nodal structure can again be written in the form
C1uC2u . . . uCk , whereC1 ,C2 , . . . .,Ck come one after an-
other in the time integral~8.7!. For such a structure a block
distribution function can again be defined by Eq.~6.3!.

Unfortunately, these concepts cannot be applied in the
case of improper terms. However, it may be shown38 that in
the thermodynamic limit the sum of all improper terms mak-
ing up a given retarded response kernel vanishes. Therefore
in the subsequent analysis we can safely consider proper
terms only. Because of their chainlike form, it is relatively
easy to sum the proper terms which share a similar nodal
structure. For example, for the proper terms making up the
kernelX jE @Eq. ~4.13a!# one gets the following:

~1! Terms with an articulation line inA block sum up in
the limit of macroscopic system to

FIG. 1. Nodal structure of the term given by Eq.~8.11!.

FIG. 2. Nodal structure graph of the term given by Eq.~8.10!.
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Y j v
irr GX f E~ t !. ~8.12!

~2! Terms with an articulation line indL block sum up to

E
0

t

dtX j v
irr ~ t2t!GX f E~t!. ~8.13!

~3! The sum of terms with an articulation line insideB
block is equal to

X j v
irr ~ t !GY f E . ~8.14!

Using the above results the kernelX jE may be written as

X jE~ t !5X jE
irr ~ t !1Y j v

irr GX f E~ t !1E
0

t

dtX j v
irr ~ t2t!GX f E~t!

1X j v
irr ~ t !GY f E . ~8.15!

In an analogous way it is possible to prove that

X j v~ t !5X j v
irr ~ t !1Y j v

irr GX f v~ t !1E
0

t

dtX j v
irr ~ t2t!GX f v~t!

1X j v
irr ~ t !GY f v . ~8.16!

After inserting these equations into Eq.~4.9! we get the fol-
lowing expression for the retarded part of the particle current

^ j & t
ret5E

2`

t

dt8@X jE
irr ~ t2t8!E~ t8!1X j v

irr ~ t2t8!vo~ t8!#

1Y j v
irr GE

2`

t

dt8@X f E~ t2t8!E~ t8!

1X f v~ t2t8!vo~ t8!#1E
2`

t

dt8E
0

t2t8
dt

3 X j v
irr ~ t2t82t!G@X f E~t!E~ t8!1X f v~t!vo~ t8!#

1E
2`

t

dt8X j v
irr ~ t2t8!G@Y f EE~ t8!1Y f vvo~ t8!#.

~8.17!

The third term can be simplified by first changing the vari-
ables of integration to (t8,t95t81t), then changing the or-
der of integration, and finally using the fact that@cf. Eq.
~4.10!#

E
2`

t9
dt8@X f E~ t92t8!E~ t8!1X f v~ t92t8!vo~ t8!#5^f& t9

ret .

~8.18!

By this means the above-mentioned term can be cast into the
form

E
2`

t

dt9X j v
irr ~ t2t9!G^f& t9

ret . ~8.19!

Equation~8.17! can be further simplified by noting that due
to Eqs.~6.16! and ~4.10!,

G@Y f EE~ t8!1Y f vvo~ t8!#5^v& t8
inst

2vo . ~8.20!

Hence Eq.~8.17! takes the form

^ j & t
ret5E

2`

t

dt8@X jE
irr ~ t2t8!E~ t8!1X j v

irr ~ t2t8!^v& t8
ins

#

1Y j v
irr ^v& t8

ret
1E

2`

t

dt8X j v
irr ~ t2t8!^v& t8

ret

5E
2`

t

dt8@X jE
irr ~ t2t8!E~ t8!1X j v

irr ~ t2t8!^v& t8#

1Y j v
irr ^v& t

ret , ~8.21!

where the retarded part of the mean suspension velocity is
given by

^v& t
ret5^v& t2^v& t

inst5G^f& t
ret . ~8.22!

Finally, using expression~6.17! for ^ j & t
inst the total particle

current can be written as

^ j & t5Y jE
irr E~ t !1Y j v

irr ^v& t1E
2`

t

dt8@X jE
irr ~ t2t8!E~ t8!

1X j v
irr ~ t2t8!^v& t8#. ~8.23!

Note that the above equation relates^ j & t to the fieldsE and
^v& in terms of short-ranged, irreducible response kernels
only.

IX. FORCE DENSITY

The same decomposition procedure can be performed on
the kernelsX f E andX f v , Eq. ~4.13!. Proceeding analogously
to the previous case, we obtain

X f E~ t !5X f E
irr ~ t !1Y f v

irr GX f E~ t !

1E
0

t

dtX f v
irr ~ t2t!GX f E~t!1X f v

irr ~ t !GY f E ,

X f v~ t !5X f v
irr ~ t !1Y f v

irr GX f v~ t !

1E
0

t

dtX f v
irr ~ t2t!GX f v~t!1X f v

irr ~ t !GY f v ,

~9.1!

and for the force density

^f& t5Y f E
irr E~ t !1Y f v

irr ^v& t1E
2`

t

dt8@X f E
irr ~ t2t8!E~ t8!

1X f v
irr ~ t2t8!^v& t8#. ~9.2!

The above result can be inserted into the Stokes equation to
yield, after the Fourier transform,

k2^v~k!& t5
1

h
~12 k̂k̂!F fo~k,t !1Y f E

irr E~k,t !

1Y f v
irr ^v~k!& t1E

2`

t

dt8@X f E
irr ~k,t2t8!E~ t8!

1X f v
irr ~k,t2t8!^v~k!& t8#G . ~9.3!
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X. FULL EFFECTIVE EQUATIONS

In this section we obtain the effective equations govern-
ing the dynamics of Brownian suspensions on long-time
scales when the memory effects are important. Our starting
point are Eqs.~8.23! and ~9.3! for the particle current and
suspension velocity, respectively. The structure of the equa-
tions can be seen most clearly after the Fourier transform in
time

J~k,v!5Y jE
irr ~k!E~k,v!1Y j v

irr ~k!V~k,v!

1X jE
irr ~k,v!E~k,v!1X j v

irr ~k,v!V~k,v!,

~10.1!

k2V~k,v!5
1

h
~12 k̂k̂!@ fo~k,v!1Y f E

irr ~k!E~k,v!

1Y f v
irr ~k!V~k,v!1X f E

irr ~k,v!E~k,v!

1X f v
irr ~k,v!V~k,v!#, ~10.2!

where

V~k,v!5
1

2p E
2`

`

^v~k!& te
ivtdt, ~10.3!

and analogously forJ(k,v). The kernelsX5^AeLtB& are
transformed as

X~v!5E
0

`

^AeLtB&eivtdt. ~10.4!

Using the expansion ink of the kernelsY(k) derived in Sec.
VII together with analogous expansions for the kernelsX(k)

X jE
irr ~k,v!5xjE~v!11¯ , ~10.5!

X j v
irr ~k,v!5k2xj v~v!1¯ , ~10.6!

X f v
irr ~k,v!52k2xf v~v!1¯ , ~10.7!

X f E
irr ~k,v!5k2xf E~v!1¯ , ~10.8!

one arrives at the following equations for the diffusion cur-
rent and force density for small but finitek:

Jd~k,v!5@yjE1xjE~v!#E~k,v!

1k2~12 k̂k̂!@yj v
t 1xj v

t ~v!#V~k,v!, ~10.9a!

k2@h1yf v
t 1xf v

t ~v!#V~k,v!

5~12 k̂k̂!$fo~k,v!1nE~k,v!

1k2@yf E
t 1xf E

t ~v!#E~k,v!%, ~10.9b!

wherexab
t denotes as before the transversal part of the op-

erator xab . Finally, we transform back into the spatial do-
main obtaining the set of equations in the form analogous to
Eq. ~7.22!

Jd~v!5@yjE1xjE~v!#E~v!2@yj v
t 1xj v

t ~v!#“2V~k,v!,
~10.10a!

2@h1yf v
t 1xf v

t ~v!#“2V~k,v!

5Ftot~v!2gradp~v!2
yf E

t 1xf E
t ~v!

yjE1xjE~v!

3@“2Jd~v!2grad divJd~v!#, ~10.10b!

where as before@cf. Eqs.~7.18! and ~7.19!#

Jd~v!5J~v!2nE~v! ~10.11!

and

Ftot~v!5fo~v!1nE~v!. ~10.12!

As it can be seen, the inclusion of the retarded response
terms in the effective equations adds new elements in com-
parison with the instantaneous response described by Eq.
~7.22!: the effective viscosity and the effective mobility co-
efficient attain the frequency-dependent termsxf v

t and xjE ,
respectively. Also the cross terms linkingJd with the Laplac-
ian of V and the Laplacian ofV with E gain the new,
frequency-dependent contributionsxj v

t and xf E
t , which are

equal to each other due to the Onsager symmetry. The over-
all picture remains the same: We get Eq.~10.9b! for the
velocity which must be solved first~for given boundary con-
ditions!. Then, once we have the velocity field, we calculate
the particle current with respect to it with use of the Eq.
~10.9a!. Note that all the coefficients in the above equations
are obtained from the short-range response kernels and there-
fore they are well-defined, local characteristics of the system.

XI. COLLECTIVE DIFFUSION COEFFICIENT

The expressions for short-range response kernels ob-
tained in Secs. VI D and VIII are a good starting point for
calculating transport coefficients of a Brownian suspension.
Here we illustrate this procedure by deriving well-defined
formulas for short- and long-time collective diffusion coeffi-
cient.

To this end, we recall an alternative way of obtaining
diffusion coefficient mentioned in Sec. II: by analyzing the
current induced in the system by an external force acting on
particles. Formula~2.16! together with Eq.~4.9! imply that

Dc
s5 lim

k→0

kBT

nS~0!
YjE~k! ~11.1!

and

Dc
l 5 lim

k→0

kBT

nS~0!

1

3 FYjE~k!1E
0

`

dt8XjE~k,t8!G , ~11.2!

respectively. Further simplification is achieved by comparing
the expression~10.1! for the particle current with the Fourier
transform of Eq.~4.9! which—in the absence of the imposed
flow vo—reads

J~k,v!5Y jE~k!E~k,v!1X jE~k,v!E~k,v!. ~11.3!

Analyzing the smallk behavior of both Eqs.~10.1! and
~11.3! and using the zero net flux condition for the average
suspension velocity, Eq.~1.1!, one concludes that
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lim
k→0

YjE~k!5yjE ~11.4!

and

lim
k→0

XjE~k,t !5xjE~ t !, ~11.5!

where Eqs.~7.9! and~10.5! have been used. Thus the collec-
tive diffusion coefficients can be identified with

Dc
s5

kBT

nS~0!
yjE ~11.6!

and

Dc
l 5

kBT

nS~0! FyjE1E
0

`

xjE~ t8!dt8G , ~11.7!

where nok→0 limit is performed.
A similar formula can be obtained for the long-

wavelength limit of the memory function. Namely, by com-
paring Eqs.~11.6! and~11.7! with relations~2.14! and~2.15!
one concludes that

M ~ t ![ lim
k→0

M ~k,t !52
1

yjE
xjE~ t !. ~11.8!

Note that in the above formulas both the diffusion coef-
ficients and the memory function are expressed in terms of
the fast decaying, short-range kernels. Therefore, they de-
pend only on the local characteristics of the suspension and
not on the shape and size of the system. However, there is a
price to pay: The expressions for the irreducible terms mak-
ing up the response kernels become increasingly more com-
plex with the number of particles involved. An example may
be found in Ref. 39 where the three particle terms making up
the instantaneous response kernelY jE

irr are analyzed. One of
the tools which facilitates the analysis is a diagrammatic
technique developed in Ref. 38.

Let us now analyze the memory contribution to long-
time diffusion coefficient in some detail. First, by inserting
the explicit expressions for the transport kernels given by
Eqs. ~4.12a! and ~4.13a! into the relation ~11.8! for the
memory function we get

M ~ t !5
^~( i , j ,k@“i1bFj i #•mik!•~( l ,m,p@“l1bFml#•mlp~ t8!!& irr

b^( i , j 51
N Trmi j &

irr . ~11.9!

It is instructive to calculate the memory function in the ab-
sence of hydrodynamic interactions, i.e., when the mobility
matrix is of the form

mi j 5mod i j . ~11.10!

In this limit M (t) reads simply

1

3Nmo
K (

i , j 51
Fi j • (

k,l 51
Fkl~ t !L , ~11.11!

where the irreducibility requirement in the average is re-
laxed, since in the absence of hydrodynamic interactions the
terms are devoid of allG connectors, not only the solitary
ones. However, the sums in vertices of Eq.~11.11! vanish
since the sum of all interparticle forces is equal to zero.
Therefore in systems without hydrodynamic interactions the
short- and long-time collective diffusion coefficients are
equal.

On the other hand, when the hydrodynamic interactions
cannot be neglected there is a nonzero contribution from the
memory effects toDc . The magnitude of this contribution
can be measured by the dimensionless factorD40

D5
Dc

s2Dc
l

Dc
s 5E

0

`

M ~ t8!dt8. ~11.12!

For a dilute suspension, the memory function may be ana-
lyzed by means of the virial expansion in the volume frac-
tion:

M ~ t !5m1~ t !1m2~ t !f1m3~ t !f21¯ . ~11.13!

However, the virial expansion of the denominator of Eq.
~11.9! is known to be in the form2,15

1

3Nmo
K (

i , j 51

N

Tr mi j L irr

5b~11e1f1e2f21¯ !.

~11.14!

For example for hard-sphere suspensions the parameterse1

ande2 read3,6,39,41

e1526.546, e2521.918. ~11.15!

Thus we concentrate on the numerator of Eq.~11.9! and
consider the function

T~1,2,. . . ,s;t !5
a2

3Nbmo
2 F (

i , j ,k51

s

~“i1bFj i !•mikG
•F (

l ,m,p51

s

~“l1bFml!•mlp~ t !G
s51,2 . . . . ~11.16!

The successive terms in its cluster expansion,

T~1,2,. . . ,s;t !5(
i 51

s

T̃~ i ;t !1(
i , j

T̃~ i , j ;t !1 ¯ ,

s51,2 . . . , ~11.17!

determine the subsequent terms in the virial expansion
~11.13! of M (t). In particular, one-particle contributions,
T̃( i ;t)5T( i ;t), vanish since in this casem is again of the
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form ~11.10!. To analyze the two-particle term we use fol-
lowing symmetries of two-body hydrodynamic matrices42

“1•m1252“2•m1252“2•m21,

“1•m1152“2•m1152“2•m22.

The above relations give

(
i ,k51

2

“i•mik50. ~11.18!

Moreover, using the symmetries of the two-body mobility
matrix and the fact that a sum of interparticle forces in the
system vanishes, one gets

(
i , j ,k51

2

Fj i •mik50. ~11.19!

The two relations~11.18! and ~11.19! yield

T~ i , j ;t !50. ~11.20!

Since the one-particle termsT̃( i ;t) vanish one concludes that
also T̃( i , j ;t)50. The above analysis together with relation
~11.14! leads to the conclusion that the two lowest terms in
the virial expansion of the memory function vanish:

m1~ t !5m2~ t !50. ~11.21!

Let us now study the three-particle term. First, we notice that
from the fact that the one- and two-particle operatorsT̃( i ;t)
and T̃( i , j ;t) vanish, and from Eq.~11.17!, one obtains

T̃~1,2,3;t !5T~1,2,3;t !. ~11.22!

Another useful property of three-particle term is that:All the
nonzero three-particle terms making up^T(1,2,3;t)& are
irreducible and thereforêT(1,2,3;t)& irr 5^T(1,2,3;t)&.

Proof. The kernel ^T(1,2,3;t)& can be written as
^A(1,2,3)eLtB(1,2,3)&. However, the sum of all the terms,
in which eitherA or B does not depend on the positions of
all three particles but only one or two of them, vanishes
because of the symmetries mentioned above. What remains
are the terms in which particles~1,2,3! are connected with
each other by at least one bond inA and one inB. All such
terms are irreducible. h

Thus one could relax the irreducibility condition while
calculating the virial coefficientm3 . An explicit expression
for this quantity is

m3~ t !5
1

32p2a4mo
2 E dR12E dR13

3F (
i , j ,k51

3

~“i1bFj i !•mikG
•F (

l ,m,p51

3

~“l1bFpl!•mlp~ t !Ge2bf(R12 ,R13).

~11.23!

At this time, there is no apparent reason why the above co-
efficient should vanish. On the contrary, it is relatively

simple to prove that the three-particle contribution is non-
zero, for example by calculating an initial valuem3(0) for a
hard-sphere gas

m3~0!5E dR2dR3S (
i , j 51

3

“i•mi j D 2

W~1,2,3!, ~11.24!

whereW(1,2,3) is unity for nonoverlapping configurations
of the spheres and vanishes otherwise. This integral could be
performed numerically using full hydrodynamic interactions
involving three spheres, following the scheme presented in
Ref. 43. The calculation givesm3(0)51.4260.02. Interest-
ingly enough, a good estimate ofm3 could be obtained by
considering the long interparticle distance asymptotics. It
turns out38 that the main contribution comes from strongly
asymmetric configurations in which two of the particles~for
example, 1 and 2! are much closer to each other than they are
to the third. In this case the integrand function in Eq.~11.24!
scales asymptotically asR23

24 . The integration of asymptotic
terms givesm3

as(0)'1.9 which is of the order ofm3(0)
itself. The asymmetry of the configuration is the key element
here, since the divergence of the mobility matrix summed
over all particles

di5(
j

“j•mj i , ~11.25!

which appears in Eq.~11.24! vanishes for all regular configu-
rations of the particles, such as periodic lattices, and thus can
be considered as a measure of asymmetry of the configura-
tion.

XII. NUMERICAL CALCULATION
OF THE MEMORY FACTOR

We have numerically estimated the values of the
memory factor for hard-sphere suspensions using Brownian
dynamics simulations in periodic boundary conditions.

The use of periodic boundary conditions simplifies con-
siderably the expression for the memory function. Namely,
as it was mentioned in the Introduction, when deriving the
mobility matrix for a periodic system one adds the constraint
that the net suspension velocity in whole sample
vanishes,9,10,44 as otherwise the divergences in the fluid ve-
locity field appear. In that way Eq.~1.1! is automatically
satisfied which, in turn, implies that we can relax the irre-
ducibility condition in Eq. ~11.9! and the expression for
M (t) in the case of hard spheres takes a relatively simple
form

M ~ t !5
^( i , j ,k,l 51

N @“i•mi j ~0!#•@“k•mkl~ t !#&per

b^( i , j 51
N Tr mi j &per

, ~12.1!

where the symbol̂ &per stands for the average over hard-
sphere configurations with periodic boundary conditions.

It is reasonable to calculateM (t) in two steps. First one
computes an initial value of the memory functionM (t50)
and then carries out the calculations of the mean relaxation
time tM5M (t50)21*0

`M (t)dt. The reason behind this is
thatM (0) can be calculated with great precision by means of
equilibrium averaging only, while the relaxation time re-
quires Brownian dynamic simulations which are much more
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expensive numerically. Therefore, as it was noted by Zwan-
zig and Ailawadi,45 such a two-step procedure increases con-
siderably an accuracy of the numerically obtained memory
function.

The details of the calculations are given elsewhere.46,47

Here we just point out that the main difficulty we faced
turned out to be the calculation of the divergence of mobility
matrix “"m needed in Eq.~12.1! for the memory function.
Although in principle the divergence ofm may be obtained
by a ‘‘brute-force’’ numerical differentiation, such a scheme
is not only extremely time consuming and memory consum-
ing but also inaccurate. Instead, we have devised a scheme of
calculating the divergence of mobility matrix in an analytical
way with use of the multipole expansion method.47

The final results of the numerical calculations are given
in Table I. They show that the memory factor is nonzero,
relatively small, but increases with the volume fraction
reaching the value of 5% at the volume fractionf50.4. This
result is in qualitative an agreement with experimental data
~cf. Ref. 15!. The presence of nonzero memory factor dis-
proves the conjecture by Dhont in Ref. 2 that the collective
diffusion coefficient is independent of time.

XIII. SUMMARY

We have derived the macroscopic equations governing
the long-time dynamics of Brownian suspensions analogous
to those derived by Felderhof,12 Nozières,11 and Noetinger5

but with inclusion of memory effects caused by the relax-
ation of the distribution function. The coefficients in these
equations are given by well-defined expressions, free of di-
vergences as the system size goes to infinity. We have ap-
plied this formalism to calculation of memory contribution to
long-time collective diffusion coefficient and proved that it is
nonzero, although relatively small.

APPENDIX A: ZERO NET FLUX CONDITION

Below we present a proof of the zero net flux condition
for incompressible fluid placed in a container on the walls of
which stick boundary conditions are applied.

The zero net flux condition reads

IªE
V
v~r !dr50. ~A.1!

Let us first rewrite the above integral as

I 5E
Vf

vf~r !dr1(
i 51

N E
Vi

ui~r !dr , ~A.2!

whereVf denotes the volume occupied by the fluid whereas
Vi stands for the volume of thei th particle. Next,vf is a fluid
flow field, while fieldsui(r ) describe rigid body motion of
particle i @cf ~3.2!#. However,

va5dabvb5
]~xavb!

]xb
2xa

]vb

]xb
. ~A.3!

Since the last term on the right-hand side of the above equa-
tions vanishes for incompressible velocity fields, we can re-
write Eq. ~A2! in the form

I 5 R
]W

vf•nrds1(
i 51

N E
Si

~ui2vf !•nrds, ~A.4!

where Gauss theorem has been used to convert the volume
integrals to surface integrals. HereW denotes the walls of the
container andn is a unit vector normal to the surface, point-
ing outwards.

However, since there is no flow through the container
walls nor through the surfaces of the spheres and the con-
tainer is at rest we conclude that all the integrals in Eq.~A4!
vanish and finallyI 50.
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