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Communication: Nonexistence of a critical point within the Kirkwood
superposition approximation
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An analytic argument is given to show that the application of the Kirkwood superposition approxi-
mation to the description of fluid correlation functions precludes the existence of a critical point. The
argument holds irrespective of the dimension of the system and the specific form of the interaction
potential and settles a long-standing controversy surrounding the nature of the critical behavior pre-
dicted within the approximation. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824388]

Developing a fundamental understanding of the liquid-
vapor phase transition has been the focus of attention of statis-
tical physics for more than a century. The quantity of central
importance in this regard is the radial distribution function,
g(r). However, an exact, analytic determination of g(r) turned
out to be impossible, even for simple fluids. As a result, vari-
ous approximations have been proposed in order to make the
analysis more tractable.

One of the most widely studied approaches is based
on the Kirkwood superposition approximation (KSA) which
yields a closed integral equation for the radial distribution
function.1–3 However, combined analytic and numerical at-
tempts to derive from the integral equation the existence of a
liquid-vapor critical point in three dimensions failed.4–9 Only
a “near-critical” behavior could be revealed, with the corre-
lation functions attaining very long, but finite range. Inter-
estingly, it was hypothesized that the critical behavior un-
der KSA approximation depends on the dimensionality of the
system,7, 8 with the true criticality present only for d ≥ 5.
This conclusion was reached, however, by introducing an-
other approximation: the moment expansion was applied to
Yvon-Born-Green (YBG) integral equation which yielded a
nonlinear differential equation describing the long-range cor-
relations.

By adopting a different approach, we prove here that
KSA applied to the exact relation between the derivative with
respect to the density of the pair correlation function and the
three-particle correlation function leads to a theory incompat-
ible with the existence of a critical point. The result holds
irrespective of the dimension of the system and the specific
form of the interaction potential and thus settles the long-
standing controversy over the existence of a critical point in
KSA-based theories and the potential dependence of the crit-
ical behavior on the dimensionality of the system.

To proceed, we consider the cluster decomposition of the
two - and three-particle number density

n2(r12) = n2g(r12) = n2[h2(r12) + 1] (1)
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and

n3(r12, r13, r23) = n3[h3(r12, r13, r23) + h2(r12) + h2(r13)

+h2(r23) + 1], (2)

which defines the two- and three-particle correlation functions
h2 and h3. In the above equations n is the density of a homo-
geneous fluid, and rij = |ri − rj| denotes the distance between
points ri and rj. We assume here that the potential of interac-
tion is spherically symmetric.

The correlation functions h2 and h3 satisfy the nonlinear
equation10, 11

∫
dr3 h3(r12, r13, r23)

= 2

[∫
drh2(r)

]
h2(r12) +

[
1 + n

∫
drh2(r)

]
∂h2(r12)

∂n
,

(3)

involving the isothermal compressibility K(n, T ) through the
so called compressibility equation

1 + n

∫
drh2(r) = kBT

(
∂n

∂p

)
T

= nkBTK(n, T ), (4)

where T and p denote the temperature and the pressure, re-
spectively.

The relation (3) reflects the mechanism of equilibrium
density fluctuations and has a very general character. It is valid
in any dimension and holds in principle for an arbitrary poten-
tial of interaction.

Within the superposition approximation one puts

n3(r12, r13, r23) = n3[1 + h2(r12)][1 + h2(r23)][1 + h2(r31)],
(5)

which, when compared with (2), implies an approximate ex-
pression for the three-particle correlation function

h3(r12, r13, r23) = h2(r12)h2(r13)h2(r23) + h2(r12)h2(r13)

+h2(r13)h2(r23) + h2(r12)h2(r23). (6)
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Upon inserting (6) into the integral relation (3) we find∫
dr3 [h2(r12)h2(r13) + h2(r13)h2(r23)

+h2(r12)h2(r23) + h2(r12)h2(r13)h2(r23)]

= 2h2(r12)
∫

dr h2(r) +
[

1 + n

∫
dr h2(r)

]
∂h2(r12)

∂n
,

(7)

which reduces to

[1 + h2(r12)]
∫

dr3 h2(r13)h2(r23)

=
[

1 + n

∫
dr h2(r)

]
∂h2(r12)

∂n
. (8)

The relation (8) is a direct consequence of the superposition
approximation, valid in any spatial dimension.

Rewriting (8) as

1

1 + n
∫

dr h2(r)

∫
dr3 h2(r13)h2(r23)

= 1

1 + h2(r12)

∂h2(r12)

∂n
(9)

and integrating over the variable r12 we find
∫

dr
1

1 + h2(r)

∂h2(r)

∂n
=

[∫
dr h2(r)

]2

1 + n
∫

dr h2(r)
. (10)

Equation (10) permits to prove that the critical point cannot be
attained within the superposition approximation. Indeed, we
show below that assuming the existence of a critical isotherm
leads to a contradiction.

Let us thus suppose that there exists an isotherm T = Tc

such that when the density n approaches some critical value
nc, the isothermal compressibility K(n, Tc) defined in (4) di-
verges. This happens because at n = nc the function h2(r) be-
comes non-integrable showing a slow power-like decay at in-
finity. Naturally, both sides of Eq. (10) should diverge in the
same manner. Let us then analyze their asymptotic behavior
as n → nc.

As h2(r) → 0 when r → ∞, the large distance decay
of the integrand on the left-hand side of Eq. (10) coincides
with that of the derivative ∂h2(r)/∂n . So, when n → nc, the
dominant (supposed diverging) contribution to the left-hand
side behaves like
∂

∂n
I (n, Tc), where I (n, Tc)=

∫
dr h2(r)=kBTcK(n, Tc)− 1

n
.

(11)
In other words, the left-hand side of (10) diverges like the
derivative of the compressibility.

The right-hand side of Eq. (10) equals

[I (n, Tc)]2/[1 + nI (n, Tc)],

so that the diverging contribution takes here the form
I (n, Tc)/n = [nkBTK(n, Tc) − 1]/n2. The divergence of the
right-hand side of (10) coincides thus (up to a factor) with
that of the compressibility. Equation (10) thus requires that
the derivative with respect to the density of the compressibil-
ity at the approach to the critical density diverges exactly in

the same way as the compressibility itself. That this is impos-
sible can be seen by considering the equation

∂K(n, Tc)

∂n
= b

K(n, Tc)

n
. (12)

For n → nc, Eq. (12) expresses the fact that the divergent
terms in Eq. (10) are proportional (b is a constant), i.e., that
they diverge according to the same law. However, the solution
of Eq. (12) reads K(n, Tc) = a(n)b, where a is another con-
stant, giving a finite value to the compressibility at n = nc,
which excludes the assumed divergence.

For example, if one assumes the power-law diver-
gence characteristic for the critical behavior, K(n, Tc) ∼ (n −
nc)−γ , γ > 0, then the LHS of Eq. (12) diverges as (n −
nc)−(γ+1), whereas the RHS as (n − nc)−γ , which is clearly
incompatible.

We thus find here a contradiction with the assumed di-
vergence of the compressibility, which leads to the conclusion
that the existence of a critical isotherm, and thus of a critical
point, is ruled out when the Kirkwood superposition approxi-
mation is applied to the general relation (3).

The argument presented above is very general, valid in
any dimension, and for arbitrary potential. In order to illus-
trate it on a specific example we consider below the exten-
sively studied case of a three-dimensional square-well fluid.
It has been shown that the integral equation corresponding
to the superposition approximation leads in this case to the
long-range decay of correlations via exponential modes of the
form9

h2(r) −−−−→
r→∞ A

exp(−κr)

r
, (13)

where κ = κ(T, n) is a function of temperature and density
and A is a constant. The divergence of compressibility would
correspond thus to the disappearance of exponential damping
at n = nc. On a critical isotherm we should thus expect

lim
n→nc

κ(Tc, n) = κ(Tc, nc) = 0. (14)

When κ → 0, the integral of the correlation function diverges
as ∫

dr A
exp(−κr)

r
= 4πA

κ2
. (15)

The asymptotic behavior of the right-hand side of
Eq. (10) reads thus (4πA/nκ2). On the other hand, inserting
into the left-hand side of (10) the large distance formula (13)
we find∫

dr
1

1 + h(r)

∂

∂n
h(r)

= ∂

∂n

∫
dr h(r) − 1

2

∫
dr

1

1 + h(r)

∂

∂n
[h(r)]2

= 4πA

[
1 − Aκ

2

∫ ∞

0
dx

x exp(−2x)

1 + Aκ exp(−x)/x

]
∂

∂n

(
1

κ2

)
.

Assuming that κ → 0 along the critical isotherm leads to the
asymptotic formula for the left-hand side of (10) of the form

4πA
∂

∂n

(
1

κ2

)
. (16)
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In the n → nc limit, Eq. (10) imposes thus the asymptotic
relation

1

n κ2
= ∂

∂n

(
1

κ2

)
. (17)

The general solution κ−2 = a n, where a is a constant, is in
contradiction with the assumed divergence of the correlation
length κ−1 at n = nc. Equation (17) is a particular case of
the general asymptotic condition (12) implying contradiction
with the assumed existence of a critical point.

The analysis presented above has been based on relation
(3) between the two- and three-particle correlation functions
involving compressibility. This relation generalizes the com-
pressibility equation (4) to higher order correlations, and is
particularly well adapted to study the possibility of attaining
a critical point where the compressibility becomes infinite. As
we have already stressed, the relation is general, valid in any
dimension. It does not depend on any specific form of inter-
action. Rather, relation (3) follows directly from the structure
of the equilibrium Gibbs ensemble.

In the present study the Kirkwood superposition ap-
proximation has been applied directly to the integrated
three-particle correlation function. We did not refer to the
YBG hierarchy equations. As it turned out, the application
of KSA ruled out the possibility of reaching the critical
point.

This result sheds light on the studies of three-dimensional
square-well fluids based on the YBG hierarchy equations
whose authors concluded that within the superposition ap-
proximation no true criticality could be attained.7–9 However,
our purely analytic result is much more general. It shows in
particular that the predictions of the mean-field criticality in
the dimensions d > 4 obtained in Ref. 7 must be a conse-
quence of combining KSA with an additional approximation

leading to a nonlinear differential equation. Intriguingly, the
presence of a critical point in 5 and 6 dimensions seems to
be implied also by the numerical work of Jones et al.8 How-
ever, as the authors themselves comment, a numerical proof
of the existence of the critical point can never be rigorous, as
one cannot construct solutions arbitrarily close to the critical
point, and must rely on the extrapolation procedures instead.
In this context, it should also be remarked that the integral
equation derived from the equilibrium YBG hierarchy under
KSA closure was shown to magnify the errors introduced by
this approximation.12

In summary, we have shown that the Kirkwood superpo-
sition approximation applied directly to the spatial integral of
the three-particle correlation function leads to a result incom-
patible with the existence of a critical point.
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