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Abstract. We report the results of molecular dynamics simulations of
translocation of knotted proteins through pores. The protein is pulled
into the pore with a constant force, which in many cases leads to the
tightening of the knot. Since the radius of tightened knot is larger
than that of the pore opening, the tight knot can block the pore thus
preventing further translocation of the chain. Analyzing six different
proteins, we show that the stuck probability increases with the applied
force and that final positions of the tightened knot along the protein
backbone are not random but are usually associated with sharp turns in
the polypeptide chain. The combined effect of the confining geometry
of the pore and the inhomogeneous character of the protein chain leads
thus to the appearance of topological traps, which can immobilize the
knot and lead to the jamming of the pore.

1 Introduction

In less than 1% of the proteins the polypeptide chain adopts a knotted configura-
tion [1–3]. Compared with ordinary polymers of comparable length, compactness,
and flexibility proteins have fewer knots than would be expected for a random distri-
bution of conformations [4] suggesting that nature finds it expedient on the whole to
eliminate knots. What is it then about the knotted proteins that makes them so rare
in living matter? One possibility, proposed in [2,5,6] is that the presence of a knot may
affect the ability of proteins to be degraded in proteasome or translocated through
the intercellular membranes, e.g. during import into mitochondria. The smallest con-
strictions in the mitochondrial pores or proteasome openings are 12–14 Å in diameter
[7,8], too narrow to accommodate folded structures, thus translocation must be cou-
pled to protein unfolding. Unfolding and import of proteins into mitochondria or
proteasome are facilitated by molecular motors that act with the forces of the order
of 30 pN [9]. However, as it was shown in a number of studies, both experimental and
numerical [5,10,11], the protein knots tend to tighten under the action of the force.
The radius of gyration of the tight knot has been estimated to be around 7–8 Å for
the simplest knot (a trefoil) and correspondingly larger for more complicated knots.
This means that the knot seems to be a shade too large to squeeze through the pore
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Fig. 1. Pulling the rope with a trefoil knot into the model pore (the opening of a rope float).
The initial configuration (left) and the tightened configuration after a sharp tug at the rope
(right).

Fig. 2. Same as in Fig. 1 but for a figure-of-eight knot.

openings. This leaves us with two possibilities: either the knot diffuses towards the
end of the chain and simply slides away, or it gets tightened and jams the opening, as
suggested by the numerical studies reported previously in [6]. It is easy to convince
oneself that it might indeed be so by conducting a simple macro-scale experiment:
tying a knot on a piece of rope and then pulling it through a cylindrical hole (e.g. the
one in the rope float, as shown in Fig. 1). If pulled sharply, the knot invariably tight-
ens; however if tugged slowly – it might be able to squeeze its way through the hole
without tightening. Below, we analyze the jamming process in more detail, perform-
ing the numerical simulations of the translocation process for six different knotted
proteins.

2 Numerical model

The numerical model used here combines a coarse-grained protein model with a min-
imalist model of a repelling pore. For protein, we adopt a Gō-type model, in which
individual amino acids are replaced by beads of uniform size whose positions cor-
respond to the locations of the Cα atoms. The effective potential of the interaction
between these beads is then introduced, tailored to give lowest energy to the native
state of a protein. A particular implementation of the Gō-type model followed here
is by Cieplak and co-workers [10,12]. In short, the protein structure is represented
by a chain of Cα atoms tethered along the backbone by harmonic potentials with
minima at lp = 3.8 Å. Effective interactions between residues are split into native and
nonnative interactions by checking for overlaps between the enlarged van der Waals
surfaces of the residues [13]. Amino acids (i and j) that overlap are endowed with the
effective Lennard-Jones potential Vij(r) = 4ε

[
(
σij
rij
)12−(σij

rij
)6
]
with energy scale ε and

pair-by-pair distances rij . The length parameters, σij , are chosen such that the poten-
tial minima correspond pair by pair to the native state distance between the residues.
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Fig. 3. The simulation setup: the protein (here 1ns5), presequence (dashed) and the pore
(grey).

Nonnative contacts are represented by hardcore repulsion to prevent entanglements.
Correct chirality is imposed by the angle-dependent term in the Hamiltonian.
In the cell, the transport of proteins into mitochondria is usually mediated by a

loosely folded presequence, which is modeled here as a loose piece of a peptide chain
(10 amino acid long). One end of the presequence is attached to the terminus of the
protein, while the other end is pulled with a constant force F. The overdamped motion
of amino acids in solvent is mimicked using a standard Brownian dynamics algorithm
at the temperature corresponding to kT = 0.3ε. The characteristic timescale τ =
σ2/6D0 is set by the time it takes for the amino acid to diffuse the typical contact
distance σ ≈ 5 Å. Here, D0 is a single particle diffusion coefficient. Experimentally,
the time scale τ is of the order of a nanosecond.
Next, the pore is modeled as a cylindrical structure interacting with the

aminoacids by the potential

Vpore(ri) = V0
1

1 + exp [1− ρ2i /ρ20]
zi > 0 (1)

as proposed by J.M. Deutsch [14]. Here ri = {xi, yi, zi} is the position of ith
aminoacid, z is oriented along the pore axis and ρi =

√
x2i + y

2
i is the distance from

the axis. The potential is small within the radius ρ0 from the axis of the pore and
then rises sharply. Additionally, to prevent the protein from entering the membrane
except through the pore, a short range, repulsive membrane potential is introduced
at its trans side (z < 0)

Vmem(ri) = V0

(z0
z

)9
, zi < 0, ρi > ρ0. (2)

In the simulations reported here, V0 = 10ε, z0 = 0.5 Å and ρ0 = 3 Å. Note that the
pore potential acts on the centers of the particles. Since the van der Waals radii of
amino acids are in the range of ∼ 3.5 − 4.5 Å, the above value of ρ0 corresponds to
the effective pore radius of about 6.5 − 7.5 Å, which is consistent with the values
reported for the narrowest constriction in the mitochondrial pores [8].

3 Results

At the beginning of the simulations the protein in its native conformation is posi-
tioned at the outside side of the membrane near the pore entrance, with the end of



1808 The European Physical Journal Special Topics

Table 1. Proteins considered and the characteristics of their knots.

protein pdb length knotted core knot type

YbeA from E. coli 1ns5 1–153 67–121 31
zinc-finger motif 2k0a −1–107 21–73 31
YibK methyltransferase 1j85 1–156 75–120 31
YbeA-like from T.maritima 1o6d 1–147 65–118 31
Ribbon-helix-helix protein 2efv 6–87 13–80 31

(from M.jannaschii)
transcarbamylase from X.campestris 1yh1 3–336 172–254 31
FLIN2 chimaeric protein 1j2o(14) 1–114 42–95 41
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Fig. 4. The movement of knotted core during the translocation process of the protein 1ns5
pulled by the N (left) terminus with the force F = 2.3ε/ Å or C terminus (right) with
F = 3ε/Å. The colors mark the two ends of the knotted core as they move along the
sequence.

the presequence placed at the pore axis. The force is then switched on and the prese-
quence is pulled into the pore. Several knotted proteins were studied, as summarized
in Table 1. During the simulation we not only record the conformation of the protein
but also track the position of the knotted core, i.e. the smallest region that will remain
knotted when the residues are successively deleted from both ends [15]. Thereby we
obtain the trajectories of knot’s ends in the sequential space, such as those shown
in Figs. 4 and 5. The former shows the movement of the knot for the YbeA protein
from E. coli (pdb code: 1ns5). In this case, irrespectively which terminus is pulled into
the pore, the knot always gets stuck in a tightened conformation, although the final
positions of the knot differ. As listed in Table 2 for N-pulling it lands either between
aminoacids 119 and 134 or between 136 and 151. On the other hand, for C-pulling
the knot gets stuck in between amino acid 44 and 58. Invariably, when the knot is
tightened, the knotted core reduces to 12–15 amino acids (for a trefoil knot) and the
radius of gyration is of the order of 7–8 Å.
It is interesting to analyze which amino acids act as pinning centers for the knots

in different proteins. Similarly to what was reported in knot tightening simulations
without the pore [10], the pinning centers are mostly associated with very tight turns
in the protein backbone, where the polypeptide chain changes its direction. There
are several aminoacids usually residing in such turns [16]: glycine, proline, aspartic
acid, glutamic acid, and serine. Proline forces a sharp turn, since its side chain is
connected to the protein backbone twice: to the backbone nitrogen as well as to car-
bon. Glycine is unique as it contains a single hydrogen as its side chain, which allows
for a considerable conformational flexibility. Similarly, serine is often found at the
tight turns due to its small size. Finally, aspartic acid and glutamic acid prefer to
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Fig. 5. The movement of knotted core during the translocation process of the protein 2k0a
pulled by the N (the upper left and upper right panel) or C terminus (lower). The colors mark
the two ends of the knotted core as they move along the sequence. The panels correspond
to the forces F = 2ε/Å (upper left), F = 2.25ε/Å (upper right) and F = 3ε/Å (lower). In
the upper left and lower panel the knot slides off the chain, in the upper right one it gets
pinned.

Table 2. The scenarios observed during the translocation of knotted proteins. The knot
either freely slides off the chain (“free”) or it gets tightened blocking the pore (“stuck”). The
intermediate case in which the pore gets stuck with a certain force-dependent probability,
P (F ), is tagged as “sigmoidal”. Additionally, the positions of the ends of the pore in a
stuck conformation are given, marking the cases in which they involve turn-prone residues
(Gly,Pro,Ser,Glu,Asp). Lower case “t” marks the positions in the immediate neighborhood
of an actual turn in the protein structure (as determined by the visual inspection).

protein N-puling C-pulling

1ns5 stuck: 119(Ser)-134 or 136-151(Pro,t) stuck: 44(Gly,t)-58(Gly)
2k0a sigmoidal: 70-85(Asp,t) free
1j85 free stuck: 68(Glu)-82(Gly,t)
1o6d sigmoidal: 118(Ser)-135(Glu) stuck: 62(Pro,t)-47(Glu)
2efv free free
1yh1 stuck: 253(Ser)-268(Pro) or 268(Pro)-282 stuck: 159-174
1j2o free sigmoidal: 32(Ser)-52(Gly,t)

expose their charged side chains to solvent and thus they tend to reside at sharply
turning regions on the surface of the protein. As shown in Table 2 indeed many of
the above-mentioned residues are among those which stop the moving knot.
It is, however, not every time that the knot passing a potential pinning center

gets stopped. In fact, as summarized in Table 2 for some proteins there is only a
finite probability to get stuck. An example of such behaviour for the protein 2k0a is
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Fig. 6. Stuck probability as a function of force for 2k0a protein with a trefoil knot.

presented in Fig. 5: in the upper left panel the knot slides off the chain whereas in the
upper right one it gets pinned between aminoacids 71 and 85. In such cases, the stuck
probability is invariably force-dependent. Although one might have thought that a
sharper pull will make it more probable for a knot to get to the other side, in fact it is
just the opposite: large forces tend to tighten the knot and block the pore. In fact, as
the experiments with the rope and a float would tell us the successful tactics is differ-
ent: “Wisely and slowly, they stumble that run fast” as the Shakespearean quote goes.
Entering tightened configuration involves crossing an energy barrier [11,17], which is
the easier to overcome the higher the force is; hence the dramatic increase of pore
blockage probability with the force, P (F ) (cf. Fig. 6). Once tightened, the knot is
highly unlikely to get loose again, unless the force is relaxed – thus the tightening
inevitably results in the blockage of the pore. The data presented in Fig. 6 was ob-
tained for the N-pulling of zinc-finger motif protein 2k0a, but similar sigmoidal shape
of P (F ) is also found in the case of N-pulling of 1o6d and C-pulling of 1j2o, as sum-
marized in Table 2. This behavior is similar to that reported by Rosa et al. [18]
for force-induced translocation of knotted polyelectrolyte chain, such as ssDNA.
On the other hand, no jamming was observed in the passive ejection of DNA out
of a spherical cavity [19,20]. Note however that one needs to be careful when draw-
ing a parallel between the behaviour of translocating proteins and DNA, precisely
because of the presence of the potential pinning centers in the protein backbone in
contrast to (nearly) uniform properties of the DNA chain. For the same reason, the
rope and float example is more relevant to DNA than to proteins. In the latter case,
instead of a rope, one should take the old garden hose with a lot of kinks, which could
potentially pin the translocating knot1.
In some cases, however, the knot translocates no matter how sharply we pull it

in. Within the set of proteins considered, this takes place for 2efv protein (both for
N- and C-terminus pulling) and for C-pulling of 2k0a and N-pulling for both 1j85 and
1j2o. In all of these cases the distance between the free end of the protein and the
boundary of the knotted core is relatively short (less than 10 amino acids for both
sides of 2efv, about 20 for 2k0a and 1j2o) with an exception of 1j85 where the end
of the knot is 36 residues away from the end of the chain. A more detailed analysis
of the latter case reveals that the knot gets temporarily pinned between Gly (152)
and Ser (136), but the pinning is apparently too weak and eventually the knot gets
released and slides off the chain.

1 The kinked garden hose as a parallel for a translocating protein is due to Gregory Buck.
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Fig. 7. Example tight-knot configurations blocking the entrance to the pore. Left: trefoil
knot in E. coli methyltranferase (1ns5), right: figure-of-eight knot in FLIN2 chimaeric protein
(1j2o).

Finally, there are cases in which – at least in the force range considered (i.e.
1 − 8 ε/Å) the knot always tightens and gets stuck at the entrance to the pore (cf.
Table 2). This happens as a rule for deep knots – i.e. in cases where the distance be-
tween the end of the knot and the protein terminus is at least 30 residues. Such long
stretches of protein backbone contain many potential trapping sites, which effectively
stop the knot. It might be, however, that one needs to go to much lower forces to see
the sigmoidal behaviour. Unfortunately, smaller force regimes are computationally
inaccessible due to the large translocation times involved. Note that the depth of the
knot does not need to correlate with the length of the protein. A good example here
is carbonic anhydrase, the first knotted protein discovered [21], which is relatively
long (260 amino acids), but the knot there is extremely shallow (with one of the ends
positioned just two residues away from C terminus).

4 Summary

It has been shown that when the knotted protein is pulled with a constant force into
the pore there are two scenarios possible: the knot either slides off the chain or it gets
tightened and blocks the pore. Note that this is in contrast to the results of Huang
and Makarov [22], in which the parameters of the pore allowed the knotted chain
to enter inside it. The snapshots of tightened conformations are presented in Fig. 7.
Interestingly, they both involve a fastened loop around the entrance of the pore, quite
similar to what takes place in the case of the rope (right panels of Figs. 1 and 2).
The positions along the protein sequence at which the knot gets stuck are not

random, but are usually associated with sharp turns in the polypeptide backbone.
This is similar to what happens during knot tightening in stretched proteins in the
absence of the pore [10]. If the knot is relatively shallow then it might happen that
there are no potential pinning centers between its end and the end of the chain – in
such cases it would slide off. In other cases, the pinning centers trap the passing knot
with a certain probability, P (F ), which increases with the applied force. Finally, if the
knot is deep and there are many potential trapping sites, the tightening probability
is almost one and the knot invariably blocks the pore, at least in the range of forces
considered.
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research Grant No. N N202 055440. The author benefited from discussions with Marek
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