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Abstract: A shoelace can be readily untied by pulling its ends
rather than its loops. Attempting to untie a native knot in a protein
can also succeed or fail depending on where one pulls. However,
thermal fluctuations induced by the surrounding water affect
conformations stochastically and may add to the uncertainty of
the outcome. When the protein is pulled by the termini, the knot
can only get tightened, and any attempt at untying results in
failure. We show that, by pulling specific amino acids, one may
easily retract a terminal segment of the backbone from the
knotting loop and untangle the knot. At still other amino acids,
the outcome of pulling can go either way. We study the
dependence of the untying probability on the way the protein is
grasped, the pulling speed, and the temperature. Elucidation of
the mechanisms underlying this dependence is critical for a
successful experimental realization of protein knot untying.

Several tens of protein strutures, which belong to different folds
and classes, are currently known to contain knots.1-3 The knotted
proteins are fascinating to biologists: it is not clear why nature uses
such molecules and how their folding proceeds.4,5 Understanding
how to accomplish untying these knots may suggest a proper way
to design single-molecule experiments aiming at identifying folding
pathways of knotted proteins: if untied conformations are used in
refolding studies, one avoids situations in which unfolded states
already contain knots. Recent experimental studies indicate that a
knot may either get tightened6 or untied,7,8 depending on the way
the protein is pulled. Here, we explore the pulling direction
dependence of the untying probability in a systematic way through
molecular dynamics (MD) simulations. We study two methylotrans-
ferases with the Protein Data Bank structure codes 1o6d and 1v2x.
Their geometries are different, yet the results found are qualitatively
similar (see Supporting Information). As an illustration, we focus
our discussion on 1o6d, which contains a trefoil knot and comprises
N ) 147 residues. In the native state, the knotted core (i.e., the
minimal segment of amino acids that can be identified as a knot)
is located between k1 ) 65 and k2 ) 119 (see Figure 1). Note that
the distance between k1 and the N-terminus is about double the
distance between k2 and the C-terminus. Thus, placing one of the
attachment points near the C-terminus makes untying easier than
placing it near the other terminus. We have selected 12 attachment
points: five in the knotted region (73, 76, 94, 101, 113), five on the
N-terminal side (1, 10, 27, 40, 63), and two on the C-terminal side
(122, 147). None of them is buried, and connecting them to a

cantilever tip through molecular linkers should be implementable
experimentally.9

The four possible pulling directions are shown schematically in
Figure 1. We shall discuss the untying process first in the absence
of thermal fluctuations, i.e., at temperature T ) 0. In the first case,
the attachment points (denoted by p1 and p2) are located on opposite
sides of the knotted core, and the final stretched structure is always
knotted (for theoretical analysis of this case, see refs 10 and 11
and the first experimental realization in ref 6). The second case
corresponds to the experimental situation for carboanhydrase.7 Here,
p1 is located on one side of the knot and p2 inside the knotted core.
Such a knot can be untied if the distance between p2 and the
C-terminus (N-p2) is sufficiently short to allow for dragging of
the C-terminus out of the knotted loop (i.e., is smaller than p2-p1).
This yields the condition

which for p2 )113, 101, and 94 in 1o6d gives p1 < 79, 57, and 39,
respectively. For p2 ) 76 we get p1 < 5. In the reverse situation
with p1 > p2, the above condition reads simply p1 > 2p2. In the
third case, both p1 and p2 are located inside the knotted core. As
discussed in the Supporting Information, for our choice of p1 and
p2, untying at T ) 0 is not possible in this case. In the fourth case,
both p1 and p2 are between one of the termini and the knotted core.
This way of pulling does not affect the knot, so it remains entangled.

These theoretical considerations are confirmed by our MD
simulations. For example, at T ) 0 and for p2 ) 101, each choice
of p1 ) 1, 10, 28, and 43 leads to untying, in agreement with the
constraint p1 < 57 from eq 1, while the choice of p1 ) 63 leads to
tightening of the knot.
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Figure 1. Left: Structure of protein 1o6d, in which the locations of 12
representative amino acids used in pulling are indicated (yellow circles).
The knotted core (in orange) extends between sites 65 and 119. It consists
of two nearly symmetric loops “attached” to the �-sheet. The arrows
represent the energy landscape for untying in a schematic way; their width
corresponds to the free energy barrier F0 as listed in eq 4. The arrows are
shown for p2 ) 122. Middle: Schematic representation of a trefoil knot in
a protein, with the circles indicating the main geometrical directions of
pulling. Right: The resulting final conformations. In the second and third
cases they can be either knotted or unknotted.

p1 < 2p2 - N (1)
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At nonzero temperatures, there appears a region in the pulling
direction space (cf. upper left panel of Figure 3) in which the
outcome of stretching is no longer unique: the knot survives with
a certain probability P, which is a function of temperature T,
velocity V, and the pulling direction. Interestingly, in all the cases
analyzed by us, the decision as to which pathway to follow is taken
during a specific short time span (characterized by stretching
distance ∆d) and is associated with the stability of a certain
secondary structure against thermal fluctuations. For instance,
selecting p1 ) 73 and p2 ) 122 leads to either tightening or untying,
which depends on the behavior of one of the helices 40-60. During
the stretching process, this helix becomes exposed. If it unfolds
temporarily, the loop gets wider, which may result in untying.
Otherwise, the knot gets tightened, as illustrated in Figure 2. For
other choices of p1 and p2, analogous mechanisms arise. Charac-
teristics of the unfolding process, such as force-displacement
curves, positions of the knot’s ends k1 and k2, fraction of native
contacts, and radius of gyration, are discussed further in the
Supporting Information.

The effect of thermal fluctuations on the knot untying process is
illustrated in Figure 3. Note that, at T ) 0, untying takes place
inside a wedge-like region colored red in the p1-p2 plane, which
is determined by the geometry: the vertical edge of the wedge at
p2 ) 119 corresponds to the end point of the knotted core k2, while
the tilted edge follows the geometrical constraint of eq 1. The region
in the pulling direction space in which there is a nonzero probability
of knot untying gets considerably larger as the temperature
increases. However, only in the wedge-like region described above
does the knot untie with 100% certainty.

For trajectories that do not lead to untying, relative frequencies
of various final knot-containing conformations for T ) 0.3ε/kB are
shown in the top right panel of Figure 3. The regions in red or
yellow correspond to the locations of knot ends (k1,k2) that appear
most often. There are three typical final states: (1) a knot that is
tightened maximally, with |k1 - k2| ≈ 10 (these conformations form
a tilted line at the upper left corner of the graph), (2) a knot with
k1 and k2 at their native locations (this is represented by the red
region in the vicinity of point (119,65)), and (3) no knot. Analogous
maps for T ) 0 and T ) 0.5ε/kB are shown in the Supporting
Information.

There is a complicated energy landscape that underlies protein
stretching in various directions. This landscape also characterizes

topological properties of proteins by encoding heights of energy
barriers for untying for various p1 and p2. We discuss a patch in
such a landscape and consider stretching for a set of directions with
p1 ) 63, 73, 76, 94, 101 and p2 fixed at 122. For each choice of p1,
we determine the dependence of knot survival probability, P(t|T, V),
by measuring, in a large ensemble of simulations, a fraction of
conformations that remain knotted when pulling at speed V. As
mentioned above, for each pulling direction, there is a well-defined
short range of stretching distances, ∆d (and a corresponding time
range, t1 < t < t2), during which the knot may untie. This implies
that it should be possible to describe the untying process simply in
terms of crossing a single kinetic barrier of height E0:

where τ0 is an intrinsic period and the height E0 is measured relative
to the state of the system at time t1, and where additionally we
neglect the effect of the time-dependent external force onlowering
the barrier during the time interval t2 - t1. In such case the final
survival probability (at t ) t2) reads (see also Supporting Information)

It is striking that such a simple model indeed describes the
complicated nonlocal change in topology of the protein, as seen,
e.g., in the corresponding fit for V ) 0.005 Å/ns and p1 ) 63, 76, 94
shown in Figure 3 (bottom left). There is one subtlety, though: in

Figure 2. Topological transitions resulting from pulling at p1 ) 73 and p2

) 122; the sense of pulling is shown by the arrows. At a certain stage, the
system is in conformation A (also sketched schematically at the top). Its
topology bifurcates at this point, depending on the behavior of the
conformation between residues 44 and 60, shown in blue, during a critical
and short stretching distance ∆d. If it continues to be helical, the end result
is the knotted conformation, B. However, if the helix unfolds, then the loop
spanned by residues 44-60-73 gets enlarged, allowing for the N-terminal
part (amino acids 1-40, which includes another helix) to exit through the
loop and form the untied conformation, C. Eventually, the 44-60 regions
re-forms the helix and re-establishes contacts (broken lines) with the other
parts of the protein, C.

Figure 3. (Top) Left: Attachments points (p2, p1) that may lead to an
unknotted configuration at various temperatures (denoted by colors, as
indicated on the scale above). Right: Distribution of the knot end locations,
(k2,k1) at T ) 0.3ε/kB. The color scale indicates the probability of attaining
particular values of k2 and k1. The framed part in the right panel indicates
the region covered by the left panel. (Bottom) Left: Dependence of the
probability of knot survival on T upon stretching for p2 ) 122 and p1 ) 63
(circles), 76 (squares), and 94 (triangles) at a fixed pulling speed. Right:
Dependence of the survival probability, for the 76-122 pulling direction,
on V for kBT/ε ) 0.3 (squares), 0.5 (triangles), and 0.7 (circles). For kBT/ε
) 0.3 and 0.5, the two unfolding pathways are represented by continuous
and dashed lines. For kBT/ε ) 0.7, there is a unique unfolding pathway.
All lines are fitted to the model P(T,V) with the same ∆d/τ0 ) 0.7 Å/ns and
slightly different E0 reflecting a choice of the pathway.

dP(t|T, V)
dt

) - 1
τ0

e-E0/kBT P(t|T, V), t1 < t < t2 (2)

P(T, V) ) exp(- t2 - t1

τ0
e-E0/kBT) ) exp(-∆d

Vτ0
e-E0/kBT)

(3)
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some cases, e.g., p1 ) 76, 94, there may exist two configurations
with the knot blocked. One configuration is chosen at lower values
of T and V, and the other at their higher values. This model leads
to the following barrier heights for pulling in directions involving
p2 )122 (for p1 ) 76, 94, the data concern the high-T pathway):

The corresponding patch of the energy landscape is indicated in
Figure 1 by the arrows connecting relevant pairs of residues, with
their widths proportional to the barrier heights. The dependence of
the survival probability on V, for a fixed p1 ) 76 and various
temperatures, is shown in the bottom right panel of Figure 3.
Notably, for kBT/ε ) 0.7 and the direction 76-122, two independent
fits to the temperature and velocity dependence of P(V,T) give the
same value of E0 ) 2.9ε, which supports the applicability of eq 3
to the description of the knot untying process.

Understanding the dynamics of knot untying is important for
the proper interpretation of unfolding data. We provide criteria that
can be used to untie knotted proteins. When, due to thermal
fluctuations, the outcome of the untying process becomes random,
it is possible to describe its kinetics in terms of a simple barrier
crossing. Accomplishing knot untying still poses experimental
challenges, but overcoming them may be essential for experimental
studies of how knotted proteins fold. In chemical denaturation
experiments,12 the difficult issue is to tell whether the denatured
state is knotted, since there is no direct way of detecting a knot (in
experiments on knot tightening through stretching,6 the knot is
detected as an apparent shortening of the chain length). To ensure
unknotting, such a molecule can be stretched in one of the directions
for which the geometrical conditions (1) are fulfilled. Then,
refolding in a force clamp13 or applying related experimental

methods should allow the dynamics of knot formation to be
explored. Note that the model we use14 accounts for nonuniform
mechanical properties of proteins, which is another feature that
distinguishes proteins from shoelaces. Knots formed on the more
homogeneous DNA molecules, however, should be still affected
by thermal fluctuations.
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