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[1] We investigate the dissolution of artificial fractures with three-dimensional, pore-scale
numerical simulations. The fluid velocity in the fracture space was determined from a
lattice Boltzmann method, and a stochastic solver was used for the transport of dissolved
species. Numerical simulations were used to study conditions under which long conduits
(wormholes) form in an initially rough but spatially homogeneous fracture. The
effects of flow rate, mineral dissolution rate, and geometrical properties of the fracture
were investigated, and the optimal conditions for wormhole formation were determined.
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1. Introduction

[2] A number of experimental and numerical studies of
dissolution in fractured or porous rock have established that
the evolving topography of the pore space depends strongly
on the fluid flow and mineral dissolution rates. Remarkably,
there exists a parameter range in which positive feedback
between fluid transport and mineral dissolution leads to the
spontaneous formation of pronounced channels, frequently
referred to as ‘‘wormholes’’. Spontaneous channeling of a
reactive front has been shown to be important for a number
of geophysical processes, such as diagenesis [Chen et al.,
1990; Boudreau, 1996], melt migration [Daines and
Kohlstedt, 1994; Aharonov et al., 1995; Kelemen et al.,
1995; Spiegelman and Kelemen, 1995], terra rosa formation
[Merino and Banerjee, 2008], development of limestone
caves [Groves and Howard, 1995; Hanna and Rajaram,
1998], and sinkhole formation by salt dissolution [Shalev et
al., 2006]. Further details can be found in review articles
and books on reactive transport and geochemical self-
organization, [e.g., Steefel and Lasaga, 1990; Ortoleva,
1994; MacQuarrie and Mayer, 2005; Steefel et al., 2005;
Steefel, 2007].
[3] Wormholes play an important role in a number of

geochemical applications, most notably CO2 sequestration
[Cailly et al., 2005; Kang et al., 2006b; Ennis-King and
Paterson, 2007], risk assessment of contaminant migration
in groundwater [Fryar and Schwartz, 1998] and stimulation
of petroleum reservoirs [Economides and Nolte, 2000;
Kalfayan, 2000]. Selecting the optimal flow rate is an
important issue in reservoir stimulation, so as to achieve
the maximum increase in permeability for a given amount
of reactant [Fredd and Fogler, 1998; Golfier et al., 2002;
Panga et al., 2005; Kalia and Balakotaiah, 2007; Cohen et
al., 2008]. If the acid is injected too slowly, significant

dissolution occurs only at the inlet, and the permeability of
the system remains almost unchanged. At the other extreme
of high injection velocities dissolution tends to be uniform
throughout the sample. However, the increase in permeabil-
ity is again insignificant, since the reactant is consumed
more or less uniformly throughout the fracture, making only
an incremental change to the permeability. Moreover, some
of the reactant may escape unused. The most efficient
stimulation is obtained for intermediate injection rates,
where the reactive flow self-organizes into a small number
of distinct channels, while the rest of the medium is
effectively bypassed. This focusing mechanism leads to
much more efficient use of reactant, since the development
of channels causes a large increase in permeability with a
relatively small consumption of reactant.
[4] Experimental studies of wormhole formation have

used a variety of porous systems; plaster dissolved by water
[Daccord, 1987; Daccord and Lenormand, 1987], lime-
stone cores treated with hydrochloric acid [Hoefner and
Fogler, 1988] and salt packs dissolved with undersaturated
salt solution [Kelemen et al., 1995; Golfier et al., 2002].
Recently, a variety of dissolution patterns in single rock
fractures have been reported [Durham et al., 2001; Dijk et
al., 2002; Gouze et al., 2003; Detwiler et al., 2003; Polak et
al., 2004; Detwiler, 2008], depending on the chemical and
physical characteristics of the fracture-fluid system. The
physicochemical mechanisms behind the pattern formation
are not yet understood in detail. Linear stability analysis has
been used to investigate the conditions required for the
break up of a planar dissolution front [Chadam et al., 1986;
Ortoleva et al., 1987; Hinch and Bhatt, 1990], but these
results only pertain to the initial stages of channel forma-
tion, where the front perturbations are small. The later
stages of channel evolution are strongly nonlinear and here
numerical methods are needed. The numerical models used
to study wormholing in porous media fall into four broad
categories: (1) single wormhole models [Hung et al., 1989;
Buijse, 2000], in which the growth velocity is calculated for
a channel with a predetermined shape, (2) Darcy-scale
models [Golfier et al., 2002; Panga et al., 2005; Kalia
and Balakotaiah, 2007] based on continuum equations with
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effective variables such as dispersion coefficients, Darcy
velocity, and bulk reactant concentrations, (3) network
models [Hoefner and Fogler, 1988; Fredd and Fogler,
1998], which model fluid flow and dissolution in a
network of interconnected pipes, and (4) pore-scale nu-
merical simulations [Békri et al., 1995; Kang et al., 2002,
2003, 2006a]. In these calculations the equations for fluid
flow, reactant transport and chemical kinetics are solved in
an explicitly three-dimensional pore space. Although com-
putationally intensive such models provide detailed infor-
mation on the evolution of the fluid velocity, reactant
concentration and topography without invoking effective
parameters such as mass transfer coefficients. This is the
approach followed in the present work, however in the
context of fracture dissolution.
[5] In studies of fracture dissolution, and particularly in

theoretical investigations of cave formation, a one-dimensional
model of a single fracture is frequently used [e.g.,Dreybrodt,
1990; Groves and Howard, 1994; Dreybrodt, 1996; Dijk
and Berkowitz, 1998]. The fracture aperture (the distance
between the rock surfaces) is assumed to depend on a single
spatial variable, the distance from the inlet. Although ana-
lytically tractable, one-dimensional models cannot account
for wormhole formation, and thus they are only relevant at
the extremes of high and low flow rate where the dissolution
is expected to be uniform. In two-dimensional models of
dissolving fractures [Hanna and Rajaram, 1998; Cheung
and Rajaram, 2002; Detwiler and Rajaram, 2007], the fluid
velocity and reactant concentration are averaged over the
aperture of the fracture. The key simplifications are the
Reynolds (or lubrication) approximation for the fluid veloc-
ity [Adler and Thovert, 1999] and the use of effective
reaction rates. These models are technically similar to
Darcy-scale models, with the local permeability determined
by the aperture; they produce realistic looking erosion
patterns and correlate positively with experimental results
[Detwiler and Rajaram, 2007]. However the Reynolds
approximation may significantly overestimate the flow rate
[Brown et al., 1995; Oron and Berkowitz, 1998; Nicholl et
al., 1999], especially for fractures of high roughness and
small apertures. Moreover, under certain geological and
hydrological conditions, large pore-scale concentration gra-
dients develop and in such cases volume averaging can
introduce significant errors [Li et al., 2007, 2008], some-
times not even capturing the correct reaction direction.
[6] The most fundamental approach is to directly solve

equations for fluid flow, reactant transport, and chemical
kinetics within the fracture space. This approach was
pioneered by Békri et al. [1997], who solved the flow and
transport equations using finite difference schemes. Better
resolution is offered by lattice Boltzmann methods, which
have been used in dissolution simulations at the pore scale
[Verberg and Ladd, 2002; Kang et al., 2002, 2003; Szymczak
and Ladd, 2004b, 2006; Verhaeghe et al., 2006; Kang et al.,
2006a; Arnout et al., 2008] and at the Darcy-scale [O’Brien
et al., 2002, 2004]. Here we combine velocity field calcu-
lations from an implicit lattice Boltzmann method [Verberg
and Ladd, 1999] with a transport solver based on random
walk algorithms that incorporates the chemical kinetics at
the solid surfaces [Szymczak and Ladd, 2004a]. Advances in
numerical algorithms for flow and transport allow us to

simulate systems of relevance to laboratory experiments
without resorting to semiempirical approximations [Szymczak
and Ladd, 2004b]. In the simulations reported here, as
many as 50 interacting wormholes have been studied (see
Figure 17), comparable to systems modeled by state of the
art Darcy-scale simulations [Cohen et al., 2008], while
maintaining pore-scale resolution.
[7] We have investigated wormhole formation in a simple

artificial geometry, where one of the fracture surfaces is
initially flat, and the other is textured with several thousand
randomly placed obstacles. The geometry is similar to that
studied experimentally by Detwiler et al. [Detwiler et al.,
2003; Detwiler and Rajaram, 2007] and has the advantage
that it shows no discernible long-range spatial order. The
correlation length is of the order of the distance between the
obstacles, and is much smaller than the system size.
Although it lacks the self similarity of natural fractures, it
provides a useful starting point for numerical analysis of
wormholing, since the initial structure contains no nascent
channels.
[8] The aim of this paper is to discover the range of

conditions under which long conduits form in a initially
rough but spatially homogeneous fracture. Dissolution was
studied under conditions corresponding to a constant pres-
sure drop across the sample and to a constant flow rate.
Constant pressure drop is representative of the early stages
of karstification [Dreybrodt, 1990], whereas constant flow
rate is more relevant for reservoir stimulation [Economides
and Nolte, 2000]. In this context, we have numerically
determined the conditions needed to maximize the perme-
ability increase for a given amount of reactant.
[9] We investigate the effects of flow rate (characterized

by the Péclet number), mineral dissolution rate (character-
ized by the Damköhler number), and geometrical properties
of the fracture. The Péclet number measures the relative
magnitude of convective and diffusive transport of the
solute,

Pe ¼ v h=D; ð1Þ

where v is a mean fluid velocity, h is the mean aperture
and D is the solute diffusion coefficient. In this work, v =
Q/(W h) is related to the volumetric flow rate, Q, and the
mean cross-sectional area, Wh, where W is the width of the
fracture. The Damköhler number,

Da ¼ k=v; ð2Þ

relates the surface reaction rate to the mean fluid velocity.
The relevant geometric characteristics are harder to quantify.
Hanna and Rajaram [1998] argued that the key geometrical
factor determining the intensity of wormholing is the
statistical variance of the aperture field, s, relative to the
mean aperture, f = s/h. Here, we present numerical evidence
that the total extent of contacts between the surfaces may
play an important role as well. These contacts need not be
load bearing; the dynamics remains qualitatively the same if
the surfaces are sufficiently close that the local fluid flow is
strongly hindered. The transition between uniform dissolu-
tion and channeling seems to occur rather sharply in our
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simulations, at the point where the contact regions make up
5%-10% of the total fracture area.

2. Numerical Model

[10] To investigate channel growth and interaction in a
dissolving fracture, we use a pore-scale numerical model
[Szymczak and Ladd, 2004b] in which the fracture space is
defined by two-dimensional height profiles hu(x,y) and
hl(x,y) representing the upper and lower fracture surfaces.
The velocity field in the fracture space is calculated by an
implicit lattice Boltzmann technique [Verberg and Ladd,
1999], while the transport of dissolved species is modeled
by a random walk algorithm, which efficiently incorporates
the chemical kinetics at the solid surfaces [Szymczak and
Ladd, 2004a]. The fracture surfaces are discretized into
pixels and the height of each pixel is eroded in response
to contacts by tracer particles; for the results reported below
either 200 � 400, 400 � 400, or 800 � 800 pixels were
used. The time evolution of the velocity field and the local
aperture variation in the fracture are determined by removing
small amounts of material at each step, and recalculating the
flow field and reactant fluxes for the updated topography.

2.1. Flow Field Calculation

[11] In laboratory-scale fractures, the Reynolds number is
less than 1 [Durham et al., 2001; Dijk et al., 2002; Detwiler
et al., 2003]; it is also small during the initial stages of cave
formation [Palmer, 1991; Groves and Howard, 1994].
Thus, inertia can reasonably be neglected, and fluid motion
is then governed by the Stokes equations

r � v ¼ 0; hr2v ¼ rp; ð3Þ

where v is the fluid velocity, h is the viscosity and p is the
pressure. The velocity field in the fracture has been
calculated using the lattice Boltzmann method with
‘‘continuous bounce-back’’ rules applied at the solid-fluid
boundaries [Verberg and Ladd, 2000]. The accuracy of
these boundary conditions is insensitive to the position of
the interface with respect to the lattice, which allows the
solid surface to be resolved on length scales less than a grid
spacing; thus the fracture surfaces erode smoothly. It has
been shown [Verberg and Ladd, 2002] that the flow fields in
rough fractures can be calculated with one half to one
quarter the linear resolution of the ‘‘bounce-back’’ boundary
condition, leading to an order of magnitude reduction in
memory and computation time. A further order of
magnitude saving in computation time can be achieved by
a direct solution of the time-independent lattice Boltzmann
model [Verberg and Ladd, 1999], rather than by time
stepping. These improvements have previously allowed us
to calculate velocity fields in laboratory-scale fractures
[Szymczak and Ladd, 2004b]. The calculation of the flow
field in a 200 � 400 fracture takes about 1 minute at the
beginning of the dissolution process, and up to 15 min
during the final stages of dissolution. The processor was a
single core of an Intel Pentium P4D clocked at 3 GHz.

2.2. Solute Transport Modeling

[12] Solute transport in the fracture is modeled by a
random walk algorithm that takes explicit account of

chemical reactions at the pore surfaces. The concentration
field is represented by a distribution of tracer particles, each
representing n solute molecules. We use a standard stochas-
tic solution to the convection-diffusion equation [Kloeden
and Platen, 1992; Honerkamp, 1993]

@tcþ v � rc ¼ Dr2c; ð4Þ

in which individual particles are tracked in space and time,

ri t þ dtð Þ ¼ ri tð Þ þ v rið Þdt þ
ffiffiffiffiffiffiffiffiffiffi
2Ddt

p
G: ð5Þ

The flow field, v(r), is derived from the implicit lattice
Boltzmann simulation and G is a Gaussian random variable
of zero mean and unit variance. The fluid velocity at the
particle position is interpolated from the surrounding grid
points, while the time step dt is chosen such that the
displacement in one step is smaller than 0.1 dx, where dx is
the grid spacing. To account for chemical erosion at the
fracture surfaces, we calculate the dissolution flux at each
boundary pixel, assuming a first-order surface reaction

J? ¼ k cs 
 c0ð Þ; ð6Þ

where cs is the saturation concentration, c0 is the local
concentration at the surface, and k is the surface reaction
rate. The solute flux is normal to the surface and forms a
boundary condition to the transport solver,


D r?cð Þj0 ¼ nk cs 
 c0ð Þ; ð7Þ

where n points into the fluid, and r? = nn � r. The
notation r(. . .)|0 indicates a gradient at the surface.
[13] It is convenient to introduce a reactant concentration

field C, so as to simplify the boundary condition in equation
(7); in the present context,

C ¼ cs 
 c ð8Þ

is the undersaturation, measuring the deviation of c from the
saturation concentration. The boundary condition (7) is then

D r?Cð Þj0 ¼ nkC0: ð9Þ

In a different situation, for instance dissolution of a fracture
by a strong acid, the reactant field, C, is the acid
concentration. It is most convenient to define C so that the
boundary condition always takes the form of equation (9);
the convection-diffusion equation (4) is the same in both
cases.
[14] The drawback of the classical random walk method

[Békri et al., 1995] is that a very large number of particles
must be tracked simultaneously, so that the concentration
near the rock surface can be determined accurately enough
to obtain a statistically meaningful dissolution flux. How-
ever, there is a considerable simplification in the case of
linear dissolution kinetics, where it is possible to derive a
single-particle stochastic propagator that satisfies the
boundary condition in equation (9) [Szymczak and Ladd,
2004a]. The diffusive part of the particle displacement in the
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direction perpendicular to the fracture surface (z) is then
sampled from the distribution

Gd z; z0; dtð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDdt

p e
 z
z0ð Þ2=4Ddt þ e
 zþz0ð Þ2=4Ddt
� �


 k

D
ek kdtþzþz0ð Þ=DErfc

zþ z0 þ 2kdtffiffiffiffiffiffiffiffiffiffi
4Ddt

p
� �

: ð10Þ

In equation (10), z0 and z are the distances of the tracer particle
from the surface at the beginning and at the end of the time
step, respectively. The boundary condition (9) implies that
the amount of reactant represented by a single tracer particle
n(t) decreases in time according to

n t þ dtð Þ ¼ n tð Þ
Z 1

0

Gd z; z0; dtð Þdz: ð11Þ

The integral can be calculated analytically,

n t þ dtð Þ=n tð Þ ¼ ek z0þkdtð Þ=DErfc
z0 þ 2kdtffiffiffiffiffiffiffiffiffiffi

4Ddt
p

� �

þ Erf 
 z0ffiffiffiffiffiffiffiffiffiffi
4Ddt

p
� �

; ð12Þ

and for k > 0 the amount of material represented by the
tracer is reduced,

n t þ dtð Þ=n tð Þ < 1: ð13Þ

In order to apply equation (10) to a complex topography, the
time step dtmust be limited, so that within each step a particle
only samples a small portion of the fracture surface, which
then appears planar. In our simulations

ffiffiffiffiffiffiffiffi
Ddt

p
� 10
2 h0,

where h0 is the initial mean fracture aperture.
[15] The sidewalls of the fracture (parallel to the flow

direction) are solid and inert; thus reflecting boundary con-
ditions for the solute transport (equation (7) with k = 0)
are imposed at y = 0 and y = W. At the fracture inlet (x = 0),
a reservoir boundary condition of constant concentration
C = Cin is applied, while a saturation condition C = Cout = 0
is assumed at the outlet boundary, x = L. These boundary
conditions are implemented according to the algorithms
described by Szymczak and Ladd [2003], which contain a
number of subtleties. Because mineral concentrations in the
solid phase are typically much larger than reactant concen-
trations in the aqueous phase, there is a large timescale
separation between the relaxation of the concentration field
and the evolution of the fracture topography. We therefore

make a quasi-static approximation, solving for the time-
independent velocity and concentration fields in a fixed
fracture geometry. The quasi-static approximation may
break down in cases where the reactant is much more
concentrated and the reaction kinetics are fast; acid erosion
by HCl is a possible example of this.
[16] The steady dissolution flux in the fracture can be

calculated by tracking individual tracers, using the follow-
ing algorithm [Szymczak and Ladd, 2003, 2004a]:
[17] 1. Sample the initial position of a tracer particle

within the inlet manifold indicated in Figure 1. Assign the
initial number of reactive molecules represented by a tracer,

n 0ð Þ ¼ V0

Ntot

Cin; ð14Þ

V0 is the volume of the inlet manifold, Ntot is the total
number of particles to be sampled, and Cin is the inlet
concentration of reactant.
[18] 2. Propagate the particle for a single time step dt,

according to equation (5). If it comes within a cutoff value
zc, of any surface element, then sample the diffusive part of
the particle displacement perpendicular to the wall from
equation (10), change n(t) according to equation (12), and
increment the dissolution flux counter at the surface element
(i) closest to the particle by

DJi ¼
n t þ dtð Þ 
 n tð Þ

Sidt
; ð15Þ

where Si is the area of the surface element.
[19] 3. The random walk described by repeating step 2

many times is terminated when n(t)/n(0) falls below a preset
threshold, or when the particle leaves the system through
the inlet or outlet. Random walks are also terminated when
the particle fails to enter the fracture at the first step, but
these must be counted, even though they do not contribute
to the erosion flux.
[20] 4. Upon completion of Ntot random walks, remove

material from the fracture walls in proportion to the accu-
mulated fluxes, Ji. The total amount of material is chosen to
be sufficiently small that the evolution of fracture topogra-
phy appears continuous.
[21] 5. The cutoff distance was set to zc = 10

ffiffiffiffiffiffiffiffiffiffi
2Ddt

p
, Ntot

was of the order of 106, and the threshold below which a
tracer is deleted was 10
6n(0).
[22] The above scheme can be used to calculate concen-

tration profiles in large fractures, since it is more computa-
tionally efficient than a typical stochastic algorithm where
the local concentration field is needed to determine the
dissolution flux. In that case the number of tracer particles
(Ntot) required for statistically significant erosion rates is
several orders of magnitude larger.
[23] The time evolution of the velocity field and local

aperture are determined by iteration, removing small amounts
of material at each step. The dissolution-induced aperture
change in the fracture over the time, Dh, is related to the
mean dissolution flux J =

P
i Ji Si/

P
i Si by

Dh ¼ JDt

csol

nsol
naq

; ð16Þ

Figure 1. The geometry of the experiment: a corrugated
glass surface (upper) is matched with a soluble flat plate
(lower). The plates are held in a fixed position, and reactant
flows from an inlet manifold designed to produce a uniform
concentration and flow field at the inlet.
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where csol is the concentration of the solid component and
vaq, vsol are the stoichiometric numbers of the aqueous and
solid species. It is more computationally efficient to keep
Dh constant in each erosion cycle, and then increment the
time accordingly,

Dt ¼ csolDh

J

naq
nsol

: ð17Þ

In the simulations reported here, Dh = 0.01h0. Test
calculations with smaller values of Dh (down to Dh =
0.001h0) confirmed that the patterns are insensitive to the
magnitude of the erosion step in this parameter range.
[24] We will use a dimensionless timescale, based on the

time for high flow rate dissolution in a parallel channel. In
this idealized system, the reactant concentration is every-
where uniform and equal to the inlet concentration Cin. The
spacing between the plates is set to h0, the initial value of
the mean fracture aperture, and the reference reaction rate is
chosen so that the product of Péclet and Damköhler numb-
ers is unity, PeDa = kh0/D = 1. We define the characteristic
time t for a plate to erode by h0:

t ¼ h
2

0

D

csol

Cin

naq
nsol

: ð18Þ

Equation (17) can then be rewritten in terms of a
dimensionless time Dt/t,

Dt

t
¼ DCin

h
2

0

Dh

J
: ð19Þ

It is important to stress that the above model contains no
free parameters or effective mass transfer coefficients.
Instead, the fundamental equations for fluid flow, reactant
transport, and chemical kinetics are solved directly. The

simulations incorporate the explicit topography of the pore
space, and the transport coefficients (viscosity, diffusivity,
and reaction rate) are determined independently.

2.3. Validation of the Numerical Model

[25] The numerical model has been validated [Szymczak
and Ladd, 2004b] by comparison with experimental data
obtained with an identical initial topography [Detwiler et
al., 2003]. The experimental system was created by mating
a 99 � 152 mm plate of textured glass (spatial correlation
length of �0.8 mm) with a flat, transparent plate of
potassium-dihydrogen-phosphate (KDP). The relative posi-
tion of the two surfaces was fixed during the experiment,
eliminating the effects of confining pressure, which are hard
to control experimentally [Durham et al., 2001] and even
harder to model numerically [Verberg and Ladd, 2002]. The
fracture was dissolved by an inflowing solution of KDP at
5% undersaturation. High spatial resolution data (1192 �
1837, 0.083 � 0.083 mm pixels) was obtained for the
evolution of the local fracture aperture as a function of
spatial position [Detwiler et al., 2003]. The experiments
were conducted at two different hydraulic gradients,
corresponding to initial mean velocities v = 0.029 cm s
1

and 0.116 cm s
1. The other parameters characterizing
the system are the diffusion coefficient of KDP in water,
D = 6.8 � 10
6 cm2 s
1, the initial mean aperture, h0 =
0.0126 cm, and the reaction rate, k = 5.2 � 10
4 cm s
1.
Note that Szymczak and Ladd [2004b] erroneously reported
the reaction rate to be smaller by a factor of 2, k = 2.6 �
10
4cm s
1; however the correct value was used in all of
the calculations reported there. The Péclet and Damköhler
numbers calculated for these parameters are, from equations
(1) and (2), Pe = 54, Da = 0.018 (v = 0.029 cm s
1) and
Pe = 216, Da = 0.0045 (v = 0.116 cm s
1).
[26] Figure 2 shows a comparison of the dissolution

patterns obtained by simulation and experiment; the initial

Figure 2. Erosion of the lower surface (initially flat) during dissolution of a laboratory-scale fracture.
Dissolution patterns for Pe = 54, Da = 0.018 are shown at (left) Dh = h0/2 and (middle) Dh = h0; (right)
dissolution patterns at Pe = 216, Da = 0.0045, Dh = h0. (bottom) The simulations and (top) the
corresponding experimental results. Looking from the inlet (left-hand side), the successive shadings
indicate deep erosion (red), intermediate erosion (yellow and green), low erosion (blue), and no erosion
(black).
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topographies in the simulation and the experiment were the
same. The contour levels in Figure 2 represent the change in
height of the lower (dissolving) surface (Figure 1) as a
function of time

Dh x; y; tð Þ ¼ hl x; y; 0ð Þ 
 hl x; y; tð Þ: ð20Þ

At higher flow rates, unsaturated fluid penetrates deep
inside the fracture and dissolution tends to be uniform
throughout the sample (Figure 2, right), while at the lower
flow rate erosion is slower and inhomogeneous (Figure 2,
middle and left). The dissolution front is unstable to
fingering [Ortoleva et al., 1987], since an increase in
permeability within a channel enhances solute transport
through it, reinforcing its growth. As dissolution proceeds,
the channels compete for the flow and the growth of the
shorter channels eventually ceases. At the end of the
experiment, the flow is focused in a few main channels,
while most of the pore space is bypassed.
[27] The experimental and numerical dissolution patterns

are similar. At low Péclet number, the dominant channels
(Figure 2) develop at the same locations in the simulation
and experiment, despite the strongly nonlinear nature of the
dissolution front instability. While there are differences in
the length of the channels, relatively small changes (of the
order of 10%) in the diffusion constant, D, or rate constant,
k, can lead to comparable differences in the erosion patterns.

Our results suggest that the simulations are capturing the
effects of the complex topography of the pore space; a more
extensive and quantitative discussion, including histograms
of aperture distributions at different Péclet numbers, is given
by Szymczak and Ladd [2004b].

3. Artificial Fracture Geometries

[28] The computational model described in section 2.2
was used to simulate dissolution in artificial fractures, with
numerically generated topographies. Initially, the lower
surface of the fracture is flat, while the upper surface is
textured with several thousand identical cubical protrusions
(parallelepipeds of height 2dx and base 3dx � 3dx, where dx
is the pixel size). The protrusions were placed on a square
lattice and then randomly shifted by ±dx in the lateral (y)
direction, which eliminates all the straight flow paths
between the inlet and outlet. The resulting fracture has short
range spatial correlations, and no discernable long-range
structure. The fracture geometry can be characterized sta-
tistically by the fractional coverage of protrusions, z. If the
obstacles span the entire height of the fracture aperture, the
initial geometry has a relative roughness

f ¼ s
h
¼

ffiffiffiffiffiffiffiffiffiffiffi
z

1
 z

s
; ð21Þ

Figure 3. Initial distribution of obstacles (dark pixels) in (left) the artificial fracture; (middle) the initial
flow field; and (right) the flow field after an increase in mean aperture equal to its initial value, Dh = h0.
The flow field, v2d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2d � v2d

p
(equation (22)), is averaged over the local aperture. Looking from the

inlet (left-hand side), the successive shadings indicate the highest (red), intermediate (yellow and green),
and the lowest velocity (blue), respectively.
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where s is the variance of the aperture field. Most of the
simulations discussed here have been carried out for z = 0.5,
which corresponds to a relatively rough fracture f = 1;
however we also investigated smoother fractures, with z as
small as 0.025 (see section 10).
[29] A typical initial geometry (z = 0.5) is shown in

Figure 3 (left); the integrated (two-dimensional) velocity
field,

v2d x; yð Þ ¼
Z hu x;yð Þ

hl x;yð Þ
v x; y; zð Þdz; ð22Þ

is shown in Figure 3 (middle). Reactive fluid enters from
left side and exits from the right, while no-slip boundaries

are imposed on the other surfaces. The setup and initial
topography resemble the experiment by Detwiler et al.
[2003], but here we allow both surfaces to dissolve, which
speeds up dissolution and channel formation. In this case
the time-dependent erosion depth is defined in terms of the
combined change in height of both upper and lower
surfaces,

Dh x; y; tð Þ ¼ hu x; y; tð Þ 
 hl x; y; tð Þ
	 



 hu x; y; 0ð Þ 
 hl x; y; 0ð Þ
	 


: ð23Þ

Initially, there are no discernible channels (Figure 3, middle)
and the velocity field shows only short-range spatial
correlations. During dissolution, large-scale variations

Figure 4. Erosion of the lower surface (initially flat) at (left) constant pressure drop and (right) constant
injection rate for different Péclet and Damköhler numbers. Looking from the inlet (left-hand side), the
successive shadings indicate deep erosion (red), intermediate erosion (yellow and green), low erosion
(blue), and no erosion (black).
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develop from small fluctuations in the initial porosity. In the
final stages of dissolution (Figure 3, right) the channeling is
very distinct, but the size of these spontaneously formed
channels are not related to the initial pore size distribution,
which is highly uniform. The growth in mean aperture,

Dh tð Þ ¼ 1

LW

Z L

0

Z W

0

Dh x; y; tð Þdydx; ð24Þ

will sometimes be used as a measure of elapsed time; it is
then normalized by the initial mean aperture h0.

4. Channeling as a Function of Péclet and
Damköhler Numbers

[30] Figure 4 illustrates typical dissolution patterns at a
mean erosion depth Dh = 2h0, over a range of different
Péclet (Pe) and Damköhler (Da) numbers. Changes in
erosion patterns map more uniformly to variations in the
inverse Damköhler number, Da
1, than variations in Da.
We therefore use Da
1 as the independent variable in most
of our plots, although, in conformity with normal practice,
we discuss the results in terms of variations in Da.
[31] For small Pe and large Da the reactant saturates

(C = 0) near the injection face. After a fast initial dissolution
of material at the fluid inlet, the reaction front propagates
extremely slowly, as there is almost no unsaturated fluid
penetrating inside the fracture. On the other hand, when the
reaction rate is sufficiently slow (Da < 1/100), or the flow
rate sufficiently high (Pe > 500), unsaturated fluid penetrates
deep inside the fracture and the whole sample dissolves
almost uniformly. Channeling is observed for moderate
values of Péclet and Damköhler numbers, Pe � 10 and
Da > 1/100. Here nonlinear feedback plays a decisive role.
A perturbation in the reaction rate at the dissolution front
increases (for example) the local permeability, which in turn
increases solute transport and therefore the local dissolution
rate. The increasing flow rate reinforces the initial pertur-
bation and the front becomes unstable, developing pro-

nounced channels where the majority of the flow is
focused, while most of the pore space is eventually
bypassed. The interaction between channels, important in
the later stages of dissolution, is discussed in section 9.
[32] Above a threshold Damköhler number, Da > 1, the

erosion patterns are largely determined by the Péclet num-
ber. Additional data (not shown) demonstrates that there is
no difference in dissolution patterns at Da = 1, Da = 10 and
Da ! 1, except at small Péclet numbers, Pe < 1. A similar
range of Damköhler number (0.1 < Da < 1), has been
reported in other numerical studies [Steefel and Lasaga,
1990] as a regime where the length of a single dissolving
channel in a two-dimensional porous medium becomes
independent of reaction rate; we will return to this point
in section 5. In the mass transfer-limited case, where the
surface reaction rate is high enough that the overall disso-
lution process no longer depends on reaction rate, the
stochastic modeling may be simplified by imposing an
absorbing boundary condition, C = 0, at the fracture
surfaces, corresponding to the limiting case Da ! 1; these
results are shown in the leftmost columns of Figure 4.
[33] For smaller Damköhler numbers, Da < 1, the disso-

lution patterns become dependent on both Pe and Da. The
Péclet number controls the number of channels, with the
spacing between them decreasing with increasing Pe. On
the other hand, for fixed Pe, a decrease in Damköhler
number results in a more diffuse boundary between the
channels and the surrounding porous matrix. When the
Péclet number is less than one, diffusive transport becomes
more important than convection, even in the flow direction.
In this regime, the dissolution patterns are determined by the
product of Péclet and Damköhler number,

PeDa ¼ kh

D
; ð25Þ

which gives the relative magnitude of reactive and
diffusive fluxes. Figure 5 compares the dissolution patterns
for Pe = 1/2 with those for the purely diffusive case, Pe = 0.
The differences are rather slight, except at very small
reaction rates; the reaction front propagates slowly and
stably inside the fracture, with the penetration length
decreasing with increasing PeDa.
[34] These results are summarized in a phase diagram,

Figure 6, where the values of Péclet and Damköhler number
corresponding to the patterns shown in Figure 4 are marked,
together with the points corresponding to the KDP fracture
experiments by Detwiler et al. [2003] (see section 2.3).
Although the geometry of the KDP fracture is different from
the obstacle fracture geometries considered here, the disso-
lution patterns captured at comparable Pe and Da are
nevertheless similar. For example, the KDP dissolution
pattern at Pe = 54, Da = 0.018 (Figure 2) may be compared
with the artificial fracture at Pe = 32, Da = 0.025 (Figure 4).
[35] A feature of reactive flows, as compared with other

pattern forming systems, is that the dimensionless numbers
characterizing the flow and reaction rates are changing
throughout the course of the dissolution [Daccord et
al., 1993]. Indeed, in constant pressure drop simulations
(Figure 4, right), both the total flow and the mean aperture
change during the course of dissolution; thus the point in
the phase diagram representing the initial system moves

Figure 5. Dissolution patterns in the diffusive regime, for
(top) Pe = 1/2 and (bottom) Pe = 0. The values of (PeDa)
1

= D/kh0 are marked.
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toward larger Pe and smaller Da values as the dissolution
progresses (solid arrow in Figure 6).
[36] Constant pressure drop conditions are representative

of many groundwater flow systems, including the early
stages of karstification [Dreybrodt, 1990]. However, in a
number of technological applications, e.g., acidization of
petroleum reservoirs [Economides and Nolte, 2000], the
control variable is the injection rate of reactive fluid, Q. In
that case, the Péclet number remains constant throughout
the dissolution process, since

Pe ¼ vh

D
¼ Q

WD
: ð26Þ

On the other hand, the Damköhler number then increases in
proportion to h (dashed arrow in Figure 6), since

Da ¼ k

v
¼ khW

Q
: ð27Þ

The results of the constant injection rate simulations are
presented in Figure 4 (right). While the differences are not
dramatic, channels formed in constant pressure drop
simulations are noticeably more diffuse at their tips. This
is consistent with the analysis in section 6, where it is shown
that the thickness of the dissolution front near the channel
tip is proportional to Da
1. The Damköhler number
decreases in the course of constant pressure drop simula-
tions while it increases during constant flow rate runs,
which leads to different front thicknesses at the tip. This

observation agrees with laboratory experiments [Hoefner
and Fogler, 1988], where it was observed that wormholes in
acidized limestone formed by constant pressure drop
dissolution become more highly branched at later times
than those formed at constant flow rate.
[37] We have verified that the results shown in Figure 4

are independent of the length of the fracture domain. In
Figure 7, the dissolution pattern in a 200 � 400 pixel
fracture are compared with a longer 400 � 400 domain at
the same Péclet and Damköhler numbers, Pe = 8, Da = 1/10.
The initial topographies of both systems were identical in the
200 � 400 pixel inlet region, and the comparison was made
when the same volume of material had been eroded from
each sample. We find that the dissolution patterns in both
systems are very similar, up to the point where the dominant
channels reach the outflow of the smaller domain, as can be
seen in Figure 7. In section 9, we describe how the simple
hierarchical growth pattern of the competing channel system
then becomes disrupted, with large pressure gradients de-
veloping at the tips of the leading channels, causing them to
split (see also Figure 17). Here we simply wish to point out
that in the wormholing regime, the results shown in Figure 4
are insensitive to further increases in the length of the
domain. However, in the uniform-dissolution regime, the
overall length of the fracture is important. The average
undersaturation decays exponentially along the flow direc-
tion and so will eventually reach a region where the solution
is saturated and no dissolution occurs. In this sense it seems
that the distinction between uniform dissolution and surface
inundation is merely a matter of scale. When the length of
the fracture is comparable to the depth of penetration,
dissolution appears uniform, but if the fracture is much
longer, then dissolution is limited to a small region (relative
to the length) near the inlet.

5. Effective Reaction Rate

[38] The phase diagram in Figure 6 can be better inter-
preted in terms of an effective reaction rate, which takes
account of the interplay between mass transfer and chemical
kinetics. In a two-dimensional description of dissolution
[Detwiler and Rajaram, 2007], the fracture is locally

Figure 6. Phase diagram describing characteristic dissolu-
tion patterns as a function of Péclet and Damköhler number.
The points mark the values of Péclet and Damköhler
number corresponding to the patterns shown in Figure 4,
and the crosses mark the KDP fracture experiments shown
in Figure 2. Since the scales are logarithmic, the points
corresponding to Da
1 = 0 are marked at Da
1 = 0.1, to
which they are similar. The arrows indicate the direction the
points move in the phase diagram during dissolution at
constant pressure drop (solid arrow) and constant flow rate
(dashed arrow).

Figure 7. Comparison of dissolution patterns at Pe = 8,
Da = 1/10 between (left) the standard domain 200 �
400 pixels, used in Figure 4, and (right) a larger, 400 � 400
domain with the same topography.
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approximated by two parallel plates separated by a distance
h(x,y,t). In the reaction-limited regime, diffusive timescales
are much shorter than reactive ones, kh/D � 1, and the
concentration field is almost uniform across the aperture.
The reactant flux is then given by

J ¼ kC0 � kC; ð28Þ

where C(x,y) is the cup-averaged concentration. In the
opposite limit, kh/D� 1, dissolution becomes mass transfer
limited and an absorbing boundary condition, C0 = 0, may
be assumed at the fracture walls. The dissolution flux,

J ¼ ktC; ð29Þ

is determined by the mass transfer coefficient kt,

kt ¼ Sh
D

dh
; ð30Þ

where dh is the hydraulic diameter of the system and Sh
is the Sherwood number. For parallel plates dh = 2h and
Sh = 7.54 [Bird et al., 2001].
[39] In the general case when kh/D � 1, the reactant flux

may expressed in terms of C by equating the dissolution
flux (28) to the mass transfer flux (29)

J ¼ kC0 ¼ kt C 
 C0

� �
: ð31Þ

Solving for C0 in terms of C gives

J ¼ keff C ð32Þ

with

keff ¼
kkt

k þ kt
: ð33Þ

There are two approximations made here. First, the
Sherwood number (30) depends, in general, on the reaction
rate, k. However, the variation in Sh is relatively small
[Hayes and Kolaczkowski, 1994; Gupta and Balakotaiah,
2001], bounded by two asymptotic limits: constant flux,

where Sh = 8.24 for parallel plates, and constant concentra-
tion, where Sh = 7.54. Here we take the approximate value
Sh = 8 in order to estimate Daeff. Second, we have neglected
entrance effects, which otherwise make the Sherwood
number dependent on the distance from the inlet, x.
However, the entrance length (defined as the distance at
which the Sherwood number attains a value within 5% of
the asymptotic one) is negligibly small, Lx � 0.008 dhPe
[Ebadian and Dong, 1998], at least in the early stages of the
dissolution. Expressions for the effective reaction rate
coefficient analogous to (33) have been proposed previously
[Rickard and Sjöberg, 1983; Dreybrodt, 1996; Panga et al.,
2005; Detwiler and Rajaram, 2007], but a somewhat
different approach was employed by Howard and Groves
[1994] and Hanna and Rajaram [1998] where the smaller of
the two rates k and kt was used for keff.
[40] The effective reaction rate, keff (equation (33)), can

be used to construct an effective Dämkohler number,
Daeff = keff/v,

Da
1
eff ¼ Da
1 þ 2Pe

Sh
; ð34Þ

which remains finite even when the reaction rate becomes
very large, Da ! 1; contours of constant Daeff are shown
in Figure 8. The phase diagram of dissolution patterns in the
Pe-Daeff plane, shown in Figure 9, is simpler than the
corresponding phase diagram in Pe-Da (Figure 6). In
particular, uniform dissolution can now be uniquely
associated with small Daeff, whereas in Pe-Da variables it
corresponds to either small Da or large Pe. The introduction
of Daeff also explains the independence of the dissolution
patterns on the microscopic Damköhler number in the Pe > 1,
Da > 1 regime discussed in section 4. At higher Péclet
numbers a large change in Da corresponds to a relatively
small change inDaeff. For example, at Pe = 32,Daeff changes
from 0.125 when Da ! 1 to 0.111 when Da = 1.
[41] The general features of the phase diagram agree with

experimental and numerical studies of wormhole formation
in quasi-two-dimensional porousmedia [Golfier et al., 2002].
However, in these simulations the transitions between
different dissolution patterns corresponded to fixed values
of either Péclet or Damköhler number; in other words, the

Figure 8. Contours of the inverse effective Damköhler
number, Daeff


1, as a function of Da
1 and Pe.

Figure 9. Phase diagram describing characteristic dissolu-
tion patterns as a function of Péclet and effective Damköhler
number.
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boundaries in the Pe-Daeff phase diagram were perpendic-
ular to the axes. In our case the line between surface
inundation and the wormhole regime is not horizontal; at
low Péclet numbers, the critical value of Péclet number at
which channels are spontaneously formed decreases with
decreasing Daeff. The discrepancies at low Pe may be
caused by a transition to a more three-dimensional flow in
our fracture simulations. Although the initial geometry
shares many features with the two-dimensional porous
media considered in other studies [Golfier et al., 2002;
Panga et al., 2005], the third dimension plays a more
significant role as the dissolution proceeds, particularly in
a large Daeff, small Pe regime, where the penetration of the
reactive fluid is very small. In this regime, the solutional
widening of the fracture at the inlet can be more than one
order of magnitude larger than the mean aperture growth in
the system and thus the system ceases to be quasi two
dimensional.

6. Front Thickness

[42] A detailed examination of Figure 4 reveals a number
of qualitative features of the developing channels. At high
Damköhler numbers and low Péclet numbers the channels
are very distinct, with sharp well-formed boundaries be-
tween dissolved and undissolved material. As the Péclet
number increases the channels become more diffuse, but
only in the flow direction. The lateral thickness of the
channels is almost unchanged, while along the flow direc-
tion a sharp transition is replaced by a gradual change in
dissolution depth, which takes place over almost the whole
channel length; this is especially pronounced above Pe = 30
in the constant pressure drop case and Pe = 100 in the
constant flow rate case. The second qualitative feature is
that at smaller Damköhler numbers, the channels become
laterally diffuse as well, as can be seen from the broad blue
regions at the dissolution front when Da < 0.1. Insight into
the characteristics of channel formation can be gained from
a simple model based on a Darcy-scale description of a
wormhole.
[43] Consider the tip of a channel containing reactive

fluid, with depth-averaged concentration C, entering the
undissolved medium. At the leading edge of the wormhole,

the Darcy-scale equation for reactant transport takes the
form [Lichtner, 1988; Steefel and Lasaga, 1990],

@C

@t
¼ Dx

@2C

@x2

 v

@C

@x

 2keff

h0
C; ð35Þ

where Dx = D(1 + bxPe) is the dispersion coefficient along
the flow direction, which includes the effects of fluctuations
in the fluid velocity through the coefficient bx � 0.5 [Panga
et al., 2005]. The last term describes the concentration loss
due to dissolution in the medium ahead of the reaction front,
assuming the fracture here is undissolved and may be
approximated by two parallel surfaces separated by h0
(section 5). Then the erosion flux at both upper and lower
surfaces is keffC and the rate of change in concentration is

2keffC/h0. The stationary solution of (35) is [Steefel and
Lasaga, 1990]

C xð Þ ¼ Ctipe

x=lx ; ð36Þ

where Ctip is the reactant concentration at the tip of the
channel.
[44] The characteristic thickness of the dissolution front

ahead of the wormhole tip, lx (see Figure 10), is given by
[Lichtner, 1988; Steefel and Lasaga, 1990]

lx ¼
2Dx

v
1þ 8Dxkeff

h0v2

� �1=2


1

" #
1

: ð37Þ

Along the flow direction, convective effects are typically
much stronger than diffusive ones, and equation (37)
simplifies,

lx ¼
h0

2Daeff
¼ h0

2

1

Da
þ 2Pe

Sh

� �
: ð38Þ

Convective effects are small in directions transverse to the
flow, and setting v = 0 in the analogue of equation (35),
gives the transverse thickness of the reaction front,

ly ¼
Dyh0

2keff

� �1=2

¼ h0
1þ byPe

2PeDaeff

� �1=2

; ð39Þ

where the dispersion coefficient by � 0.1 [Panga et al.,
2005].
[45] In the reaction-limited regime (PeDa � 1), lx �

h0/2Da, independent of Péclet number. This scaling predic-
tion can be observed in Figure 4, most clearly at Da = 1/40,
for both constant pressure drop and constant flow rate
conditions. The extent of the front roughly corresponds to
the regions of low erosion in front of the wormhole. At Da =
1/40 these diffuse regions extend roughly 20–30% of the
length of the channel (�40–60h0), independent of Pe. The
scaling with Da is approximately linear, which can be seen
most clearly when comparing Da = 1/40 with Da = 1/10 at
constant pressure drop; at constant flow rate the
extent of the dissolution front is too small to measure at
Da = 1/10. In the mass transfer-limited regime (PeDa � 1),
lx � h0 Pe/Sh. The extent of the reaction front at Da = 1

Figure 10. Sketch indicating the characteristic dimensions
of a wormhole front. The parameters lx and ly indicate the
extent of the dissolution into the porous matrix.
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(Figure 4) depends roughly linearly on Pe, in agreement
with the simple scaling law. A quantitative comparison is
suspect for several reasons: the difficulty in defining and
measuring the extent of the front, changes in Péclet and
Damköhler numbers as dissolution proceeds, and local
variations in fluid velocity. Nevertheless, the Darcy-scale
model qualitatively explains the key results of the simula-
tions shown in Figure 4.
[46] The behavior of the transverse thickness of the front is

more complicated, because of the dispersion term in equation
(39). In the reaction-limited regime, ly = h0 [(1 + byPe)/
(2PeDa)]1/2, and the line PeDa = 1 is the division between
sharply defined and laterally extended wormholes (see
Figure 4). At sufficiently high Péclet numbers the dispersion
term should eliminate the dependence of ly on Pe, but the
value of PeDa is then too large for an observable lateral
extension of the reaction front. An exception may be the
case Pe = 128, Da = 1/160 with constant flow rate
conditions (Figure 4, right). This is a transition case between
wormholing and uniform erosion, and here we can see a
significant lateral spreading of the front. Much more clearly
defined is the growth in lateral thickness as PeDa gets
smaller. This again can be most readily seen at Da = 1/40;
here the lateral extension of the front gets more pronounced
as Pe is reduced. Finally, in the mass transfer-limited case,
ly = h0 [(1 + byPe)/Sh]

1/2 � h0, and the reaction front is
always limited to the region ahead of the tip, as is observed
at Da = 1 (Figure 4).
[47] Panga et al. [2005] argue that the ratio of these two

length scales

L ¼ ly

lx

ð40Þ

determines the aspect ratio of the wormhole, with the
strongest wormholing predicted to occur when L � 1. The
latter criteria matches quite well with the patterns observed
in the simulations. However, examination of Figure 4 shows
that the aspect ratio of the wormholes does not correlate

well with L. For example, at constant Pe, the wormhole
diameter is only weakly dependent on Da (Figure 4), and
the aspect ratio remains more or less constant, whereas the
front thickness increases considerably with decreasing Da.
Thus the aspect ratio of the reaction front, as measured by
L, does not necessarily control the aspect ratio of the
wormhole itself. The dependence of the wormhole shape on
Péclet number is analyzed from a different perspective in
section 7, on the basis of a microscopic mass balance within
the wormhole.

7. Channel Shape

[48] The aspect ratio of the dissolving channels increases
with increasing Péclet number as can be seen in Figure 11.
For a fixed length, the typical wormhole diameter decreases
approximately as Pe
1/2. This scaling can be understood by
noting [Steefel and Lasaga, 1990] that in the mass transfer-
limited regime, the shape of the channel depends on the
interplay between diffusive transport normal to the flow,
and convective transport along the flow direction. The
channel boundary is parameterized by the curve R(x), where
R is the distance of a point on the boundary from the
channel center line; the geometry is illustrated in Figure 12.
The depleted concentration at the point {x,R(x)} diffuses
toward the center of the channel with a timescale that can be
estimated by solving a two-dimensional diffusion equation
for the concentration C(r,t), inside a circle with an outer
boundary condition C(R,t) = 0. This gives an asymptotic (in
time) dependence of the concentration at the center line

C 0; tð Þ � e
a2
0
Dt=R2

; ð41Þ

where a0 � 2.4 is the first zero of the Bessel function J0.
Thus the characteristic time for depleted reactant to diffuse
from the channel boundary R(x), is given by

Dt ¼ R2 xð Þ
a20D

: ð42Þ

Figure 11. Examples of channels of a similar length at
different Péclet numbers (from left to right) Pe = 2, Pe = 8,
and Pe = 32. At the two higher Péclet numbers we used
Da = 1, but at Pe = 2 we used a lower Damköhler number,
Da = 0.1, since the channels do not form at Da = 1.

Figure 12. The radius of a wormhole, R, as a function of
the longitudinal coordinate, x. The arrows mark the
characteristic timescales of diffusive and convective
transport.
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The diffusing concentration field is simultaneously advected
by vDt to the tip of the wormhole located at {L,0}
(Figure 12). Equating the two timescales,

L
 x

v
¼ Dt ¼ R xð Þ2

a20D
; ð43Þ

leads to an expression for the channel shape

R xð Þ ¼ a20D L
 xð Þ
v

� �1=2

¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 x=L

p
; ð44Þ

where

R0 ¼
a20h0L

Pe

� �1=2

ð45Þ

is the radius of the wormhole (Figure 12).
[49] The analysis in this section uses a microscopic model

of reactant transport within the wormhole, in contrast to
section 7, where we considered reactant transport in the
porous matrix. Thus, in the flow direction we assume that
convection is dominant, whereas in the transverse directions
the transport is molecular diffusion rather than dispersion.
This is based on a picture of a wormhole as a region of low
(or vanishing) porosity, so that the flow is roughly parabolic,
constrained by the upper and lower fracture surfaces and by
the boundary of the wormhole; the fluid velocity in the
wormhole is much higher than in the surrounding matrix.
Along the flow direction, diffusion is enhanced by Taylor
dispersion,

Dk ¼ D 1þ bTPe
2

� �
; ð46Þ

where bT is a coefficient that depends on geometry, but is
�0.005. At moderate Péclet numbers, Pe > 10, Taylor
dispersion is comparable to or larger than molecular
diffusion, but even at the highest Péclet numbers in these
studies (Pe � 100) dispersion makes a negligible contribu-
tion to the axial transport of reactant. The timescale for
convective transport over the wormhole length L is still

much smaller than the diffusive timescale, even if Taylor
dispersion is included,

tdiff

tconv
¼ vL

Dk
� L

h0bTPe
� 1: ð47Þ

The last inequality is valid up to at least Pe � 102 for
channel lengths in excess of 10h0.
[50] In this simple wormhole model (equation (45)), the

radius of the channel scales like Pe
1/2, while its shape is
parabolic. To connect the theory with the numerical simu-
lations, we have calculated the dimensionless quantity,

G ¼ R0 Pe=h0L
� �1=2

; ð48Þ

which equation (45) predicts will have a universal value of
a0 � 2.4. In making these comparisons we must take into
account that the analysis leading to equation (45) considers
only individual channels. However, channel competition is
an essential component of the overall dynamics [Szymczak
and Ladd, 2006], in which the longer channels drain flow
from the shorter ones, limiting their growth. A detailed
analysis of channel competition is given in section 9; here
we aim to limit the effects of channel competition by
focusing on the longest channels, which remain active
throughout the dissolution process. Figure 13 shows the
dimensionless ratio G (equation (48)) for dissolving
fractures in the mass transfer limit. In accordance with the
above remarks, only the three longest channels in each
fracture were measured. The numerical results confirm that
G is nearly universal, independent of Péclet number and the
choice of channel. Moreover, the numerical values of G are
close to 2.4, but this may be accidental given the limited
precision of the numerical data and the simplicity of the
model.
[51] In the opposite case, when the process is reaction-

limited and Pe � 1, the reactant concentration in the entire
wormhole is nearly uniform and equal to the inlet concen-
tration, Cin. Interestingly, in this limit, the shape of the
wormhole is also parabolic [Nilson and Griffiths, 1990].

8. Permeability Evolution and Optimal Injection
Rates

[52] The evolving permeability in a dissolving fracture
can be defined by the relation

Q ¼ 
KWh0rp

m
; ð49Þ

where K is the permeability, m is the viscosity and Wh0 is
the initial cross-sectional area of the fracture. Figure 14
shows the permeability as a function of time for dissolution
at constant pressure drop. At low Péclet numbers (Pe = 2 in
Figure 14), the flow rate through the sample only increases
significantly at very small Damköhler numbers, where the
dissolution is uniform throughout the fracture. At higher
Damköhler numbers, surface inundation occurs and the
flow rate remains nearly constant throughout the simulation.
The behavior changes dramatically as the Péclet number is
increased. At Pe > 20, the dependence of the flow rate on

Figure 13. The dimensionless parameter, G = R0 (Pe/h0
L)1/2, characterizing the wormhole shape, as a function of a
Péclet number (equation (48)).
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Damköhler number is reversed: now the flow increases
most rapidly for larger values of Da. This is because
wormhole formation, triggered in this parameter range,
becomes amplified as the reaction rate increases.
[53] A characteristic feature of systems that exhibit chan-

neling is the rapid growth of the flow rate when the
dominant channels break through to the outflow end of
the fracture; breakthrough is indicated by the near vertical
lines in Figure 14. At moderate Péclet numbers, Pe � 10,
uniform dissolution and wormholing compete with each
other, as can be seen from the permeability evolution at
Péclet number Pe = 8 (Figure 14). The permeability at first
increases fastest at the lowest Damköhler number Da =

1/160, since the unsaturated fluid penetrates deeper inside
the sample. However, once channels begin to form, the
permeability in the higher Damköhler systems increases
very rapidly, and eventually overtakes the Da = 1/160
system.
[54] At constant flow rate, shown in Figure 15, the

permeability increases more slowly overall than at constant
pressure drop, where dissolutional opening of the fracture is
enhanced by the increasing flow rate (note the different
timescales in Figures 14 and 15). Positive feedback is
particularly strong near breakthrough, which manifests itself
in steeper K(t) curves in the constant pressure drop simu-
lations. Another difference between the constant pressure

Figure 14. Permeability as a function of time during dissolution at constant pressure drop; results are
shown for Pe = 2, 8, 32, and 128. The lines correspond to Da = 1/160 (dotted), Da = 1/40 (dash-dotted),
Da = 1/10 (dashed), and Da = 1 (solid).

Figure 15. Permeability as a function of time during dissolution at constant flow rate; results are shown
for Pe = 8 and 32. The lines correspond to Da = 1/160 (dotted), Da = 1/40 (dash-dotted), Da = 1/10
(dashed), and Da = 1 (solid).
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drop and constant flow rate can be observed at Pe = 8. At
constant pressure drop the permeability growth is faster for
Da ! 1 than for Da = 0.1, whereas for constant flow rate
this order is reversed. This is again connected with the
increasing flow rate in the course of dissolution at constant
pressure drop. Since Pe = 8, Da ! 1 lies near the
borderline between wormholing and surface inundation
regimes, even small differences in flow have a pronounced
impact on the speed at which channels propagate.
[55] A quantitative description of channeling under con-

stant flow conditions is also important in carbonate reservoir
stimulation, where the relevant question is how to get the
maximum increase of permeability for a given amount of
reactive fluid. Numerical and experimental investigations
of reactive flows in porous media [Fredd and Fogler,
1998; Golfier et al., 2002; Panga et al., 2005; Kalia and
Balakotaiah, 2007; Cohen et al., 2008] suggest that there
exists an optimum injection rate, which maximizes the
permeability gain for a given amount of fluid. If the
injection rate is relatively small, surface inundation occurs
and the increase in permeability is small. On the other hand,
for very large injection rates, the reactant is exhausted on a
uniform opening of the fracture, which is inefficient in terms
of permeability increase. The optimum flow rate must give
rise to spontaneous channeling, since the reactant is then
used to create a small number of highly permeable channels,
which transport the flow most efficiently. To quantify the
optimization with respect to Pe and Da, we measured the
total volume of reactive fluid, Vinj, that must be injected into
the fracture in order to increase the overall permeability, K,
by a factor of 20. In the constant injection rate case,

Vinj ¼ QTt ¼ PeWDTt; ð50Þ

where T is the time needed for the given permeability
increase, measured in units of t. Inserting the definition of
t (equation (18)) gives

Vinj ¼ TPe
h0

L
V0; ð51Þ

where

V0 ¼ WLh0
csol

Cin

naq
nsol

ð52Þ

is the volume of reactive fluid needed to dissolve a solid
volume equal to the initial pore space in the fracture.
Figure 16 shows contour plots of Vinj/V0 in the Pe-Da plane.
A comparison with the dissolution patterns in Figure 4
suggests that optimal injection rates (Pe� 10 – 100,Da > 1)
do indeed correspond to a regime of strong channeling.
[56] The values of Pe and Da cannot be varied indepen-

dently in the same system, since both the diffusion constant
and reaction rate are material properties. Changing the
injection rate moves the system along a line of constant
PeDa = kh0/D, as shown by the dashed line in Figure 16.
This produces a characteristic U-shaped dependence of Vinj
on Damköhler number, an example of which is shown in the
inset to Figure 16. The minimum in this curve corresponds
to the optimal injection rate for a given value of PeDa. A
similar dependence of Vinj on Damköhler number has been
reported previously [Fredd and Fogler, 1998; Golfier et al.,
2002; Panga et al., 2005; Kalia and Balakotaiah, 2007;
Cohen et al., 2008].
[57] An important practical observation is that the opti-

mum flow rate in the mass transfer-limited regime appar-
ently occurs at a constant value of the effective Damköhler

Figure 16. Contour plot of the volume of reactant Vinj needed for a 20-fold increase in permeability. The
contours are normalized by V0, the volume of reactant needed to dissolve a solid volume equal to the
initial pore space in the fracture. The dashed line corresponds to varying the injection rate at PeDa = 0.2,
and the inset shows the cross section of the Pe-Da
1 surface along this line. The dot-dashed line
corresponds to Daeff = 1/10 and indicates a near optimum injection condition in the mass transfer-limited
regime.
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number [Golfier et al., 2002]. This result, based on Darcy-
scale simulations of dissolution in two-dimensional porous
media is consistent with the results in Figure 16. When
Da > 1, the line of constant Daeff = 1/10 (from Figure 8)
runs near the valley of minimal Vinj(Pe, Da). However,
when the reaction rate is reduced, the optimum path shifts to
higher Daeff, as can be seen in the inset to Figure 16.

9. Wormhole Competition and Coarsening
of the Pattern

[58] In Figure 17, the dissolution patterns for a larger
fracture (800 � 800 pixels) at Pe = 32 and Da ! 1
(constant pressure drop) are captured at three different
instances, corresponding to an aperture increase Dh =
0.15h0, 0.5h0 and 2h0, respectively. Only a small fraction
of the channels present at Dh = 0.15h0 persist to later times
(Dh = 0.5h0); the channels that do survive have advanced
far ahead of the dissolution front. The process of channel
competition is self-similar, and the characteristic length
between active (growing) wormholes increases with time,
while the number of active channels decreases; these
systems have been shown to exhibit nontrivial scaling
relations [Szymczak and Ladd, 2006]. The competition
between the emerging fingers leads to hierarchical struc-
tures that are characteristic of many unstable growth pro-
cesses [Evertsz, 1990; Couder et al., 1990; Krug, 1997;
Huang et al., 1997; Gubiec and Szymczak, 2008] from
viscous fingering [Roy et al., 1999] and dendritic side
branches growth in crystallization [Couder et al., 2005] to

crack propagation in brittle solids [Huang et al., 1997].
However, because of the finite size of the fracture system,
the competition ends as soon as the fingers break through to
the outlet. In fact, even before breakthrough the simple
hierarchical growth pattern is disrupted, as shown in
Figure 17 (on the right). The large pressure gradient at the
tips of the leading channels causes them to split into two or
more daughter branches [Daccord, 1987; Hoefner and
Fogler, 1988; Fredd and Fogler, 1998].
[59] The interaction between wormholes, which underlies

the selection process, can be investigated by analyzing the
flow patterns in the dissolving fracture. Figure 18 shows a
magnified view of a part of the sample containing just a few
channels. Figure 18 (left) shows the magnitude of the fluid
flow in the system, v2d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2d � v2d

p
; the flow is focused in a

few active channels while the rest of the medium is
bypassed. Figure 18 (right) shows the lateral (vy

2d) compo-
nent of the flow: in the white regions vy

2d > 0, whereas in the
black regions vy

2d < 0. It is observed that the longest channel,
positioned in the center of the sample, is draining flow from
the two channels above it as well as from the one under-
neath; vy

2d > 0 below the channel and vy
2d < 0 above it.

Similarly, the second largest channel, situated in the lower
part of the fracture is draining flow from the smaller channel
immediately above it. Thus, out of the four large channels in
Figure 18, only two are really active; the other two just
supply flow to the active channels. A careful examination of
Figure 18 (right) shows that at the downstream end of the
channels the flow pattern is reversed; the flow is now

Figure 17. Erosion of the lower surface (initially flat) in an artificial fracture at Pe = 32 and Da ! 1,
captured at (from left to right) Dh = 0.15h0, 0.5h0, and 2h0, respectively.
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diverging from the active channels rather than converging
toward them as in the upstream part.
[60] Fluid flow in the vicinity of the channels is shown

schematically in Figure 19 (left) and can be understood
from the pressure drop in the channels [Szymczak and Ladd,
2006], sketched in Figure 19 (right). With a constant total
pressure drop between the inlet and outlet, the pressure
gradient in the long channel is steeper than in the short
channel, because the flow rate is higher. In the upstream part
of the fracture the short channel is therefore at a higher
pressure than the long one, so flow in the surrounding
matrix is directed toward the long channel. Downstream the
situation is reversed; the region around the tip of the long
channel is at a higher pressure than the surrounding medium
and so flow is directed away from the channel, resulting in
the converging-diverging flow pattern seen in the simula-
tions. The larger the difference in channel lengths, the
higher the pressure difference between the channels. The
diverging flow pattern at the tips leads to the characteristic
splitting seen near the breakthrough region in Figure 17,
where the pressure gradients at the tips are large.
[61] The higher mass flow rates in the longer channels

lead to more rapid dissolution and this positive feedback
causes rapid growth of the longer channels and starvation of
the shorter ones. Channel competition is explicitly illustrated
in Figure 20, which compares channel lengths and flow
rates at different stages of the dissolution process. At the
beginning, about 20 channels were spontaneously formed

by the initial instability at the dissolution front, while at
Dh � h0 (Figure 20, left) only four of them remain active.
As dissolution progresses these remaining four channels
self select, and at Dh = 2h0 a single active channel
transports more than a half of the total flow through the
sample (Figure 20, middle). It can be seen that channel A
which starts out only slightly longer than channel B, drains
flow from channel B (Figure 20, right), slowly at first, but
eventually the volumetric flow in channel A becomes an
order of magnitude larger than that in B. This process
repeats itself until only a single channel remains or break-
through occurs.

10. Influence of the Initial Topography on
Wormhole Formation

[62] It was shown in sections 4 and 8 that initial top-
ographies characterized by a large number of contact points
(z = 0.5), relatively high roughness, and small mean aperture,
have a well-defined range of Péclet and Damköhler numbers
where spontaneous channeling is strong. However, in the
other geometric extreme, when fracture surfaces are far from
each other and the roughness is relatively small, the initial
inhomogeneities in flow and aperture are smoothed out as
dissolution proceeds. The effect of fracture roughness can
be illustrated by comparing dissolution patterns computed
in the original fracture geometry, with those obtained after
introducing an additional separation (extra aperture) ĥ
between the surfaces, while keeping the geometry (z = 0.5),
Péclet and Damköhler numbers the same. In this case the
obstacles do not span the whole aperture, and the relative
roughness is a function of both z and ĥ,

f z; ĥ
� �

¼ z 1
 zð Þh20
1
 zð Þh0 þ ĥ

h i2
0
B@

1
CA

1=2

: ð53Þ

[63] Figure 21 shows the influence of additional aperture
on the dissolution patterns for Pe = 8 and Pe = 32, where the
channeling was found to be strongest. We use an identical
arrangement of obstacles in each case (z = 0.5), and the
Damköhler number Da ! 1. The results show a rather
well-defined threshold of additional aperture, ĥtr � h0,
beyond which wormholing is strongly suppressed. How-
ever, below the threshold the degree of channeling is
scarcely affected, although the relative roughness is reduced

Figure 18. (left) Contours of the integrated flow field,
v2d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2d � v2d

p
, and (right) its lateral component, vy

2d, in a
small section of the fracture. In Figure 18 (left), the red
shading indicates the regions of highest flow, followed by
green, blue, and black. In Figure 18 (right) the shading
corresponds to the direction of the lateral fluid velocity,
white for vy

2d > 0 and black for vy
2d < 0. The integrated flow

field, v2d, is defined in equation (22).

Figure 19. Two dissolution channels in (left) the fracture
and (right) the corresponding pressure drops. The flow lines
are converging toward a larger channel at the inlet and
diverging near the tip of the conduit [from Szymczak and
Ladd, 2006].
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from f = 1 at ĥ = 0 to f = 0.33 at ĥ = h0. It was argued by
Hanna and Rajaram [1998] that at larger values of f, flow
focusing and channel competition are strongly enhanced,
whereas for small relative roughness the flow is more

diffuse and dissolution becomes uniform. Our results indi-
cate a qualitative connection between the roughness of the
aperture and channel formation, but not a strong quantitative
correlation. Despite the large reduction in statistical rough-

Figure 20. (left) A cross section of the flow map vx
2d(x = 0.1Lx, y) at Dh = h0 (solid) and Dh = 2h0

(dashed) (Pe = 8 and Da = 0.1). Only four channels have increased their flow rates significantly in the
corresponding time interval and at Dh = 2h0 about 55% of the total flow is focused in the main channel.
(middle) The fraction of flow focused in the main channel as a function of the dissolved volumeDh/h0. The
change of slopemarks the point when the channel breaks through to the other side of the fracture. (right) The
ratio of the flow focused in two neighboring channels (A and B) as a function of Dh.

Figure 21. (a, f) Dissolution patterns for the original topography and for fractures with additional
separation between the surfaces: (b, g) ĥ = 0.1h0, (c, h) ĥ = 0.5h0, (d, i) ĥ = h0, and (e, j) ĥ = 2h0. The flow
rates (at constant pressure drop) correspond to initial Péclet numbers Pe = 8 (Figures 21a–21e) and Pe = 32
(Figures 21f–21j); Da!1 in both cases. The erosion patterns of an initially flat surface were captured at
Dh = h0.
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ness the dissolution patterns are essentially unchanged up to
the threshold values of ĥ. In contrast, for separations above
the threshold, the patterns change dramatically, with the
channels disappearing as the value of ĥ is increased from
approximately h0 to 2h0, yet the statistical roughness
decreases only slightly, from f = 0.33 to f = 0.2. The
absence of a good quantitative correlation between f and
the degree of channel formation, coupled with the sharp
transition to channel suppression suggests that other geo-
metric factors, beyond statistical roughness, may play a
significant role in determining wormholing. One such

geometric factor is the degree of contact between the
fracture surfaces, which will be examined below.
[64] The evolution of permeability (Figure 22) shows that

a small amount of additional separation between the surfa-
ces (ĥ = 0.1h0) does not suppress wormholing (Pe = 32) and
can even speed up both dissolution and channel formation
(Pe = 8). This illustrates two important points. First, a small
gap between the fracture surfaces blocks the flow pathways
almost as effectively as complete contact. Second, a small
additional separation enhances the flow rates in the sponta-

Figure 22. Time evolution of the permeability at (left) Pe = 8 and (right) Pe = 32. Results are shown for
different additional apertures: ĥ = 0 (dotted), ĥ = 0.1 h0 (dot-dashed), ĥ = 0.5h0 (dashed), ĥ = h0 (long
dashes) and ĥ = 2h0 (solid). In Figure 22 (left) the plots for ĥ = h0 and ĥ = 2h0 overlap and lie almost
along the horizontal axis, while in Figure 22 (right) the plots for ĥ = 0 and ĥ = 0.1h0 overlap.

Figure 23. Initial fracture geometries at coverages (left) z = 0.5, (middle) z = 0.25, and (right) z = 0.05.
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neously formed channels, which leads to faster growth,
despite the reduction in roughness.
[65] Further insight into the influence of geometry on the

dissolution patterns may be gained by reducing the initial
coverage, z, randomly removing some of the protrusions
from the original fracture, as illustrated in Figure 23. The
roughness is again reduced, but in a geometrically different
fashion from that represented in Figure 22. Figure 24 shows
the resulting dissolution patterns at Pe = 32, Da ! 1.
Again, there seems to be a well-defined threshold where
channeling is suppressed, occurring at coverages between
z = 0.05 and z = 0.1, which, according to equation (53)
corresponds to a relative roughness f � 0.2–0.3. Above the
threshold, both the diameter of the channels and the spacing
between them are weakly dependent on the geometry of the
system. This supports the notion that the characteristics of
wormhole formation are primarily functions of Pe and Da,
and essentially independent of the correlation length of the
fracture topography.

11. Summary

[66] In this paper we have studied channeling instabilities
in a single fracture, using a fully three-dimensional, micro-
scopic numerical method. Channeling was found to be
strongest for large reaction rates (mass transfer-limited
regime) and intermediate Péclet numbers. We analyzed the
observed patterns in terms of two simple models; a Darcy-
scale model for the reaction front and a convection-diffusion
model for mass transport in the wormhole. These models
qualitatively explain the wide variety of dissolution patterns
observed in the simulations, and we found quantitative
agreement in the prediction of the wormhole diameter in
the mass transfer-limited regime. We summarized our sim-
ulations in terms of a phase diagram separating the different
regimes of erosion, and compared our conclusions to
experiments and other numerical simulations. We also
examined the efficiency with which permeability can be
increased by acid erosion.

[67] When wormholes form, there is strong competition
for the flow, leading to an attrition of the shorter channels.
We have previously explained a number of detailed obser-
vations by a simple network work of the flow in the fracture
system [Szymczak and Ladd, 2006]. In this paper we have
provide new simulation data showing explicitly how the
fluid flow is drained from the matrix surrounding the
dominant channels. This provides confirmation at the mi-
croscopic level for key assumptions underpinning the net-
work model.
[68] We found evidence for the existence of a well-

defined threshold value of the fracture roughness, f �
0.2–0.3, needed to trigger a channeling instability. Below
that value, the topographic perturbations are smeared out by
dissolution on similar or shorter timescales than the prop-
agation of the front, and channels do not develop. Above the
roughness threshold channels do develop, but their size
and spacing are controlled by the values of Péclet and
Damköhler number, and not by the fracture topography.
[69] Our results are limited to geometries characterized by

short-range spatial correlations and lacking the self-affine
properties of natural fractures. The analysis of wormholing
in such geometries will be the subject of future study.
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