which, of course, can be shown directly by using the same
steps that we used to deal with V.

We next consider an observable for which the classical
analog, V(r P r,,P,), can be written as a polynomial or
convergent powers series in the Cartesian components of
r, P, r,, and P,."" Such an operator can obviously be con-
structed from a linear combination of terms of the form

(i)™ (Prre )" (Pr ) “( Py )™

1

-

Vo=

I

a

3 A a
+ H (?lla)m”(;‘la)”"(Plla) l1(1)111)17”
=1

(18)

where a = 1,2,3 degignates the x, y, z Cartesian compo-
nents of the #'s and P’s, and the 12 numbers a,,,b,,m,,, and
n, for @ = 1,2,3, are nonnegative integers. The first term
on the right side of Eq. (18) is an ““almost typical” term in a
polynomial or powers series in the Cartesian components
of t;, f,;, Py, and Pyy; i.e,, it is a product of nonnegatiye,
integral powers of the Cartesian components of ,,f,,,P,,
and Py;. This term is “almost typical” rather than typical
because the components of P, and Py, stand to the right of
the components of #; and £,;. But, of course, in the Hermi-
tian adjoint of this term, which is also contained in ¥, the
components of P, and P,; stand to the left of the compo-
nents of £, and t,;. Terms of these two forms are all that are
needed because a “mixed” term with powers of 7, and/or
i’\““ on both the left and the right of the powers of P;, and
P,;,, can always be expressed as a sum of terms of the two

forms present in V. This can be accomplished through use
of the identity

+ Hermitian adjoint,

c

pg = g c)dd—l e d—k 41
P =g +k;(k[( ) ( + 1]
X (—ifygt= et (19)
and its Hermitian adjoint.’? Here, d can be any number and
¢ must be a nonnegative integer. This identity can be ob-
tained by using
PG =qp—[9.p) =gp — ifi (20)
to move the powers of § to the left through the powers of p;

it can also be obtained from Leibnitz’s rule for the deriva-
tive of a product.'? The second term on the right side of Eq.

(18) is the same as the first term with the subscripts I and
ITinterchanged; thus V; isinvariant under the interchange
of I and II. A moment’s thought serves to reveal that pre-
cisely the same steps that yere used in dealing with V, , and
V, suffice to prove that V; satisfies our Eq. (1) and Eq.
(28) of Ref. 1. R

As we have noted, an observable, V(1,I1), for which the
classical analog, V(r,,P,,r,,P,), can be written as a polyno-
mial or convergent powers series in the Cartesian compo-
nents of r|, P, r,, and P, can be written as a linear combi-
nation of terms of the form of V. Obviously, such an
operator satisfies our Eq. (1) and Eq. (28) of Ref. 1.

We have thus shown that for a very general two-body
operator, one which is a physical observable and a polyno-
mial or conyergent poyers series in the Cartesian compo-
nents of #;,P,§,;, and P,;, invariance under interchange of
I and I is all that is necessary to obtain Eq. (1). To the best
of our knowledge, this is the first time that such a deriva-
tion has been given.

'N. L. Greenberg and S. Raboy, “One-body and two-body operators on
systems of identical particles,” Am. J. Phys. 50, 148-155 (1982).

*As usual, by an observable we mean a Hermitian operator possessing a
complete set of eigenvectors. See, e.g., Albert Messiah, Quantum Me-
chanics (North-Holland, Amsterdam, 1958), Secs. V.9, VIIL. 9, and
VIL.13.

*This is Eq. (28) of Ref. 1 written out somewhat more explicitly. Note
that we reserve the caret ( ) for operators in the abstract state vector
space.

‘Reference 1, p. 155, the last paragraph.

See Eq. (29) of Ref. 1.

“Albert Messiah, Quantum Mechanics (North-Holland, Amsterdam,
1958), Secs. VIII.6 and VIII.16.

7). . Sakurai, Modern Quantum Mechanics (Benjamin/Cummings,
Menlo Park, CA, 1985), Sec. 1.7.

®Reference 6, Secs. VIL.6 and VIIL.7.

“Jean-Paul Blaizot and Georges Ripka, Quantum Theory of Finite Sys-
tems (MIT, Cambridge, 1986), Sec. 1.1.

'“See Eq. (27) of Ref. 1.

"'For the powers series case, it may be necessary to use different powers
series for different ranges of the Cartesian components of r,,P,r,, and
P..

'*Of course, we could use this identity to put all the terms in v, o into the
form of the terms in ¥V, i.e., with all the powers of §,,4;;,4; .4}, to the left
of the powers of P, ,p,,,p; P11 -

"I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, Corrected and Enlarged Edition ( Academic, New York, 1980), p.
19.

Are sound waves isothermal or adiabatic?

Junru Wu

Department of Physics, University of Vermont, Burlington, Vermont 05405

(Received 17 January 1989; accepted for publication 14 April 1989)

In preparing a first-year physics course, I was attracted
by the new organization of the third edition of Fundamen-
tals of Physics by Halliday and Resnick;' especially by the
fascinating essays.

On closer examination, however, I found that in at least
two places in the text discussions of the thermodynamic
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properties of sound waves are misleading. In Sec. 20-6 (p.
470), when adiabatic processes are discussed, it is written
that *“... the compressions and rarefactions of air as a sound
wave passes through are adiabatic. There is simply no time
for heat to flow back and forth in synchronism with the
rapidly oscillating sound waves... .” In Sec. 21-11 (p. 498),
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Table I. The results of a textbook survey.*

Contain
correct
or
Wherethe  wrong
subject is state-
Title Authors Publisher discussed ments
Funda- Halliday & Wiley p-470& Wrong
mentalsof  Resnick (1988) p- 498
Physics,
3rd ed.
Physics For  Giancoli Prentice- p. 475 Wrong
Scientists and Hall
Engineers (1989)
with Modern
Physics,
2nd ed.
Physics Gettys, McGraw-  p. 748 Wrong
Keller, & Hill
Skove (1989)
Principles  Marion&  Saunders p. 326 Correct
of Physics  Hornyak College
Publishing
(1984)

*The subject is not discussed in the following books: (1) H. Ohanian,
Physics (Norton, New York, 1985); (2) R. Weidner and M. Browne,
Physics (Allyn & Bacon, Boston, 1989), rev. ed.; (3) R. Serway, Physics
Jor Scientists and Engineers with Modern Physics (Saunders, Philadel-
phia, 1986), 2nd ed.; (4) F. Blatt, Principles of Physics, (Allyn & Bacon,
Boston, 1986), 2nd ed.

it is repeated that *... sound waves are propagated through
air and other gases as a series of compressions and rarefac-
tions that take place so rapidly that there is no time for heat
to flow from one part of the medium to another. Volume
changes for which Q = Q are called adiabatic processes... .”

These statements suggest that sound waves are more
nearly adiabatic at high frequencies than at low frequen-
cies, since the time for heat flow is less. In fact, however, the
opposite is true, namely, at low frequencies the speed of
sound is the adiabatic (pv” = const) speed,

¢, = (YR, T)'"?, (D

where R,, is the gas constant per unit mass, ¥ is the ratio of
the specific heat at constant pressure to that at constant
volume, and T is the absolute temperature. On the other
hand, at very high frequencies, the speed of sound is the
isothermal (pv = const) speed,

cT = (Rm T)l/2’ (2)

the process being isothermal.

The erroneous statement made in the textbook is, in fact,
quite common. In four out of eight introductory physics
textbooks published after 1984 in the USA, which we
found in the library of our department, this subject is dis-
cussed; only one has a reasonably correct statement (Table
I).

Historically, a similar statement was first proposed by
Laplace® in 1816. To resolve the discrepancy that the ex-
perimental value of sound speed at audible frequencies was
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about 20% higher than that calculated from ¢, Laplace
suggested that the compressions and expansions in a sound
wave are adiabatic. This was in contrast to Newton’s® pro-
posal that they are isothermal. Laplace’s theory works well
at low frequencies. But the argument provided by Laplace
to interpret his results is very similar to that given in the
textbook. The point that is missed in the argument is that
although at low frequencies there is sufficient time avail-
able between successive variations of temperature for ther-
mal equilibrium to be established, the wavelength of the
disturbance is large, requiring the heat to flow over a great
distance. At high frequencies, on the other hand, the time
for the heat to flow is short, but so is the distance the heat
must traverse. This can be seen by the following simple
calculations: For example, f= 100 Hz, the corresponding
wavelength A4 is given by A =c,/f= (340) m/s/100
Hz = 3.4 m; at f = 10 000 Hz, however, the corresponding
wavelength A becomes 0.034 m.

The crucial question is which of the two effects, time or
space, predominate? The paradox was resolved by the clas-
sical theory of absorption and dispersion of sound waves,
which was first developed by Kirchhoff * and elaborated by
Langevin® and many others.%’ The theory shows that both
viscosity and heat conductivity play important roles in
acoustic processes, and consequently the speed of acoustic
waves is frequency dependent, a phenomenon called dis-
persion in physics. Lindsay, in his book, Mechanical Radi-
ation® gave a similar but brief derivation of the speed of
sound when only heat conduction is considered. In the pas-
sage of an acoustic wave, the temperature in the compres-
sion of the fluid is raised and a temperature gradient is
locally established. This leads to a heat flow by conduction,
which can be significant, before the subsequent rarefaction
can be accomplished. By simultaneously solving the conti-
nuity equation, the equation of motion, and the energy
equation including heat conduction, he has derived the
phase velocity ¢(w) of a one-dimensional plane harmonic
wave as follows:

c(@) =c,[(1+o* )/ (1 4+ y0*)]"?, (3)

where 7 represents the so-called relaxation time for heat
conduction. For air at room temperature this is of the order
of 107 '%s. It is interesting to look at the two extreme cases.
At low frequencies, where &7 is much smaller than unity,
c(w) approaches c,. However, at high frequencies, w7 is
much larger than unity and c¢(w) approaches c;. Since 7
for air is so small, it is safe to say that sound waves in the
audible frequency range (20 Hz < f'< 20 000 Hz) are adia-
batic.

The identical conclusion can be reached by the following
simple argument. Heat flow is a diffusive phenomenon, and
a diffusive wave velocity v, can be introduced to describe
the distance over which heat diffuses in a unit of time,
which is given by®

v, = QufK/C,p)'?, (4)

where K is the thermal conductivity, p is the density, and
C, is the specific heat at constant volume. Notice that v, is
an increasing function of frequency. When v, >c¢,, or
f>f,=c2C,/27K, the process is isothermal. On the other
hand, when f< £, it is adiabatic.

The classical theory works well with the rare gases,
which have only translational kinetic energy. This was con-
firmed by Greenspan’s modern measurements'® of the dis-
persion of sound speed for five monatomic gases. Analysis

Notes and Discussions 695



of the experiments shows that acoustic waves observed are
adiabatic at low frequencies and approach isothermal with
increasing frequency.'! The situation becomes a little com-
plicated with polyatomic molecules; relaxation processes
of other degrees of freedom such as rotation and vibration
become important as well. Nevertheless, the above result is
still true. For the detailed discussion, the reader is referred
to Ref. 8.
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Here is a simple piece of apparatus that illustrates one
kind of 1-D collision in a most effective manner. The idea
behind the demonstration has recently been discussed'~
for the case of two balls, and is far from new. A massive ball
is dropped simultaneously with a light ball just above it: It

-

]
! \

Fig. 1. The one-dimensional collision apparatus.
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is found that the light ball rises considerably higher than its
original height.

A more practical arrangement is shown in the diagram.
The two masses M, and M, (typically 100 and 500 g, re-
spectively), are dropped simultaneously with a small gap
between them. The larger mass has an almost elastic colli-
sion with a bottom support via the spring S,, and collides
via §, with the smaller mass, which is still descending. A
little practice is needed to get these conditions just right.
The mass M, rises to a considerable height, typically five
times as high for the masses quoted. An easy calculation
shows that if M, is much larger than M, then M| could rise
as high as nine times as far as dropped, if friction is mini-
mal. One has more control over the masses than with balls.

In the apparatus used, M, and M, were brass, with a steel
rod some 2 m long as the central support, secured in a
heavy metal base. The spring S, should be the stronger, to
withstand the impact of M,. Experiment to find a good
spring combination. The experiment can be performed as a
“Gee whiz, explain that!” type demonstration as an intro-
duction to 1-D collisions. A stairwell is a good location,
where the height risen can be readily found.
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