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A new analysis of the radiatively generated, LO quark (u, d, s, c, b) and gluon densities in the real, unpolarized 
photon, improved in respect to our paper [I], is presented. We perform four new global fits to the experimental 
data for F,Y, two using a standard FFNS approach and two based on ACOT, scheme [2], leading to the FFNSc JK 

and CJK models. We also present the analysis of the uncertainties of the new CJK 2 parton distributions due 
to the experimental errors, the very first such analysis performed for the photon. This analysis is based on the 
Hessian method, for a comparison for chosen cross-sections we use also the Lagrange method. 

1. Introduction 

We continue our LO analysis [l] of the par- 
ton distributions in the unpolarized real photon, 
which led us to a construction of the CJKL par- 
ton parametrization, improving and broadening 
our investigation. Like previously our aim is to 
develop a proper description of the heavy charm- 
and bottom-quark contributions to the photon 
structure function, F:(z, Q2). The new mod- 
els FFNSCJK 1 and CJK 1 are slightly modified 
versions of our previous FFNSCJKL and CJKL 
models, respectively. In addition we analyse the 
FFNSCJK 2 model, which includes the so-called 
“resolved-photon” contribution of heavy quarks 
to F2(2,Q2) , given by the y*G -+ h& process, 
and CJK 2 model, with an improved positivity 
constraint. All models are based on the idea of 
radiatively generated parton distributions intro- 
duced by the GRV group (see e.g. [3]). 

In this analysis we neglect TPC2y data, as in 
other recent analyses, and slightly modify, with 
respect to previous analysis, both types of mod- 
els. Moreover, for the very first time for the 
photon, we estimate uncertainties of the parton 
distributions due to the experimental errors of 
data. Following the analyses of this type per- 
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formed for proton structure by the CTEQ Col- 
laboration, [4]-[6] and the MRST group, [7] we 
use the Hessian method to obtain sets of parton 
parametrizations allowing, along with the parton 
parametrization of the best fit, to calculate the 
best estimate and uncertainty of any observable 
depending on the parton densities in real photon. 
We compare our results for Fzc and prompt pho- 
ton production in yy obtained with the Hessian 
and Lagrange ([4],[7], [S]) methods. 

2. FFNSCJK and CJK models 

The difference between the FFNSCJK and CJK 
models lays in the approach to the calculation 
of the heavy quark h (c and b) contributions to 
the photon structure function F;(x, Q2). The 
FFNSCJK models base on a widely adopted Fixed 
Flavour Number Scheme in which there are no 
heavy quarks among partons. They contribute to 
F2y(x, Q2) by a ‘direct’ (Bethe-Heitler) y*y + hh 
process (F~,(z, Q2)]di,), in addition one can also 
include the so-called ‘resolved’-photon contribu- 
tion from y*G + hh (F~‘(z, Q2)lTes) [9]: 
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h(=c,b) 

with 4: ($) being the light u, d, s quark (anti- 
quark) densities governed by the DGLAP evolu- 
tion equations. 

The CJK models adopt the ACOT, scheme 
[2] which is a recent realization of the Variable 
Flavour Number Scheme. In this approach heavy 
quarks are, similarly to the light quarks, con- 
stituents of the photon. Therefore, apart from 
the direct and resolved-photon contributions also 
qh contribute to F~(x, Q”) . It leads to a dou- 
ble counting of the heavy quark contributions to 
F;(z, Q”) , therefore inclusion of the correspond- 
ing subtraction terms, Fzhjdir,sub and Fzh)res,sub, 
is necessary. 

Next, following the ACOT, approach, we use 
the Xh parameters to obtain the proper vanishing 
of the heavy-quark densities below the kinematic 
thresholds, for DIS given by the W2 = Q2(1 - 
X)/X = 4m$. Substitution of z with Xh = ~(1 + 
4mi/Q2) in qh and in subtraction terms should 
lead to the correct threshold behaviour as Xh -+ 1 
for I/v + 2mh. In the CJK models 

i=l 

2 

h(=c,b) 

The QCD evolution (DGLAP) starts from a 
scale chosen to be small, Qi = 0.25 GeV2, for 
both types of models, hence our parton densities 
are radiatively generated. As it is well known the 
point-like solutions of the evolution equations are 
calculable without further assumptions, while the 
hadronic parts need the input distributions. For 
this purpose we utilize the Vector Meson Domi- 

nance (VMD) model, assuming 

(3) 

where the sum over all light vector mesons is pro- 
portional to the PO-meson parton density with a 
parameter K. We take the input densities of the p 
meson at Qi in the form of valence-like distribu- 
tions both for the (light) quarks (up) and gluons 
(GP): 

ZIJ~(Z, Q”,, = N,Z”(l- X)P, (4) 
zGP(x, Q;) = #&m~~(17:, Q;) = N,z”(l - x)“, 

O(T Q:> = 0, 

where Ng = fi,N,. All sea-quark distributions 
(denoted as CP), including s-quarks, are neglected 
at the input scale. The valence-quark and gluon 
densities satisfy the constraint representing the 
energy-momentum sum rule for p: 

I 

1 

2(2zf’(z, Q;) -t GP(x, Q;))dx = 1. (5) 
0 

One can impose an extra constraint related to the 
number of valence quarks: 

I 

1 
72, = 2v”(z, Q;) = 2. (6) 

0 

Use of both constraints allows to express N, and 
Ng in terms of Q, ,B and 6, reducing the number 
of free parameters to three. 

3. New analysis 

In our new analysis we improve treatment of 
the running of CX* by differentiating the number 
of active quarks in the running of a, and in the 
evolution equations, and by using lower values of 
AQCD. We first describe new aspects of our anal- 
ysis which are common to all considered models. 

3.1. Data 
New fits were performed using all, F~(x, Q2) 

data, except the old TPC7. In our former global 
analysis [l] we used 208 F2(x,Q2) experimental 
points. Now we decided to exclude the TPC2y 
data (as for instance in [lo]) since these data 
are considered to be not in agreement with other 
measurements. After the exclusion we have 182 
data points. 
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3.2. Q, running and values of AcNq) 
The running of the strong coupling constant at 

lowest order is given by the well-known formula: 

,$%) (Q2) = 4n 2 
~oln(Q2/~(~q)z)’ Do = 11-iNq’(7) 

where AcNql is the AQ~D value for N4 quarks. 
Ns increases by one whenever Q2 reaches a heavy 
quark threshold, i.e. when Q2 = mi. The con- 
dition o.$N”(mi) = ajNq”)(mE) is imposed in 
order to ensure the continuity of the strong cou- 
pling constant. In the new analyses we introduce 
the number of active quarks in the photon, de- 
noted by Nf , which differs from the number of 
quarks contributing to the running of Q,. 

The distinction between both numbers of 
quarks forces to use slightly more complicated 
formulae for the evolution of the parton densi- 
ties than in our previous analysis. More pre- 
cisely, we must, proceed in three steps to per- 
form the DGLAP evolution. In the first step, 
describing the evolution from the input scale Qe 
to the charm-quark mass m,, the hadronic in- 
put q&(x, Qg) is taken from the VMD model. 
In the second step we evolve the parton distribu- 
tions from m, to the beauty-quark mass, mb, a 
new hadronic input is given by the sum of already 
evolved hadronic and point-like contributions to 
the parton density. The point-like distribution 
at Q2 = rnz becomes zero again. The same is 
repeated for Q2 > rni. That way we can solve 
the equations for three ranges of Q2, in which 
Nf = 3,4 and 5, separately. In each range values 
of be and A depend on N4. 

In the previous work we assumed (following the 
GRV group approach [3]) that the LO and NLO A 
values for four active flavors are equal, and used 
AC41 = 280 MeV from the Particle Data Group 
(PDG) report [ll]. We now abandon this as- 
sumption and take for AC41 = 115 MeV, which 
is obtained in LO from the world average value 
os(Mz) = 0.117, with Mz = 91.188 GeV, using 
Eq. 7. Imposing the continuity condition for the 
strong coupling constant and m, = 1.3 GeV and 
mb = 4.3 GeV, we obtain AC31 = 138 MeV and 
A@) = 84 MeV. 

3.3. VDM 
In our new analysis we try to relax the con- 

straint on n, (6). This leads to 4-parameter fit. 

3.4. FFNS 
In the FFNSCJK 2 model we include the so- 

called “resolved-photon” contribution of heavy 
quarks to F2y(x, Q2) , given by the r*G --+ hj;. 
process. 

3.5. Subtraction terms in CJK models 
In [l] we derived the subtraction term for a di- 

rect contribution, Fzh ]&r,subtr, from the integra- 
tion up to Q2 of a part of the DGLAP evolution 
equations, namely: 

&:(x, Q2) 
dlnQ2 

= $k(x), (8) 

where k(x) is the lowest order photon-quark split- 
ting function (see Eq. (7) in Ref. [l]). For the 
lower limit we took in Ref. [l] the natural for 
a Bethe-Heitler process limit Q,“,, = rnz. How- 
ever, since the threshold condition is W2 > 4mi, 
even for Q2 < rni the heavy-quark contribu- 
tions do not vanish as long as the condition 
x < Q2/(Q2 + 4mi) is fulfilled. In this paper 
we take Q$,, = Qi, which improves quality of 
the fits. The direct subtraction term has now the 
form: 

F;hldir,subtr (x,Q2) = xln $3e$(x2+(1-x)2).(9) 
0 

We apply the same change to the subtraction 
term for the resolved-photon contribution: 

F;hlres,subtr (x,Q2) = xln s&e (10) 
0 

X J ’ 4 2 $‘~;)G’(Y, Q2 1. 

As we noticed in Section 2 the x -+ Xh substitu- 
tion leads to the proper threshold behavior of all 
the heavy-quark contributions to the FT(x, Q2), 
except for both subtraction terms. This is al- 
ready seen in Eq. (9) that this term does not 
vanish for Xh + 1 and therefore by subtracting 
it the resulting heavy-quark contribution to F? 
may become negative for large x. An extra con- 
straint to avoid this unphysical situation is, thus, 
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needed. In Ref. [l] we imposed the simple condi- 
tion (positivity constraint) that the heavy quark 
contribution to Fz (z, Q”) has to be positive. Un- 
fortunately, this constraint was not strong enough 
and for some small windows at small and large 
IC the still unphysical situation F&(x, Q2) < 

F&(x, Q2hrect + Fz,(z, Q2)lreso~ved was found 
[12]. In this paper we apply new condition: 

F&b, Q2) L F&&G Q2)l~ir+F&(~, Q2>lresW 

4. Results of the new F; global fits 

In the fits we use 182 F2(x,Q2) experimental 
points with equal weights. Fits based on the least- 
squares principle (minimum of x2) were done us- 
ing MINUIT [13]. Systematic and statistical errors 
on data points were added in quadrature. 

The CJK 1 and 2 models differ in the form of 
the positivity constraint. In the CJK 1 model 
we keep the old condition F;h (2, Q2) > 0 while 
the CJK 2 model imposes the condition (11). In 
these models we do not apply the sum rule (6) and 
have four free parameters: o,p,Nv,~ related to 
the initial quark and gluon densities at the scale 
Qfj = 0.25 GeV2 (5). 

The two FFNS models differ by the resolved- 
photon contribution of heavy quarks to 
F~(cE, Q2). It appears only in the FFNSCJK 
2 model. In both FFNS models we impose con- 
straints (5) and (6). That allows to write N, in 
terms of a, p and IE reducing the number of free 
parameters to three ‘. 

The results for the total x2 for 182 points and 
the x2 per degree of freedom for our new fits are 
presented in table 1. The fitted values for pa- 
rameters a, p, E and N, are also presented to- 
gether with the errors obtained from MINOS pro- 
gram with the standard requirement of Ax2 = 1. 
In the case of the FFNS~JK models the N, pa- 
rameter is calculated from the constraint (5) and 
therefore we do not state its error. Note, that 
the valence number integral n, (6) gives in CJK 
models 1.94 and 2.00, for CJK 1 and CJK 2, re- 
spectively. 

lThe test fits without the number of valence quarks con- 
stramt gave n, % 0.5 and E 1.4 in the FFNSCJK 1 and 
FFNSCJK 2 models, respectively. Both these values are 
very far away from the expected value 2. 

The x2 per degree of freedom obtained in our 
new fits, between 1.5 and 1.7, is better than the 
old results, mostly due to much lower AcNg) as 
well as due to modification of the subtraction con- 
tributions in the CJK models. The old x2/~o~ 
for the same set of 182 data points read 1.99 in 
the FFNSCJKL and 1.80 in the CJKL model 2. 

We observe that the only real difference in 
x2/~o~ is between the first and other three fits 
and is a result of inclusion or not of the r*G -+ hh 
contribution to F:(z, Q2). It is obvious that tak- 
ing this process into account improves the agree- 
ment between model and data. 

In light of these results one can conclude that in 
both, so different treatment of heavy-quark con- 
tributions to the photon structure function, all 
fitted parameters are similar. This is related to 
the fact, that we use in global fits only data for 
F,Y, quantity dominated by the light-quark con- 
tributions. 

4.1. Comparison with the F; data 
The FFNSCJK 2 and both CJK models pre- 

dict a much steeper behaviour of the F,Y(x,Q2) 
at small z with respect to FFNSCJK 1 fit and 
GRS LO [14] and SaSlD [15] parametrizations. 
On the other hand these curves are less steep than 
the FFNSCJKL and CJKL results from [l]. In the 
region of z 2 0.1, the behaviour of the F2y(z, Q2) 
obtained from all fits and parametrizations apart 
from the CJK 1 model is similar. The shape of the 
CJK 1 fit at high z is a result of the F&(x, Q2) > 
0 condition which allows for F&(x, Q2) < 

F&(x, Q2)l~irect + J$“,,(T Q2)lreso~ve~~ It effects 
in the lower position of the characteristic point 
at which the charm-quark contributions to the 
F2y(x, Q2) appear as compared to other mod- 
els predictions. Apart from that the CJK 1 
fit gives smaller Fz(z, Q2) values around this 
charm-quark threshold. Finally at high Q2 and 
high z the CJK 1 model produces much lower 
structure function values than all other fits and 
parametrizations predict. We found that the 
FFNSGJK 1 fit gives very similar prediction to 
the GRS LO parametrization results in the whole 

2Note, however that in old analysis global fits were per- 
formed for 208 points. 
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model X2 (182 Pts) X2/~0~ rc a P NV 

Table 1 
The total x2 for 182 data points and per the degree of freedom, and parameters of the best fits for 
FFNSCJK and CJK models. Errors are obtained from MINOS with ax2 = 1. 

range of x. 
Figure 1 presents the predictions for F;(x, Q2), 

averaged over medium x regions, compared with 
the recent OPAL data [16], not used directly in 
our analysis. Like in our previous analysis we see 
that all FFNS type predictions (including GRS 
LO and SaSlD parametrizations) are similar and 
fairly well describe the experimental data. The 
CJK models alike the CJKL model gives slightly 
better agreement with the data. 

4.2. Parton densities 
The parton densities obtained in the CJK and 

FFNSCJK models are all very similar. Of course 
there are no heavy-quark distributions in FFNS 
models. In case of the CJK models the cY(z, Q2) 
and bY(x, Q”) densities vanish not at x = 1, as for 
the GRV LO and SaSlD parametrizations, but 
at the kinematical threshold, which was our aim. 
We notice that our new parton densities have all 
similar shapes but slightly higher values than the 
corresponding old CJKL distributions. In case 
of the gluon density we find that all new curves 
are much steeper than the predictions of the old 
models and the GRV LO and SaSlD parametriza- 
tions, see also below. 

4.3. Comparison with Fzc 
In Fig. 2 we present our predictions for the 

Fz’,,, in comparison with OPAL data [17], not 
used directly in the analysis, and results of the 
GRS LO and SaSlD parametrizations. 

All our models containing the resolved-photon 
contribution (FFNS CJK 2 and both CJK models) 
agree better with the low x experimental point 
than other predictions. The GRS LO and SaSlD 

parametrizations also include the resolved-photon 
term but in their case the gluon density increased 
less steep than our models predict, as was already 
mentioned. Their FTC lines lie below results of 
our new fits but higher than the FFNSCJK 1 
curve which is given solely by the direct Bethe- 
Heitler contribution. 

The CJK models overshoot the experimental 
point at high x while other predictions agree with 
it within its uncertainty bounds. Again the F& 
from the CJK 1 fit vanishes at lower x than in 
other models. 

5. Uncertainties of the parton distribu- 
tions 

Following the corresponding analyses for the 
proton we consider the experimental uncertain- 
ties of the CJK parton densities. This is first 
analysis of this type for the photon, details are 
described in [18]. 

5.1. The Hessian method 
The CTEQ Collaboration [4]-[6], developed 

and applied an improved method of the treat- 
ment of the experimental data errors. Later the 
same formalism has been applied by the MRST 
group in [7]. The method bases on the Hessian 
formalism and as a result one obtains a set of 
parametrizations allowing for the calculation of 
an uncertainty of any physical observable depend- 
ing on the parton densities. 

We apply the method as described in Refs. [4] 
and [5]. For the sake of clearness of our proce- 
dures we will partly repeat it here keeping the 
notation introduced by the CTEQ Collaboration. 

Let us consider a global fit to the experimen- 
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Figure 1. Comparison of the recent OPAL data Figure 2. Comparison of the structure func- 
[16] for the Q2-dependence of the averaged over tion F&(x, Q”)/ o calculated in the CJK and 
0.1 < x < 0.6 F;/a with the predictions of the FFNS~JK models and in GRS LO [14] and SaSlD 
CJK and FFNSCJK models. 1151 parametrizations with the OPAL data [17]. 

tal data based on the least-squares principle per- 
formed in a model, being parametrized with a 
set of {ai, i = 1,2, .. .d} parameters. Each set 
of values of these parameters constitutes a test 
parametrization S. The set of the best values of 
parameters {a:}, corresponding to the minimal 
x2, x0> 1s 2 . denoted as So parametrization. In the 
Hessian method one makes a basic assumption 
that the deviation of the global fit from xi can 
be approximated in its proximity by a quadratic 
expansion in the basis of parameters {oi} 

d d 

Ax2 =x2-x; = CCH,j(ai-ag)(a,-a,0),(12) 
ix1 j=l 

where Hij is an element of the Hessian matrix, 
calculated as 

(13) 

Since the Hij is a symmetric matrix, it has a 
complete set of k = 1,2...d orthonormal eigenvec- 
tors (~i)k defined by 

0.6 - t 1 m a 8 tmmat,, nt,,ta, 1 fimlln- 

Q2 = 20 GeV2 CJK 1 - - - CJK 2 --- _ 
FFNS CJK 1 ---* - 

5 0.4 - FFNS CJK 2 - . . . . . 

s 
GRS LO -.- _ 

0 h SaSlD -.- - 

i=l 

with {ck} being the corresponding eigenvalues. 
Variations around the minimum can be expressed 
in terms of the basis provided by the set of eigen- 
vectors 

k=l 

where {zk} are new parameters describing the dis- 
placement from the best fit. The {sk} are scale 
factors introduced to normalize {zk} in such a 
way that 

d 

Ax2 zz x2 - xi = c z;. (17) 
k=l 

The above equation means that the surfaces of 
constant x2 are spheres in the {zk} space. That 
way the {zk} coordinates create a very useful, 
normalized basis. The (&)k E 2)ik matrix de- 
scribes the transformation between this new basis 
{Zk} and old {ui} b asis. The scaling factors a,+ are 
equal to m in the ideal quadratic approxima- 
tion (13). 
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The Hessian matrix can be calculated from its 
definition in Eq. (13). Such computation meets 
many practical problems arising from the large 
range spanned by the eigenvalues {ek}, the nu- 
merical noise and non-quadratic contributions to 

2. The solution (an iteration procedure) has 
?een given by the CTEQ Collaboration [4]. 

Having calculated the eigenvectors, eigenval- 
ues and scaling factors we can create a basis of 
the parametrizations of the parton densities, {S,‘, 
,liT= l,... , d}. Each parametrization corresponds 
to a k-set of ai parameters defined by displace- 
ments from uf of a magnitude t “up” or “down” 
along the corresponding eigenvector direction 

ai = a8 f t (q)ksk. (18) 

For each S$ parametrization Ax2 = t2. 
The best value of a physical observable X de- 

pending on the photon parton distributions is 
given as X (SO). The uncertainty of X, for a dis- 
placement from the parton densities minimum by 
AX2 = T2 (T - the tolerance parameter), can be 
calculated from a very simple expression (a mas- 
ter equation) 

AX = ; k[X(S+) - X(S,)12 
4 

. (19) 
k=l 

Note that having calculated AX for one value of 
the tolerance parameter T we can obtain the un- 
certainty of X for any other T by simple scaling 
of AX. This way sets of {SF} parton densities 
give us a perfect tool for studying of the uncer- 
tainties of other physical quantities. One of such 
quantities can be the parton densities themselves. 

Finally, we can calculate the uncertainties of 
the ai parameters of the model. According to 
Eq. (18) in this case ai - ai = 2t(l/i)kSk 
and the master equation gives a simple expression 

(20) 

In practice we observe the considerable devia- 
tions from the ideal quadratic approximation of 
equation (17). To make an improvement we can 
adjust the scaling factors {si} either to obtain ex- 
actly Ax2 = t2 at zi = t for each of the Sg sets 

or to get the best average agreement over some zi 
range (for instance for zi 6 t). Below we apply 
the second approach. 

5.1.1. Estimate of the tolerance parameter 
T for the photon densities 

We consider now the value of the tolerance pa- 
rameter T for the real-photon parton-densities 
corresponding to the allowed deviation of the 
global fit from the minimum, Ax2 = T2, as de- 
scribed above. In case of an ideal analysis a stan- 
dard requirement is Ax2 = 1. Of course this is 
not a case for a global fit to the F; data coming 
from various experiments, and certainly T must 
be greater than 1. Unfortunately, no strict rules 
allowing for estimation of the tolerance parame- 
ter exist, as discussed in detail in [5] and [8]. We 
try to estimate the reliable T value in two ways, 
both applied to the CJK 2 fit only. 

First we examine the mutual compatibility of 
the experiments used in the fit. That gives the 
allowed Ax2 greater than 22 and the tolerance 
parameter T - 5. As a second test we compare 
the results of our four fits presented in this paper 
and find the T values for which parton densi- 
ties predicted by the FFNS and CJK 1 models 
lie between the lines of uncertainties of the CJK 
2 model. These values are large due to the dif- 
ferences between the gluon densities given by the 
CJK and FFNS models. The T - 5 when only the 
CJK 1 and 2 gluon distributions are compared. 
For quark distributions T 5 7 when we consider 
all models. Finally we estimate that the tolerance 
parameter T should lie in the range 5 N 10. 

5.1.2. Tests of quadratic approximation 
For each CJK model we obtained a set of the 

{(ui)k} and {sk} values, with i and k = l;.-,4 
(since d = 4 in CJK models). We used the it- 
eration procedure from [4]. Further we adjusted 
the scaling factors {sk} to improve the average 
quadratic approximation over the zk i 5 range. 

Further we check if the quadratic approxima- 
tion on which the Hessian method relies is valid 
in the considered Ax2 range for the CJK 2 model 
(for the CJK 1 model results are similar). In the 
left panel of Fig. 3 we present the comparison of 
the X2 dependence along each of four eigenvector 
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Figure 3. CJK 2 model. The left plot presents 
a comparison of the x2 dependence along each of 
the four eigenvector directions to the ideal Ax2 = 
z’ curve. In right plot analogous comparison for 
five random directions in {zi} space are shown. 
The ideal curve corresponds to Ax2 = C z” = z2 

directions (for the eigenvector Ic zi = 6ik) with the 
dependence of the ideal Ax2 = .z” curve. Only 
the line corresponding to the eigenvector 4 does 
not agree with the theoretical prediction. More- 
over it has a different shape than other lines which 
results from the scaling adjustment procedure. In 
the right panel of Fig. 3 an analogous compar- 
ison for the five randomly chosen directions in 
the {zi} space is shown. For each of directions 
cg=, z; = 2 z and the ideal curve corresponds to 
Ax2 = z2. In this case we observe greater devia- 
tions from the quadratic approximation. 

5.1.3. CJK 1 and CJK 2 parametrizations 
The errors calculated within the Hessian 

quadratic approximation are shown in table 2 for 
the standard requirement of Ax2 = 1. They 
should be compared with the slightly smaller er- 
rors calculated by MINUIT and shown in table 1. 

All parton distributions are further 
parametrized on a grid. The resulting programs 
can be found on the web-page 1191. 

5.1.4. Uncertainties of the CJK 2 parton 
densities 

In this section we discuss the uncertainties of 
the CJK 2 parton densities, the results obtained 
with CJK 1 model are very similar. 

In Figure 4 the up, strange and charm- 
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densities cal:ulated in 
FFNS~JK and CJK 1 models compared with the 
CJK 2 predictions. We plot for Q2 = 10 the 
qY(CJK2)/qY(Other) ratios of parton densities. 
Solid lines show the CJK 2 fit uncertainties for 
Ax2 = 25. 

quark and gluon densities calculated in 
FFNS~JK and CJK 1 models are compared 
with the CJK 2 predictions. We plot the 
@(CJK 2)/qY(Other models) ratios of the par- 
ton 47 densities calculated in the CJK 2 model 
to their values obtained with other models for 
Q2 = 10. Solid lines show the CJK 2 fit uncer- 
tainties for Ax2 = 25 computed with the (5’:) 
parametrizations. 

First we notice that predictions of all our mod- 
els for all considered parton distributions lie be- 
tween the lines of the CJK 2 uncertainties. This 
indicates that the choice of Ax2 = 25 agrees with 
the differences among our four models. We found, 
that the SaSlD results differ very substantially 
from the CJK 2 ones (not shown). 

As expected the up-quark distribution is the 
one best constrained by the experimental data 
while the greatest uncertainties are for the gluon 
densities. In the case of UT the Ax2 = 25 band 
widens in the small x region. Alike in the case of 
s- and c-quark uncertainties it shrinks at high x. 
On contrary the gluon distributions are least con- 
strained at the region of x -+ 1. All uncertainties 
become slightly smaller for higher Q2. 
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Table 2 
The parameters of the fits for CJK models with errors calculated in the Hessian quadratic approximation 

model n CY. B Nm 

CJK 1 2.146+‘.r2’ o,107 0.218+;:0,:4, 0.462t0,::;; 0.269+0,:$ 
CJK 2 1.934i”.112 o.103 0.299+;$,; 0.898:0,:;;4, 0.404+;:;!; 

for the standard requirement of AX2 = 1 

5.2. Lagrange method for the uncertainties 
of the parton distributions 

The Hessian method allows the computation of 
the parton density uncertainties in a very simple 
and effective way. However, the Hessian method 
relies on the assumption of the quadratic approx- 
imation, which as we have shown in the former 
section, is not perfectly preserved. 

There exist another method called the La- 
grange multiplier method which allows to find ex- 
act uncertainties independently on the quadratic 
approximation (for the proton structure used in 
[4],[7] and [S]). In this approach one makes a se- 
ries of fits on the quantity 

(21) 
each with a different but fixed value of the La- 
grange multiplier X. As a result one obtains a set 
of points (x”(X), X(X) which characterize the de- 
viation of the physical quantity X from its best 
value X0, for a corresponding deviation of the 
structure function global fit from its minimum 
AX2 = X”(X) - ~0. In each of this constrained 
(by the X parameter) fits we find the best value 
of X and the optimal x2. For X = 0 we return 
to the basic fit which gives {a:} parameters and 
allows to calculate the best X0 value. The great 
advantage of this approach lies in the fact that 
we do not assume anything about the uncertain- 
ties. The large computer time consuming of the 
process of the whole series of minimalizations is 
a huge disadvantage of the Lagrange method. 

5.3. Examples of cross-section uncertain- 
ties in Hessian and Lagrange methods 

Finally we made a comparison of the uncer- 
tainties obtained for the CJK 2 model in Hessian 
and Lagrange methods for two physical quanti- 
ties. For the sake of limitation of the computer 

time we chose two very simple examples: Fgc 
points measured by the OPAL Collaboration [17] 
and the yq -+ yq part of the cross-section for 
prompt photon production in yy. Results for the 
later case are presented in Fig. 5. 

6. Summary 

We enlarged and improved our previous anal- 
ysis [l]. We performed new global fits to the 
F,Y (2, Q”) data. Two additional models were 
analysed. New fits gave x2 per degree of freedom, 
1.5-1.7, about 0.25 better than the old results. All 
features of the CJKL model, such as heavy-quark 
distributions, good description of the LEP data 
on the Q2 dependence of the Fg and on Fzc are 
preserved. We checked that the gluon densities 
of our models agree with the Hl measurement of 
the GY distribution performed at Q2 = 74 GeV2 
[20], Fig. 6. 3 

An analysis of the uncertainties of the CJK par- 
ton distributions due to the experimental errors 
based on the Hessian method was performed for 
the very first time for the photon. We constructed 
sets of test parametrizations for both CJK mod- 
els. They allow to computate uncertainties of any 
physical quantity depending on the real photon 
parton densities. 

Parametrization programs for all models can be 
obtained from the web-page [19]. 

3Further comparison of our gluon densities to the Hl data 
cannot be performed in a fully consistent way, since the 
GRV LO proton and photon parametrization were used in 
the experiment in order to extract such gluon density. 
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Figure 5. CJK 2 model. Lagrange and Hessian 
method results for the direct resolved (DR) part 
of the yy + yq cross-section. The dashed lines 
represent the 10 to 30% deviation from the Hes- 
sian result. 
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Figure 6. Comparison of the gluon distribution 
obtained in the Hl measurement performed at 
Q2 = 74 GeV2 [20] with the predictions of the 
CJK, FFNSCJK models and GRV LO [3], GRS 
LO [14] and SaSlD [15] parametrizations with the 
OPAL measurement [ 171. 


