
On representation theory of topological
groups: from SU(2) through compact

groups to semisimple Lie groups

Jacek Kenig, Michał Pietruszka

September 2020



Contents

1 Introduction 2

2 SU(2) and its representation theory 3
2.1 Definition and properties of SU(2) . . . . . . . . . . . . . . . . . . 3
2.2 The Lie algebra of SU(2) and its properties . . . . . . . . . . . . . 6
2.3 Homomorphisms and isomorphisms . . . . . . . . . . . . . . . . . 8
2.4 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Representations of SU(2) . . . . . . . . . . . . . . . . . . . . . . . 13

3 Basic representation theory of compact groups 23
3.1 Compact groups and their representations . . . . . . . . . . . . . 23
3.2 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Basic theory of representations of semisimple Lie groups and
Borel-Weil theorem 32
4.1 Basic terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Some of the most important notions . . . . . . . . . . . . . . . . . 34
4.3 More on the structure of Lie algebras and Lie groups . . . . . . . 38
4.4 Borel-Weil theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Borel-Weil theorem for SU(2) . . . . . . . . . . . . . . . . . . . . 47

1



Chapter 1

Introduction

This work is a review article, which arose as a student project at the Faculty
of Physics at University of Warsaw. It’s main purpose is to present basic results
of the theory of representations of the group SU(2) and its Lie algebra, su(2), as
well as some fundamental properties and notions of the theory of representations
of general compact groups and semisimple groups. Although the very first part
of this work is focused on SU(2), the Lie algebra sl(2,C) will turn out to be
crucial in our presentation, because, as we shall see, it is naturally isomorphic
to the complexification of su(2), and passing to the complexified Lie algebra will
make our calculations easier. We focus on SU(2) for many reasons. Firstly, it is
important from the point of view of physics: the representations of complexified
su(2) appear in the theory of angular momentum in quantum mechanics, and
secondly, theory of its representations is rather trivial, but despite this fact, it
can still be seen as the very special (and the simplest) case of more general and
sophisticated theory. As noted above, this work is not a research paper and should
be treated as a script and a handy source of some information about the elements
of the theory. We will be mathematically rigorous in presenting the material, but
we skip most of proofs and give many references instead. We desired this work
to be friendly for both mathematics and physics students as well (even for those
physics students which are not keen on mathematics - yes, unfortunately, there are
many of them!), but we assume that the Reader is familiar with the definition of a
group, basics of analysis and linear algebra, especially the theory of matrices and
linear operators on Hilbert spaces. It would be also helpful for the Reader to be
familiar with basic notions of differential geometry, functional analysis, Lebesgue
integration and topology, but to understand most part of this work, this is not
necessary. There is, however, one exception. This is chapter 4, which is actually
the most essential part, and where we enter the world of algebraic geometry, and
where Borel-Weil theorem is formulated and proven. This is definitely not for
beginners.

We would like to thank our project managers, prof. Piotr Sołtan and dr hab.
Paweł Kasprzak, for Their appreciated help and patience.
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Chapter 2

SU(2) and its representation theory

This chapter is a warm-up, and it is entirely focused on SU(2). We start with
the definition of SU(2) and write down its basic properties, and then we come to
its Lie algebra su(2) and its complexification, sl(2,C). Then we formulate defi-
nitions of homomorphism and finite-dimensional representations of SU(2), su(2)
and sl(2,C). We introduce the notion of equivalence of representations and give
examples of how one uses given representations to construct new ones. Then we
find finite-dimensional irreducible representations of SU(2) and claim that these
are all irreducible finite-dimensional representations of SU(2), up to equivalence.
We end this chapter by analyzing the structure of finite-dimensional, irreducible
representations of sl(2,C), which are in one-to-one correspondence with finite-
dimensional, irreducible (complex) representations of SU(2). In our presentation
of the material in this chapter, we mainly follow [5].

2.1 Definition and properties of SU(2)
Definition 2.1.1. SU(2) is the set of all 2 × 2 unitary matrices with determinant
one.

We say that n × n complex matrix U is called unitary if and only if UU∗ =
U∗U = 1, which is equivalent to U∗ = U−1, where, by definition, U∗ is an adjoint1
of U : (U∗)ij = (U)ji (matrix transpose + complex conjugate of the entries). An
equivalent definition says that n× n complex matrix U is unitary if and only if

〈Ux|Uy〉 = 〈x|y〉 (2.1)

for all x, y ∈ Cn, where 〈·|·〉 : Cn×Cn → C is the standard inner product in Cn:

〈x|y〉 =
n∑
i=1

xiyi. (2.2)

If (2.1) holds for n × n complex matrix U and all x, y ∈ Cn, then we say that
U preserves inner product, or that inner product is invariant under the action of

1U∗ is also called Hermitian conjugate of U . Physicists often write U† in place of U∗.
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U . Moreover, it can be shown that n × n complex matrix is unitary if and only
if its column vectors are orthonormal with respect to the standard inner product
on Cn (2.2).

Definition 2.1.2. The group of n× n invertible complex (real) matrices is called
general linear group and it is denoted GL(n,C) (GL(n,R)).

Since SU(2) is, by definition, the set of those 2 × 2 unitary matrices which
have determinant one, all matrices in SU(2) are invertible, and SU(2) ⊂ GL(2,C).
Moreover, it can be easily seen that if U ∈ SU(2), then U−1 has determinant
one and preserves inner product, so U−1 ∈ SU(2). The same result holds for the
product of two matrices, namely, if A,B ∈ SU(2), then AB ∈ SU(2). Of course,
1 ∈ SU(2). Thus we have the following:

Theorem 2.1.1. SU(2) is a subgroup of GL(2,C) and, in particular, it is itself
a group.

The name "SU" refers to "special (determinant one) unitary", hence SU(2)
(or SU(n), in general) is often called special unitary group. We know so
far that SU(2) is a group, but in fact we can show even more. Namely, if we
identify M(k,C) (the set of all k × k complex matrices with k ∈ N) with the
space Ck2 ∼= R2k2 , then we can use the usual topological structure on Ck2 ∼= R2k2

and introduce the notion of convergence: a sequence of matrices An ∈ M(k,C)
converges to some matrix A ∈ M(k,C) if and only if, for all 1 ≤ i, j ≤ k,
(An)ij converges to (A)ij, that is, entries of the sequence An converge to the
corresponding entries of A (standard convergence of complex numbers). In this
case, we write simply An → A. Now, if Un is a sequence of matrices in SU(2),
and Un → U , then one can show that U ∈ SU(2), because the inner product (2.2)
and determinant are continuous.

Definition 2.1.3. A matrix Lie group2 is a subgroup H of GL(n,C) with the
property that if An ∈ H and An → A for some matrix A, then either A ∈ H,
or A /∈ GL(n,C). In other words, H is a matrix Lie group if it is a subgroup
and a closed subset of GL(n,C) (this is not the same as saying that it is closed in
M(n,C)).

Note that SU(2) is thus a matrix Lie group as a subgroup of GL(2,C), but
with the stronger property that is required from a subgroup to be matrix Lie
group: if SU(2) 3 Un → U , then always U ∈ SU(2). Let us now list some
topological properties of SU(2). For proofs, see for example [5] and [6]. They are
rather elementary, but, as we shall see, they will play a crucial role in our study
and classification of irreducible representations of SU(2), that’s why we list them
below.

2Some authors, for example [12], call a matrix Lie group simply a matrix group. We use the
name "matrix Lie group" to emphasize that a matrix Lie group is a Lie group, see Chapter 3,
especially Proposition 3.2.1.
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Important topological properties of SU(2):

1. SU(2) is a closed subset of C4 ∼= R8.
This is precisely the result obtained in the above discussion.

2. SU(2) is a bounded subset of C4 ∼= R8.
Recall that ∀U ∈ SU(2) the column vectors of U are orthonormal, so each
component of each vector has absolute value no greater than one. This
means that SU(2) is bounded.

3. SU(2) is a compact subset of C4 ∼= R8.
Recall that we say that a subset of a topological space is compact if its
every open cover has a finite subcover. The above property is in fact a
corollary from the previous two properties, since it is a standard result from
elementary analysis that a subset of Cn ∼= R2n is compact if and only if it is
closed and bounded.

4. SU(2) is homeomorphic to 3-dimensional real unit sphere S3 ⊂ R4, S3 =
{(x1, x2, x3, x4) ∈ R4 | x2

1 + x2
2 + x2

3 + x2
4 = 1}. This result basically comes

from solving five equations: detU = 1 and UU∗ = 1 for arbitrary complex
2 × 2 matrix U . It turns out that U ∈ SU(2) if and only if it is of the form

U =

(
α β

−β α

)
,

where α, β ∈ C and |α|2+|β|2= 1. By putting α = x1 +ix2 and β = x3 +ix4,
we obtain x2

1 + x2
2 + x2

3 + x2
4 = 1 The map

SU(2) 3 U =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
7→ (x1, x2, x3, x4) ∈ S3 (2.3)

is clearly a bijection. See [6] for a proof that (2.3) is actually a homeomor-
phism3 (that is, it is continuous and the inverse map is also continuous).
The idea of the proof is to rewrite U from (2.3) as

SU(2) 3 U =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
= x · Σ,

where x = (x1, x2, x3, x4) ∈ S3 (that is, ‖x‖R4 = 1) and Σ = (1, iσ3, iσ2, iσ1)
with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.4)

Matrices σ1, σ2, σ3 are called Pauli matrices, they arise naturally in the
theory of spin in quantum mechanics.

3It turns out that this map is even the diffeomorphism when one treats SU(2) as a differen-
tiable manifold and S3 as a differentiable submanifold embedded in R4.
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5. SU(2) is connected and path-connected.
By connectedness we mean that SU(2) cannot be divided into two disjoint
non-empty open sets, and by path-connectedness we mean that for all A,B ∈
SU(2), there exists a continuous map γ : R ⊃ [a, b] → SU(2), such that
γ(a) = A and γ(b) = B. In other words, every two elements from SU(2) can
be connected to each other by a continuous path lying in SU(2). Moreover,
it can be shown that every matrix Lie group (hence also SU(2)) is connected
if and only if it is path-connected.

6. SU(2) is simply connected.
By simple connectedness we mean that every loop in SU(2) may be con-
tracted continuously to an element of SU(2), if we treat SU(2) as a subset
of C4 ∼= R8. Property 4 says that SU(2) is topologically equivalent to 3-
dimensional sphere S3 ⊂ R4, which is simply connected.

We will mention more properties of SU(2) later. Now, let us turn to the general
definition of Lie algebra of a matrix Lie group and to the Lie algebra of SU(2).

2.2 The Lie algebra of SU(2) and its properties
Definition 2.2.1. Given a matrix Lie group G, the Lie algebra of G, denoted
g, is a set of matrices X such that etX ∈ G ∀t ∈ R.

In the above definition, eX (or exp(X)) is the exponential of a matrix X. It is
given by the usual power series:

eX =
∞∑
n=0

Xn

n!
. (2.5)

Here are some properties of the matrix exponential. Again, see [5] for proofs and
discussion of this issue as well as for a proof of convergence of matrix exponential.

Theorem 2.2.1. Let X, Y be arbitrary n× n matrices.

1. e0 = 1 (here 0 is the zero matrix).

2. eX is invertible and (eX)−1 = e−X .

3. If Z is invertible matrix, then eZXZ−1
= ZeXZ−1.

4. Define the matrix commutator [·, ·] to be [X, Y ] = XY −Y X. If [X, Y ] =
0 (we say that X and Y commute) then eX+Y = eXeY = eY eX . In general,
it is not true that eX+Y = eXeY = eY eX , unlike in the case of complex
numbers which the reader is familiar with.

5. For any α, β ∈ C we have e(α+β)X = eαXeβX .
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6. eX+Y = limn→∞(e
X
n e

Y
n )n. This is called the Lie product formula and it is

a special, finite-dimensional case of the Trotter product formula in operator
theory. See, for example, [11].

7. det(eX) = eTr(X).

8. eX is a continuous function of X and d
dt

∣∣
t=0

etX = X.

9. d
dt

∣∣
t=0

(
etXY e−tX

)
= [X, Y ], the commutator of X and Y .

Let us go back to the Lie algebra g of a matrix Lie group G. We defined it to
be: g = {X | etX ∈ G ∀t ∈ R}. Note that we require t to be real, not complex,
even if X is a complex matrix and G is a group of complex matrices, and that if
G is a group of n×n matrices, then g is a set of n×n matrices. It turns out that
g is a real vector space, which is closed under taking matrix commutator,
that is, if X, Y ∈ g, then [X, Y ] ∈ g. Moreover, for any A ∈ G and any X ∈ g, we
have AXA−1 ∈ g (see property 3. of the matrix exponential). The commutator
is bilinear, skew-symmetric ([X, Y ] = −[Y,X]) and the following identity, called
Jacobi identity, holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (2.6)

We will now determine the Lie algebra of SU(2), which is denoted su(2). Recall
the property det(eX) = eTr(X). Clearly, if Tr(X) = 0, then det(etX) = 1 for all real
t. On the other hand, if ∀t ∈ R we have det(etX) = 1, then ∀t ∈ R also etTr(X) = 1,
so ∀t ∈ R: tTr(X) = 2iπn for some n ∈ Z, and this is possible only if Tr(X) = 0.
Thus the condition Tr(X) = 0 is necessary and sufficient for det(etX) = 1, so all
X in su(2) must have trace zero. But this is not the end, for if U ∈ SU(2), then
UU∗ = 1. Take X ∈ g. We see that we must have

etX
∗

=
(
etX
)∗

=
(
etX
)−1

= e−tX ,

where the first equality is obtained by taking adjoints term by term, and the last
equality comes from property 2. of the matrix exponential. The sufficient condi-
tion is that X∗ = −X, but if the above holds for all real t, then by differentiating
at the point t = 0 and using property 8., we see that this is also necessary.

Definition 2.2.2. The Lie algebra of SU(2), denoted su(2), is the set of 2 × 2
complex matrices given by

su(2) = {X ∈M(2,C) | Tr(X) = 0, X∗ = −X}. (2.7)

It is a simple matter to check that this is a real vector space which is closed
under matrix commutator. Using similar techniques we can determine the Lie
algebras u(2) and sl(2,C) of the matrix Lie groups U(2) of 2× 2 unitary matrices
and SL(2,C) of matrices with determinant one, respectively. We have:

u(2) = {X ∈M(2,C) | X∗ = −X}
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and
sl(2,C) = {X ∈M(2,C) | Tr(X) = 0}. (2.8)

In particular, sl(2,C) will play a crucial role in our analysis, as we shall finally
see.

2.3 Homomorphisms and isomorphisms
Definition 2.3.1. Let G,H be arbitrary groups. A map Φ : G → H is called
a group homomorphism if ∀g1, g2 ∈ G we have Φ(g1g2) = Φ(g1)Φ(g2). If in
addition, Φ is a bijective map, it is called an isomorphism of groups G and H.
If there exists an isomorphism between groups G and H, then they are said to be
isomorphic, and we denote this property by G ∼= H. An isomorphism of a group
to itself is called an automorphism.

Two groups which are isomorphic should be thought of as being the same group.
For any group G, it can be trivially checked that the set Aut(G) of automorphisms
of G is itself a group with the group product being composition of maps. The
following proposition reveals further properties of group homomorphisms.

Proposition 2.3.1. Let G,H be arbitrary groups, eG the identity of G and eH
the identity of H, and let Φ : G → H be homomorphism. Then Φ(eG) = eH and
for all g ∈ G: Φ(g−1) = Φ(g)−1.

Proof. Take g ∈ G. We have

eH = Φ(g)−1Φ(g) = Φ(g)−1Φ(geG) = Φ(g)−1Φ(g)Φ(eG) = Φ(eG).

In light of this result we can compute eH = Φ(eG) = Φ(g−1g) = Φ(g−1)Φ(g), and
using the standard theorem from group theory which says that if an element of
a group multiplied by another element from left or right side gives the identity,
then one of these elements is the unique inverse of the other (see, for example, [5],
Proposition 1.4.), we conclude that Φ(g−1) = Φ(g)−1.

�

In the case of matrix Lie groups, which have the natural notion of convergence,
we demand an additional property:

Definition 2.3.2. Let G,H be matrix Lie groups. A map Φ : G → H is called
matrix Lie group homomorphism if Φ is a group homomorphism and Φ is
continuous. A matrix Lie group homomorphism is called matrix Lie group
isomorphism if it is a bijective map and the inverse map is continuous. Matrix
Lie group isomorphism of a matrix Lie group to itself is called matrix Lie group
automorphism. If there exists a matrix Lie group isomorphism between two
matrix Lie groups G and H, then they are said to be isomorphic, and this is
denoted G ∼= H.
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We now turn to the corresponding definitions for Lie algebras of matrix Lie
groups.

Definition 2.3.3. Let G,H be matrix Lie groups, and g, h the corresponding Lie
algebras. A map φ : g → h is said to be Lie algebra homomorphism if φ is
real linear map and

φ([X1, X2]) = [φ(X1), φ(X2)] (2.9)

for all X1, X2 ∈ g. If in addition φ is a bijection, then it is called a Lie algebra
isomorphism, and we say that g and h are isomorphic. This property is denoted
by g ∼= h. One defines a Lie algebra automorphism of g to be a Lie algebra
isomorphism from g to itself.

Note that the commutator on the left-hand side of (2.9) is a commutator of
elements from g, but the commutator on the right-hand side - of elements from
h, but we denoted them by the same symbol because, in the case of matrices, this
commutator is always [A,B] = AB −BA.

Definition 2.3.4. The complexification of su(2) (as a real vector space) is
the complex vector space suC(2) = su(2) ⊕ su(2), with the scalar multiplication
C× suC(2)→ suC(2) defined by

(x+ iy)(X1, X2) = x(X1, X2) + y(−X2, X1),

for x, y ∈ R and X1, X2 ∈ su(2).

Define the commutator on suC(2), denoted by the same symbol [·, ·], as

[(X1, X2), (Y1, Y2)] = ([X1, Y1]− [X2, Y2], [X1, Y2] + [X2, Y1]). (2.10)

It is straightforward to show that it is C-bilinear, skew-symmetric and the Jacobi
identity (2.6) holds. The above formulas take more intuitive forms when one
defines (X1, X2) ∈ suC(2) to be the formal linear combination X1 + iX2. One
often writes suC(2) = su(2)⊕ isu(2) for that matter. The above arguments show
that suC(2), as a complex vector space, can be given a complex algebra structure
with the product given by (2.10). It is an example of algebraic structure called
complex Lie algebra.

Despite the fact that sl(2,C) is a real vector space as a Lie algebra of a matrix
Lie group (see (2.8)), it may easily be given a complex vector space structure
since matrix with trace zero multiplied by a complex number still has trace zero.
Moreover, the matrix commutator [X, Y ] = XY −Y X is clearly C-bilinear. Thus
sl(2,C) is naturally a Lie algebra over C (complex Lie algebra).

In further analysis, we will need the following theorem.

Theorem 2.3.1. suC(2) ∼= sl(2,C).

9



Proof. Rewrite X ∈ sl(2,C) as X = X1 + iX2, where X1 = (X − X∗)/2 and
X2 = (X + X∗)/(2i). Note that both X1, X2 ∈ su(2), and it is easy to see that
this decomposition is unique. Thus suC(2) ∼= sl(2,C) as a complex vector space,
but this is in fact an isomorphism of (complex) Lie algebras since one can show
that in both cases (2.10) holds.

�

2.4 Representations
Definition 2.4.1. Let H be a finite-dimensional, complex Hilbert space. Denote
the set of all linear operators on H by gl(H), and consider the complex Lie algebra
structure on gl(H). A finite-dimensional representation of su(2) on H is
the R-linear Lie algebra homomorphism π1 : su(2) → gl(H), such that for all
X ∈ su(2) we have π(X)∗ = −π(X). A finite-dimensional representation of
sl(2,C) on H is the C-linear Lie algebra homomorphism π2 : sl(2,C) → gl(H)
with π(X)∗ = −π(X) for all X ∈ sl(2,C).

Proposition 2.4.1. Every finite-dimensional representation π of su(2) has a
unique extension to the (C-linear) representation of suC(2) ∼= sl(2,C), which will
be also denoted π. Then, as a representation of sl(2,C), it satisfies π(X + iY ) =
π(X) + iπ(Y ) for all X, Y ∈ su(2).

We will not prove the above proposition, but it will be used in the next section.
We now turn to the definition of a representation of SU(2).

Definition 2.4.2. A finite-dimensional representation of SU(2) is a matrix
Lie group homomorphism Π : SU(2) → U(H), where H is a finite-dimensional,
complex Hilbert space and U(H) is a group of unitary operators on H.

It is possible to consider a finite-dimensional representation acting on general
finite-dimensional, real or complex vector space V , but in the case of SU(2) and
su(2) (and general compact topological groups, see Chapter 3) it is desirable to
restrict the definition to some complex, finite-dimensional Hilbert space H. The
common abuse of terminology, which takes place in many lectures and textbooks,
refers to H as to the representation, without an explicit reference to maps π or
Π. Although convenient in many situations (especially when one deals with ir-
reducible representations, see Definition 2.4.3 below), this terminology may be
confusing for some readers, so we try to use it as rarely as possible. The num-
ber n = dimC(H) is also called a dimension or degree of a representation.
Throughout this chapter, we will sometimes denote the finite-dimensional repre-
sentation shortly by (π,H) or (Π,H), and H, the so-called action space, will
always be finite-dimensional, complex Hilbert space for that matter, just as stated
in Definitions 2.4.1 and 2.4.2. Of particular interests to us will be irreducible rep-
resentations:
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Definition 2.4.3. Let (θ,H) be the finite-dimensional representation of A, where
A is SU(2), su(2) or sl(2,C). A subspace H0 ⊂ H is called invariant (under the
action of A via the representation θ) if θ(X)ψ ∈ H0 for all ψ ∈ H0 and all X ∈ A.
An invariant subspace is non-trivial (or proper) if H0 6= {0} and H0 6= H. A
representation θ is called irreducible, if H has no non-trivial invariant subspaces.
In other words, the only non-zero invariant subspace of H is the whole H.

It is important to note that H is complex Hilbert space space by definition, and
we are talking only about complex invariant subspaces in this case.

Assume that (θ,H) is a finite-dimensional representation of A, as in the above
definition. Assume that θ is not irreducible. By definition, there exists H0 ⊂ H
such thatH0 6= {0} andH0 6= H, and such that θ(X)ψ ∈ H0 for all ψ ∈ H0 and all
X ∈ A. But then, the restriction θ|H0 defined by the formula: θ|H0(X)ψ = θ(X)ψ
for all X ∈ A and all ψ ∈ H0 is itself a representation of A, acting on H0. If
there is no non-trivial invariant H0, then θ cannot be restricted in such a way (of
course, it can still be restricted to the subspace {0} on which it acts trivially, but
we find this case uninteresting). Hence the name "irreducible". This allow us to
think of an irreducible representations as of building blocks, or atoms of the world
of representations (gr. atomos means "uncuttable"). Fortunately, as we shall see
momentarily, if H0 ⊂ H is invariant under the action of some finite-dimensional
representation of SU(2), and it is also non-triavial, there exists invariant and
non-trivial subspace H1 ⊂ H such that H = H0 ⊕ H1. This result has far-
reaching consequences, but before we establish them, we present two methods of
constructing new representations from the old ones. Firstly, we consider direct
sums.

Definition 2.4.4. Let Π1,Π2, ...,Πk be finite-dimensional representations of SU(2)
acting on H1,H2, ...,Hk, respectively. Define Π1⊕Π2⊕ · · · ⊕Πk to be a new rep-
resentation of SU(2) acting on H1 ⊕H2 ⊕ · · · ⊕ Hk by the formula

Π1 ⊕ Π2 ⊕ · · · ⊕ Πk(g)(ψ1, ψ2, ..., ψk) = (Π1(g)ψ1,Π2(g)ψ2, ...,Πk(g)ψk), (2.11)

with ψi ∈ Hi and g ∈ SU(2). Π1 ⊕ Π2 ⊕ · · · ⊕ Πk is called the direct sum
of representations Π1,Π2, ...,Πk. Similarly, let g be su(2) or sl(2,C), and let
π1, π2, ..., πk be representations of g acting on H1,H2, ...,Hk, respectively. Then
we can define π1 ⊕ π2 ⊕ · · · ⊕ πk to be a new representation of g acting on H1 ⊕
H2 ⊕ · · · ⊕ Hk via

π1 ⊕ π2 ⊕ · · · ⊕ πk(X)(ψ1, ψ2, ..., ψk) = (π1(X)ψ1, π2(X)ψ2, ..., πk(X)ψk), (2.12)

where ψi ∈ Hi and X ∈ g. This new representation is called the direct sum of
representations π1, π2, ..., πk.

Recall that, given two finite-dimensional Hilbert spaces H1 and H2, and op-
erators A,B acting on H1,H2 respectively, then we can define tensor product
of A and B, denoted A ⊗ B, to be the operator acting on H1 ⊗ H2 given by
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(A ⊗ B)(ψ1 ⊗ ψ2) := (Aψ1 ⊗ Bψ2) for ψ1 ∈ H1 and ψ2 ∈ H2. This formula may
be easily extended to the cases of tensor products of more than two vector spaces.
See, for example, [11] for discussion of this and for generalization to bounded (and
unbounded) operators on infinite-dimensional Hilbert spaces.

Definition 2.4.5. Let Π1,Π2, ...,Πk be representations of SU(2) acting on
H1,H2, ...,Hk, respectively. Define Π1⊗Π2⊗···⊗Πk to be the representation acting
on H1 ⊗H2 ⊗ · · · ⊗ Hk called tensor product of representations Π1,Π2, ...,Πk,
given by

Π1 ⊗ Π2 ⊗ · · · ⊗ Πk(g) = Π1(g)⊗ Π2(g)⊗ · · · ⊗ Πk(g) (2.13)

Now let g be su(2) or sl(2,C), and let π1, π2, ..., πk be representations of g acting
on H1,H2, ...,Hk, respectively. Then define tensor product of representations
π1, π2, ..., πk, denoted π1 ⊗ π2 ⊗ · · · ⊗ πk, as the new representation acting on
H1 ⊕H2 ⊕ · · · ⊕ Hk and given by

π1 ⊗ π2 ⊗ · · · ⊗ πk(X) = π1(X)⊗ 1⊗ · · · ⊗ 1 + 1⊗ π2(X)⊗ 1⊗ · · · ⊗ 1

+ · · ·+ 1⊗ 1⊗ · · · ⊗ 1⊗ πk(X).

(2.14)

Let us now introduce extremely important notion of equivalence of representa-
tions.

Definition 2.4.6. Let A be SU(2), su(2) or sl(2,C), and let θ1, θ2 be repre-
sentations of A acting on H1,H2, respectively. If there exists unitary operator
U : H1 → H2 such that, for all X ∈ A we have θ1(X) = U∗θ2(X)U , then U is
called an (uunitary) isomorphism of representations θ1 and θ2, and we say that
θ1 and θ2 are equivalent (or isomorphic), which is denoted θ1

∼= θ2.

Two representations which are isomorphic should be thought of as being essen-
tially the same representation.

Definition 2.4.7. A finite-dimensional representation of A acting on H, where A
is SU(2), su(2) or sl(2,C), is called completely reducible, if given an invariant
subspace H1 of H, there is an invariant subspace H2 ⊂ H such that H = H1⊕H2.

Theorem 2.4.1.

1. Let (Π,H) be a finite-dimensional representation of SU(2). Then Π is com-
pletely reducible.

2. A finite-dimensional completely reducible representation of SU(2), su(2) or
sl(2,C) is equivalent to the direct sum of irreducible representations.
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Proof of 1. By definition, there exists an inner product 〈·|·〉 on H which is
invariant under Π. Suppose H1 is an invariant subspace of H. Define H2 = H⊥1 .
Then, because H is a Hilbert space, we have H = H1 ⊕ H2. Take ψ2 ∈ H2 and
ψ1 ∈ H1 and compute

〈ψ1|Π(g)ψ2〉 = 〈Π(g−1)ψ1|Π(g−1)Π(g)ψ2〉 = 〈Π(g−1)ψ1|ψ2〉,

but the right-hand side is 0 since H1 is invariant by assumption. That means
Π(g)ψ2 ∈ H2 for all g ∈ SU(2), and it follows that H2 is also invariant.

We skip the proof of 2. It is actually nothing more than a contemplation of
definitions and reasoning by induction on dimension of a representation space.

�

Definition 2.4.8. Given a representation Π of SU(2), we define the character
χΠ : SU(2)→ C of Π by the formula

χΠ(g) := Tr(Π(g)) (2.15)

for g ∈ SU(2).

Definition 2.4.9. Let H be separable, infinite-dimensional, complex Hilbert space.
An infinite-dimensional representation of SU(2) is a strongly continuous4
group homomorphism Π : SU(2) → U(H), where U(H) is the group of unitary
operators on H.

The corollary from Chapter 3 will be that every finite-dimensional representa-
tion of SU(2) is equivalent to a direct sum of finite-dimensional irreducible repre-
sentations, and this decomposition is unique, up to equivalence. Moreover, every
finite-dimensional representation of SU(2) is determined uniquely, up to equiv-
alence, by its character. We will see also that every properly defined infinite-
dimensional representation of SU(2) is also completely reducible, and hence is
equivalent to infinite direct sum of finite-dimensional irreducible representations.
It turns out that if a representation of SU(2) is irreducible, then it must be finite-
dimensional. Thus, finite-dimensional irreducible representations are indeed kind
of building blocks, from which all representations of SU(2) are build. Our next
goal is to classify all finite-dimensional irreducible representations of SU(2), up to
equivalence.

2.5 Representations of SU(2)
Let Vm be the complex vector space of homogeneous polynomials in two complex

variables z := (z1, z2) ∈ C2 of degree m for any non-negative integer m. If f ∈ Vm,
then f is of the form

f(z1, z2) = a0z
m
1 + a1z

m−1
1 z2 + a2z

m−2
1 z2

2 + · · ·+ amz
m
2 , (2.16)

4Strong continuity means that if SU(2) 3 Un → U ∈ SU(2), then ‖Π(Un)ψ − Π(U)ψ‖ → 0
for all ψ ∈ H.
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where ai ∈ C and hence dimC(Vm) = m + 1. For p, q ∈ Vm, the following inner
product

〈p|q〉 =

∫
|z1|2+|z2|2=1

p(z1, z2)q(z1, z2)dΩ(z1, z2), (2.17)

where Ω is the Lebesgue measure on a unit sfere in C2, provides the Hilbert space
structure on Vm.

Pick U ∈ SU(2) and consider the transformation on Vm given by the formula

Πm(U)f(z) = f(U−1z), (2.18)

where, on the right-hand side of the above equation, U−1 acts on a column vector
z = (z1, z2)T ∈ C2. Πm(U) is clearly C-linear for all U ∈ SU(2). Moreover, since

U−1z =

(
(U−1)11 (U−1)12

(U−1)21 (U−1)22

)(
z1

z2

)
=

(
(U−1)11z1 + (U−1)12z2

(U−1)21z1 + (U−1)22z2

)
we have

Πm(U)f(z1, z2) =
m∑
k=0

ak[(U
−1)11z1 + (U−1)12z2]m−k[(U−1)21z1 + (U−1)22z2]k

=
m∑
k=0

m−k∑
i=0

k∑
j=0

ak

(
m− k
i

)(
k

j

)
[(U−1)11z1]m−k−i[(U−1)21z1]k−j×

× [(U−1)12z2]i[(U−1)22z2]j,

and it is easy to see that i + j does never exceed m, thus the obtained object is
again a homogeneous polynomial of the form (2.16). Now, for U1, U2 ∈ SU(2), we
have

Πm(U1)[Πm(U2)f ](z) = [Πm(U2)f ](U−1
1 z) = f(U−1

2 U−1
1 z) = f((U1U2)−1z)

= Πm(U1U2)f(z),

thus Πm is a finite-dimensional, complex representation: Πm : SU(2)→ GL(Vm).
Moreover, since the Lebesgue measure Ω in (2.17) coincides with the so-called
Haar measure of SU(2) (see Chapter 3), it turns out that Πm is unitary with
respect to the inner product (2.17).

Theorem 2.5.1. Representations Πm described above are irreducible for any in-
teger m ≥ 0.

The following lemma, which is a special case of more general theorem, will help
us prove Theorem 2.5.1:

Lemma 2.5.2. (Shur’s lemma) A unitary representation Φ of a Lie group G,
acting on a finite-dimensional, complex vector space V is irreducible if and only
if the only linear operators on V , which commute with Φ(g) for all g ∈ G are
operators of the form c1 with c ∈ C.
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See [8] for general case and proof.

Proof of Theorem 2.5.1 In the proof, we follow [7]. Pick a constant a ∈ C
from the unit circle: |a|= 1. Then define and element Ua ∈ SU(2) by

Ua =

(
a 0
0 a−1

)
.

Set fk(z1, z2) = zk1z
m−k
2 for k = 0, 1...,m. This is a basis of Vm. Pick A such that

it commutes with all the Πm(U)’s. We have

Πm(Ua)fk(z) = fk(U
−1
a z) = (a−1z1)k(az2)m−k = am−2kzk1z

m−k
2 = am−2kfk(z),

so fk is an eigenvector for Πm(Ua) for all 0 ≤ k ≤ m. On the other hand

Πm(Ua)Afk(z) = AΠm(Ua)fk(z) = Aam−2kfk(z) = am−2kAfk(z)

by definition of A. We can choose a so that the constants am−2k are distinct. If
so, the eigenspaces of Πm(Ua) must all have dimension one and are spanned by
fk’s. But from the above we see that Afk is also the eigenvector of Πm(Ua) with
the same eigenvalue as fk, so we must have Afk ∈ span{fk}, that is, Afk = ckfk
for all k and some ck ∈ C. Now, for t ∈ [−π, π[⊂ R, consider Ut ∈ SU(2) given
by:

Ut =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Clearly

U−1
t =

(
cos(t) sin(t)
− sin(t) cos(t)

)
.

Let us now compute AΠm(Ut)fm(z). Since fm(z1, z2) = zm1 :

AΠm(Ut)fm(z) = Afm(U−1
t z) = A(cos(t)z1 + sin(t)z2)m

= A
m∑
k=0

(
m

k

)
cos(t)kzk1 sin(t)m−kzm−k2

= A

m∑
k=0

(
m

k

)
cos(t)k sin(t)m−kzk1z

m−k
2

=
m∑
k=0

(
m

k

)
cos(t)k sin(t)m−kAfk(z1, z2)

=
m∑
k=0

(
m

k

)
cos(t)k sin(t)m−kckfk(z1, z2).

(2.19)

On the other hand,

Πm(Ut)Afm(z) = cmfm(U−1
t z) = cm(cos(t)z1 + sin(t)z2)m

=
m∑
k=0

(
m

k

)
cos(t)k sin(t)m−kcmfk(z1, z2).

(2.20)
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But (2.19) and (2.20) should be equal because A commutes with Πm(Ut). It can
be shown that functions t 7→ cos(t)k sin(t)m−k are linearly independent, so we can
compare coefficients term by term. We conclude that, for all 0 ≤ k ≤ m, we have
ck = cm and A = cm1.

�

Theorem 2.5.3. Every irreducible representation of SU(2) is equivalent to one
and only one of the Πm’s.

The proof requires a deeper insight into the theory of characters, see [7].

The above theorems say that we are essentially done, as far as theory of rep-
resentations of SU(2) is concerned, because we know that every irreducible rep-
resentation of SU(2) must be finite-dimensional, and we know that every finite-
dimensional representation of SU(2), and every infinite-dimensional representation
of SU(2) acting on separable Hilbert space can be decomposed as a direct sums
(infinite direct sum in infinite-dimensional case) of irreducible representations,
and that this decomposition is unique up to equivalence.

Let us now turn to su(2), the Lie algebra of SU(2). The following theorem is
crucial.

Theorem 2.5.4. Let (Π,H) be the finite-dimensional representation of SU(2).
Then there exists a unique finite-dimensional representation π : su(2) → gl(H)
corresponding to Π, such that the following identity holds for all X ∈ su(2):

Π(eX) = eπ(X). (2.21)

Moreover, π(gXg−1) = Π(g)π(X)Π(g)−1 for all X ∈ su(2) and for all g ∈ SU(2),
and π can be computed explicitly by the formula:

π(X) =
d

dt

∣∣∣∣
t=0

Π(etX) (2.22)

for all X ∈ su(2).

Theorem 2.5.4 says that every finite-dimensional representation of SU(2) gives
rise a representation of su(2). In fact, this result can be extended to any matrix
Lie group homomorphism between any matrix Lie group, which, on the other
hand, is itself a special case of more general theorem from theory of Lie groups.
For a proof in matrix Lie group case, see [5], but the proof is based on the notion
of the so-called one parameter group, which we have not defined.
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In the case of SU(2), the converse of Theorem 2.5.4 is also true:

Theorem 2.5.5. If π : su(2) → gl(H) is a representation of su(2), then there
exists a representation Π of SU(2) acting on the same space, such that Π and π
are related as in Theorem 2.5.4. Moreover, while passing from π to Π (or from
Π to π) in this way, equivalence and irreducibility are preserved, namely, Π is
irreducible if and only if π is irreducible, and representations Π1,Π2 of SU(2) are
equivalent if and only if the corresponding representations of su(2) are equivalent.

The above theorem is true due to the fact that SU(2) is connected and simply
connected.

We can now use Theorem 2.5.4 to obtain the corresponding representations πm
of the Lie algebra su(2). Following (2.22), for any X ∈ su(2) we have

πm(X)f(z) =
d

dt

∣∣∣∣
t=0

Πm(etX)f(z) =
d

dt

∣∣∣∣
t=0

f(e−tXz).

For z = (z1, z2), let z(t) = (z1(t), z2(t)) be the curve in C2 given by z(t) = e−tX(z).
Using the chain rule and the fact that dz/dt(0) = −Xz, we see that

πm(X)f(z1, z2) = − ∂

∂z1

f(z1, z2)(X11z1 +X12z2)− ∂

∂z2

(X21z1 +X22z2). (2.23)

It is a simple matter to check that the right-hand side of (2.23) is again an ele-
ment of Vm. Now, we know from Proposition 2.4.1 that every finite-dimensional
representation of su(2) extends uniquely to a C-linear representation of suC(2) '
sl(2,C). If we extend formula (2.23) to sl(2,C), then it is clearly C-linear rep-
resentation, and this extension is unique. Thus, from now on, we regard πm’s as
representations of sl(2,C). Now, pick the following basis of sl(2,C) (as a complex
vector space):

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
. (2.24)

From (2.23) we obtain

πm(H) = −z1
∂

∂z1

+ z2
∂

∂z2

, πm(X) = −z2
∂

∂z1

, πm(Y ) = −z1
∂

∂z2

. (2.25)

Theorem 2.5.6. The representation πm of sl(2,C) is irreducible.

Since πm is irreducible as a representation of su(2) (see Theorem 2.5.5), the
proof of theorem 2.5.6 is actually a corollary from the following proposition

Proposition 2.5.1. Let π be a finite-dimensional representation of sl(2,C). Then
π is irreducible as a representation of su(2) if and only if it is irreducible as a
representation of sl(2,C).
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Proof. If π is irreducible as a representation of su(2), and W is invariant un-
der the action of sl(2,C), then W must be invariant also under the action of
su(2) ⊂ sl(2,C), so W must be trivial invariant subspace. Thus π is irreducible
as a representation of sl(2,C). Conversely, suppose that π is irreducible as a rep-
resentation of sl(2,C), and W is invariant under the action of su(2). Then W will
be invariant under the action of π(X + iY ) = π(X) + iπ(Y ) for all X, Y ∈ su(2),
but every element of sl(2,C) is of this form, so W is again trivial. This means
that π is irreducible as a representation of su(2).

�

For educational reasons, we present alternative, purely algebraic proof of Theorem
2.5.6.

Proof. Applying (2.25) to basis vector fk(z1, z2) = zk1z
m−k
2 , we easily obtain

πm(H)fk = −kzk1zm−k2 + (m− k)zk1z
m−k
2 = (m− 2k)zk1z

m−k
2 = (m− 2k)fk,

πm(X)fk = −kzk−1
1 zm−k+1

2 = −kfk−1,

πm(Y )fk = (k −m)zk+1
1 zm−k−1

2 = (k −m)fk+1.

(2.26)

Let V ⊂ Vm be non-zero invariant subspace. There is at least one non-zero element
v = a0z

m
2 + a1z1z

m−1
2 + ... + amz

m
1 . Let k0 be such that ak0 6= 0 but ak = 0 for

k > k0. Thus v = a0z
m
2 + a1z1z

m−1
2 + ... + ak0z

k0
1 z

m−k0
2 . By (2.25) and (2.26), we

see that only the last term, ak0z
k0
1 z

m−k0
2 , will survive the application of πm(X)k0

to v. But πm(X)k0 = k0! (−1)k0ak0z
m
2 , and since V is invariant, zm2 ∈ V . But now

from (2.26) we see that we can obtain multiple of any basis vector by applying
πm(Y ) to zm2 many times. Thus zk1z

m−k
2 ∈ V for all 0 ≤ k ≤ m, and hence V is in

fact the whole Vm.

�

The standard result from linear algebra tells us that every U ∈ SU(2) can be
written as U = U0DθU

−1
0 , with U0 ∈ SU(2)5 and Dθ is of the form:

Dθ =

(
eiθ 0
0 e−iθ

)
with θ ∈ [0, 2π[. Simple computation shows that Πn(Dθ)fk = eiθ(2k−n)fk for all
0 ≤ k ≤ n. Thus, since U0 ∈ SU(2) and Πn is unitary:

χΠn(U) = Tr(Πn(U)) = Tr(Πn(U0)Πn(Dθ)Πn(U0)−1) = Tr(Πn(Dθ))

=
n∑
k=0

eiθ(2k−n).
(2.27)

5In general, we have U = U1DθU
−1
1 with U1 ∈ U(2), but if so, then det(U1) = eiφ for some

φ ∈ [0, 2π[, then we can put U0 = e−iφ/2U1, and it can be checked trivially that U0 ∈ SU(2) and
U = U0DθU

−1
0 .
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We know so far that Vn is irreducible as a representation, but if we consider Vn⊗Vk,
there is no reason to expect it to be irreducible, and if it is not irreducible, it
can be decomposed into direct sum of irreducible representations. Finding this
decomposition is a part of Clebsh-Gordan theory, and in the case of SU(2), it
has significant applications in quantum mechanics.

Theorem 2.5.7. The following decomposition holds:

Vn ⊗ Vk ∼=
min{n,k}⊕
i=0

Vn+k−2i. (2.28)

See [7] for a proof of this fact. It is actually based on analysis of the analogous
formula for characters of the form (2.27) (the character of direct sum is the sum
of characters and the character of tensor product is a product of characters, and
the representation is determined uniquely, up to equivalence, by its character, see
Chapter 3). Now let us introduce the following notation: s = V2s (s is a number
and also a symbol that labels spaces). Then, by using (2.28), one can easily check
that:

1

2
⊗ 1

2
∼= 1⊕ 0. (2.29)

The number s is called a spin, and what we have just done is called addition of
angular momentum in quantum mechanics.

Now the time has come to deal with the converse problem. Proposition 2.5.1
tells us that, in order to determine all finite-dimensional irreducible representa-
tions of su(2), we can pass to sl(2,C) ' suC(2) without risk that we will lose
any information. For the basis of sl(2,C) as in (2.24), we have the following
commutation relations:

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H. (2.30)

Warning. Definitions 2.5.1 and 2.5.2 below are temporary. They are adjusted
to the case of sl(2,C) and are formulated only for the sake of this section. They
are the very special case of more general definitions where roots and weights are
linear functionals (See Chapter 4).

Definition 2.5.1. A complex number α ∈ C is a root if α 6= 0, and there exists
Z ∈ sl(2,C such that [H,Z] = αZ. Z is called a root vector corresponding to α.

The above definition says that a root is simply a non-zero eigenvalue of the
linear operator ad(H) defined by the formula: ad(H)Z := [H,Z]. One can easily
see that the map ad : sl(2,C) 3 A 7→ ad(A) ∈ gl(sl(2,C)) is a representation, and
this representation is called adjoint representation. The commutation relations
(2.30) tell us that we have two roots: α1 = 2 and α2 = −2, where corresponding
root vectors are X and Y . In fact, it is not a coincidence that α1 = −α2. In
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particular, α2 ∈ span{α1}. We will call α1 a simple root to emphasize this
fact (of course, this choice is arbitrary). Let π be an irreducible representation
of sl(2,C), acting on a finite-dimensional complex vector space V . Since π is a
representation, we must have

[π(H), π(X)] = 2π(X), [π(H), π(Y )] = −2π(Y ), [π(X), π(Y )] = π(H).
(2.31)

Now, because we are working over an algebraically close field of complex numbers,
π(H) must have at least one eigenvalue.

Definition 2.5.2. A complex number µ ∈ C is a weight for a representation π if
there exists a non-zero vector u in V such that π(H)u = µu. u is called a weight
vector corresponding to µ, and the space of all weight vectors of µ is called a
weight space of µ.

Thus a weight for π is just an eigenvalue of π(H). Note that a root is a non-zero
weight for the adjoint representation. As noted above, π has at least one weight.
Denote it by µ and the corresponding weight vector by u. From the commutation
relations (2.31), we obtain

π(H)π(X)u = (π(X)π(H) + 2π(X))u = π(X)π(H)u+ 2π(X)u = (µ+ 2)π(X)u,

π(H)π(Y )u = (π(Y )π(H)− 2π(Y ))u = π(Y )π(H)u− 2π(Y )u = (µ− 2)π(Y )u,

(2.32)

thus either π(X)u is zero, or it is a weight vector for weight µ+ 2, and similarly,
either π(Y )u is zero, or it is a weight vector for weight µ − 2. This means, for
example, that π(H)π(X)nu = (µ + 2n)π(X)nu, so again, either π(X)nu is zero,
or it is a weight vector for weight µ+ 2n. We see that we can build new weights
from old ones in this process. New weights are of the form µ + α1n or µ + α2n.
We introduce the following partial ordering in the set of weights:

Definition 2.5.3. Let α1 = 2 be a simple root as described above, and let µ1, µ2

be two weights. We say that µ1 is higher than µ2 if

µ1 − µ2 = tα1

with t ≥ 0. We also say that µ2 is lower than µ1, and denote this relation by
µ1 � µ2 or µ2 � µ1. If the weight µ0 satisfies µ0 � µ for all weights µ of π, then
µ0 is called the highest weight.

Let us go back to our analysis. There is some n0 ≥ 0 such that π(X)n0u 6= 0, but
π(X)n0+iu = 0 for all i > 0. This follows from the fact that weights µ+ 2n are all
distinct, so their weight vectors must be linearly independent, and V is assumed to
be finite-dimensional. Take u0 = π(X)n0u and b = a+ 2n0. Define uk = π(Y )ku0

for k ≥ 0. By the second identity of (2.32) we have π(H)uk = (b− 2k)uk.

Lemma 3.2.1. For k > 0, we have

π(X)uk = (bk − k(k − 1))uk−1.
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Proof. Using [π(X), π(Y )] = π(H) and definition of u1, we have π(X)u1 =
π(X)π(Y )u0 = (π(Y )π(X) + π(H))u0 = bu0, and this is the proof in the case
k = 1. Now, let us proceed by induction:

π(X)uk+1 = π(X)π(Y )uk

= (π(Y )π(X) + π(H))uk

= π(Y )(kb− k(k − 1))uk−1 + (b− 2k)uk

= (kb− k(k − 1) + (b− 2k))uk

= ((k + 1)b− (k + 1)k)uk.

�

Recall that π(H)uk = (b − 2k)uk. But again the (b − 2k)’s are distinct, so uk’s
cannot be all non-zero. There exists m ≥ 0 such that uk = π(Y )ku0 6= 0 for k ≤ m
but um+1 = 0. Then π(X)um+1 = ((m+ 1)b−m(m+ 1))um = (m+ 1)(b−m)um
must give 0, but m+1 6= 0 and um 6= 0 by definition of m, so we must have b = m.
Let us summarize our efforts:

Given π, a finite-dimensional, C-linear, irreducible representation of sl(2,C)
acting on a complex space V , there exists an integer m ≥ 0 and non-zero vectors
u0, ..., um such that

π(H)uk = (m− 2k)uk,

π(Y )uk = uk+1, k < m,

π(Y )um = 0,

π(X)uk = (km− k(k − 1))uk−1, k > 0,

π(X)u0 = 0.

(2.33)

Of course, uk’s are linearly independent, and span{u0, ..., um} is invariant under
π(A) for all A ∈ sl(2,C). This span must be the whole space, since π is ir-
reducible by assumption. Moreover, one can show that (2.33) actually defines
a representation of sl(2,C), and it is irreducible. We see that there exists an
irreducible representation of sl(2,C), acting on the space of dimension m + 1,
and every irreducible representation of sl(2,C) must be of the form (2.33). It
is clear that, if ψ and θ are representations of the form (2.33), acting on the
spaces V and W , respectively, then V has a basis v0, ..., vm and W has basis a
w0, ..., wm, and both bases satisfy (2.33), moreover, the unitary map φ : V → W
with φ(vi) = wi is the (unitary) isomorphism of representations. It follows that
two irreducible representations of sl(2,C), which have the same dimension, are
equivalent. In particular, the representation πm obtained before, and given by the
formulas (2.23) and (2.25), must be equivalent to π from (2.33). By introducing
the basis uk(z1, z2) = π(Y )k(zm2 ) = (−1)k m!

(m−k)!
zk1z

m−k
2 = (−1)k m!

(m−k)!
fk, one can

easily show, by straightforward computations, that this is indeed the case. In
other words, we have proven the following lemma, which is a special case of the
so-called classification theorem:
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Lemma 2.5.8.

1. Every (C-linear) finite-dimensional irreducible representation of sl(2,C) has
a unique highest weight µ0, and two equivalent irreducible representations
have the same highest weight. The highets weight of π described by (2.33) is
equal to m.

2. Two irreducible representations of sl(2,C) with the same highest weight are
equivalent.

3. The highest weight of an irreducible representation of sl(2,C) is non-negative
integer.

4. If m is non-negative integer, then there exists a unique, up to isomor-
phism, finite-dimensional irreducible representation of sl(2,C) with the high-
est weight µ0 = m.

�

In light of Propositions 2.4.1 and 2.5.1, we have found all finite-dimensional ir-
reducible representations of su(2). Moreover, Theorem 2.5.5 tells us that these
are in one-to one correspondence with the complex irreducible representations of
SU(2), because SU(2) is connected and simply connected. This is another proof
of the fact that Πm’s are all irreducible representations of SU(2), and every finite-
dimensional representation of SU(2) is equivalent to one of the Πm’s.
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Chapter 3

Basic representation theory of
compact groups

In this chapter we focus on compact groups. We begin with giving basic defini-
tions of topological group, locally compact group and compact group. We will see
that, among topological groups, compact groups are very special from the point
of view of the theory of representations due to the fact that the Haar measure is
finite on such a group. Intuitively, as far as representations are concerned, a com-
pact group behaves a bit like a finite group (with the natural counting measure
defined on it). We explain why restriction to unitary representations is justified
in the case of compact groups and we formulate theorems concerning decomposi-
tion into direct sums of irreducible representations and orthogonality relations for
characters and matrix elements of representations. We end this chapter with some
comments and definitions on Lie groups, Lie algebras and compact Lie groups. In
our presentation we mainly follow [6].

3.1 Compact groups and their representations
We start with the definition of a topological group.

Definition 3.1.1. A topological group G is a Hausdorff topological space which
is also a group, such that the product operation G×G→ G and taking an inverse
G→ G are continuous.

In the above definition, G × G is the topological space with the so-called
product topology, that is, the weakest topology for which the projections G×
G 3 (g1, g2) 7→ g1 ∈ G and G × G 3 (g1, g2) 7→ g1 ∈ G are continuous. In this
topology, open sets are unions of the sets of the form O1 × O2, where O1, O2 are
open subsets of G.

Let us now give a temporary definition of a finite-dimensional representation
of a topological group. Later we will see that, if the topological group under
interest is compact, it is desirable to restrict attention to unitary representations,
but at this very moment by finite-dimensional representation (Π,H) of a
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topological group G we mean the continuous group homomorphism Π : G →
GL(H), where GL(H) is a group of invertible linear transformations on a finite-
dimensional complex Hilbert space H.

Although the following will not be used directly, it is a deep and useful result.
Recall that a subgroup N of a group G is called normal if and only if gng−1 ∈ N
for all n ∈ N and all g ∈ G.

Theorem 3.1.1. If H is a closed, normal subgroup of a topological group G then
G/H has a natural structure of a topological group. Moreover, any open subgroup
of topological group is also a closed subgroup.

Definition 3.1.2. H is called a discrete subgroup of G if there is an open cover
O of G such that every O ∈ O contains exactly one element of H.

Definition 3.1.3. A locally compact group G is a topological group G for which
the underlying topology is locally compact.

Locally compact topology means that every point x ∈ G has compact neigh-
bourhood, i.e. there exists an open set U and a compact set K such that
x ∈ U ⊆ K.

Definition 3.1.4. A compact group G is a topological group which is compact as
a topological space, that is, for every open cover of G there exists a finite subcover.

The following theorem deals with the most important (after a compact group)
object in our presentation in this chapter.

Theorem 3.1.2. Let G be a locally compact group. Then there exists a non-
zero, regular, Borel measure µG on the Borel σ−algebra in G, called the Haar
measure, which is left-translation invariant, that is, for all g ∈ G and all Borel
subset E ⊂ G, we have µG(gE) = µG(E), and which is finite on every compact
subset of G.

The Haar measure defined above always exists for locally compact groups. But
in the case of compact groups (which are locally compact by definition), the Haar
measure has additional properties:

Theorem 3.1.3. Let G be a compact group. Then the Haar measure on G, µG, is
also right-translation invariant, that is, for all g ∈ G and all Borel subset E ⊂ G,
we have µG(Eg) = µG(E), and it is unique up to multiplication by a constant,
that is, if ν is another Haar measure on G, then for all Borel sets E ⊂ G we have
µ(E) = aν(E) for some a > 0.

Theorem 3.1.2 implies that, if G is the compact group, then µ(G) < ∞, and
in particular it can be normalized so that µ(G) = 1. Since Theorem 3.1.3 implies
that Haar measure is unique up to multiplication by a constant for a compact
group, it follows that the normalized Haar measure µ is unique in this case.
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Example. The Haar measure on SU(2). Recall that SU(2) is homeomorphic
to 3-dimensional sphere S3 = {(x1, x2, x3, x4) ∈ R4 | x2

1 + x2
2 + x2

3 + x2
4 = 1} and

if U ∈ SU(2), then U may be written in the form:

U =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
.

We can choose the following parametrization of S3:

x1 = cos(θ),

x2 = sin(θ) cos(φ),

x3 = sin(θ) sin(φ) cos(ψ),

x4 = sin(θ) sin(φ) sin(ψ),

(3.1)

where θ, φ ∈ [0, π] and ψ ∈ [0, 2π[. One can easily check that the Jacobian of the
reparametrization (3.1) is sin2(θ) sin(ψ), and we can define∫

SU(2)

f(U)dµSU(2)(U) =
1

2π2

∫ π

0

dθ

∫ π

0

dφ

∫ 2π

0

dψf(θ, φ, ψ) sin2(θ) sin(ψ) (3.2)

for a function f : SU(2)→ C. One can show that µSU(2) has all the properties of
the Haar measure and µSU(2)(SU(2)) = 1.

If G is a compact group, we have∫
G

f(U0U)dµG(U) =

∫
G

f(U)dµG(U) (3.3)

and also ∫
G

f(UU0)dµG(U) =

∫
G

f(U)dµG(U) (3.4)

for any U0 ∈ G and we can consider Lp(G, dµG) spaces for p ∈ [1,∞[.

Now, let (Π,H) be a finite-dimensional representation of a compact group G.
Pick any inner product on H and denote it by 〈·|·〉H. For v1, v2 ∈ H define

〈v1|v2〉G :=

∫
G

〈Π(U)v1|Π(U)v2〉HdµG(U). (3.5)

One can easily see that (3.5) is well defined because µG is finite, and that it is
actually the inner product on H. Now, take U0 ∈ G. We have:

〈Π(U0)v1|Π(U0)v2〉G =

∫
G

〈Π(U)Π(U0)v1|Π(U)Π(U0)v2〉HdµG(U)

=

∫
G

〈Π(UU0)v1|Π(UU0)v2〉HdµG(U)

=

∫
G

〈Π(U)v1|Π(U)v2〉HdµG(U)

= 〈v1|v2〉G

(3.6)
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since Π is a representation and µG is right-invariant. We see that Π(U0) is unitary
with respect to the inner product 〈·|·〉G for any U0 ∈ G. That is, every represen-
tation of a topological group G can be made into unitary representation if G is
compact group. This motivates:

Definition 3.1.5. Let G be a compact group. A finite-dimensional represen-
tation of G is a continuous group homomorphism Π of G to the group of unitary
maps U(H) on some finite-dimensional, complex Hilbert space H. Two represen-
tations Π and Ψ acting on H1 and H2, respectively, are said to be equivalent if
and only if there is a unitary map U : H1 → H2 such that for all g ∈ G we have
Ψ(g) = UΠ(g)U−1. U is called isomorphism of representations Π and Ψ, and
we write Π ∼= Ψ. The definition of irreducibility of representation is the same as
in Definition 2.4.3.

In Chapter 2, we restricted ourselves to unitary representations of SU(2) be-
cause it is compact as a topological group, and the first half of analysis of rep-
resentations of SU(2) in Chapter 2 was actually a special case of analysis we are
doing here. In particular, we have the general definition of complete reducibility
of representations and the theorem concerning complete reducibility of general
compact groups:

Definition 3.1.6. A finite-dimensional representation of a topological group G
acting on H is called completely reducible, if given a invariant subspace W of
H, there is an invariant subspace U ⊂ H such that H = W ⊕ U .

Theorem 3.1.4.

1. Let G be a compact group and let Π be a finite-dimensional representation
of G acting on H. Then Π is completely reducible.

2. A finite-dimensional completely reducible representation of a topological group
is equivalent to the direct sum of irreducible representations.

The proof of 1. is the same as the proof of Theorem 2.4.1, because the only
property that is used is that Π being finite-dimensional unitary representation.
The above theorem implies that every finite-dimensional representation of a com-
pact group is equivalent to the direct sum of irreducible representations.

Definition 3.1.7. Given a finite-dimensional representation Π of a compact group
G acting on H, we define the character χΠ : G→ C of Π by the formula

χΠ(g) := Tr(Π(g)) (3.7)

for g ∈ G.

It can be shown that, for two representations Π and Ψ, we have χΠ⊕Ψ(g) =
Tr(Π(g)) + Tr(Ψ(g)) and χΠ⊗Ψ(g) = Tr(Π(g))Tr(Ψ(g)). If we denote the entries
of matrix Π(g) in some orthonormal basis ofH (that is, DΠ

ij(g) = 〈ei|Π(g)ej〉 where
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{ei} is orthonormal basis of H) by DΠ
ij(g), where 1 ≤ i, j ≤ dim(Π) = dimC(H),

we see that

χΠ(g) = Tr(Π(g)) =

dim(Π)∑
i=1

DΠ
ii (g). (3.8)

Now, take two equivalent representations of G, say, Π and Ψ, acting on H1 and
H2, respectively. By definition, there exists a unitary operator U : H1 → H2 such
that for all g ∈ G we have Ψ(g) = UΠ(g)U−1. But then

χΨ(g) = Tr(Ψ(g)) = Tr(UΠ(g)U−1) = Tr(Π(g)) = χΠ(g) (3.9)

since the trace is invariant under unitary transformation. We see that two equiv-
alent representations have the same character. Moreover, since we are dealing
with a compact group, we know that every finite-dimensional representation is
equivalent to the direct sum of irreducible representations. Thus, from now on,
we can pay attention only on finite-dimensional irreducible representations.

Suppose Irreps(G) is a set of irreducible representations of a compact group
G. We do not know yet if these even exist, but let us forget about technicalities
for a moment. Since we have the notion of equivalence of representations, we
can consider classes of equivalent, irreducible representations, namely, for θ ∈
Irreps(G) define [θ] = {π ∈ Irreps(G) | θ ∼= π}. It is easy to see that "∼=" is
an equivalence relation. For any Π,Ψ ∈ Irreps(G) we thus have [Π] = [Ψ] or
[Π] ∩ [Ψ] = ∅.

Definition 3.1.8. Define Ĝ := Irreps(G)/∼=.

Thus, Ĝ is a set of classes of equivalent irreducible representations. We can
consider χ[Π] to be the character of any irreducible representation Φ ∈ [Π], since
in light of (3.9) the character depends only on [Π], not on the choice of represen-
tatives.

Theorem 3.1.5. For all [Π], [Ψ] ∈ Ĝ we have∫
G

χ[Π](U)χ[Ψ](U)dµG(U) = δ[Π],[Ψ], (3.10)

where δ[Π],[Ψ] = 1 if [Π] = [Ψ] (or equivalently, if Π ' Ψ), and δ[Π],[Ψ] = 1 if
[Π] ∩ [Ψ] = ∅ (that is, if Π � Ψ).

We can take D[Π]
ij (g) to be any matrix realization of any irreducible represen-

tation Φ ∈ [Π]. Of course, equivalent representations must have the same dimen-
sions, so define dim([Π]) = dim(Ψ) for any Ψ ∈ [Π]. Thus, in the case of a matrix
realization D[Π]

ij (g) we have 1 ≤ i, j ≤ dim([Π]). From (3.9) we obtain

χ[Π](g) =

dim([Π])∑
i=1

D
[Π]
ii (g). (3.11)

Moreover, we have the following theorem
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Theorem 3.1.6. For all [Π], [Ψ] ∈ Ĝ we have∫
G

D
[Π]
ij (U)D

[Ψ]
kl (U)dµG(U) =

δ[Π],[Ψ]δi,kδj,l
dim([Π])

. (3.12)

Relations (3.10) and (3.12) are called orthogonality relations for characters
and matrix elements of representations.

Let Ψ be any finite-dimensional representation of a compact group G. We know
that Ψ is equivalent to the direct sum of irreducible representations. We write

Ψ ∼=
⊕

[Π]∈Ĝ

N[Π]⊕
Π. (3.13)

It may happen that N[Π0] = 0 for some irreducible Π0, that means there is no
representation equivalent to Π0 in decomposition (3.13). The sum (3.13) runs
over all possible classes from Ĝ. We have the following, very important and useful
theorem.

Theorem 3.1.7.
N[Π] =

∫
G

χ[Π](U)χΨ(U)dµG(U), (3.14)

where χΨ is the character of Ψ given by (3.13).

It turns out that decomposition (3.13) is unique up to equivalence, and

Corollary 3.1.1. Any finite-dimensional representation Ψ of a compact group G
is uniquely determined, up to equivalence, by its character.

At the end of this section, let us give more result from abstract theory of
representations of compact groups, namely, the Peter-Weyl theorem and three
additional theorems which proofs are based on Peter-Weyl theorem, see [6].

Theorem 3.1.8. (Peter-Weyl) Let G be a compact group. The set of finite
linear combinations

{D[Π]
ij (U)}[Π]∈Ĝ,1≤i,j≤dim([Π])

is dense in ‖·‖∞ norm in C(G) (the space of continuous functions on G).

Just as in the case of SU(2), which is an example of compact group, we have

Definition 3.1.9. The infinite-dimensional representation of a compact group
G is the strongly continuous (see footnote attached to Definition 2.4.9 in Chapter
1) group homomorphism Π : G → U(H), where H is infinite-dimensional, com-
plex, separable Hilbert space and U(H) is the group of unitary operators on H.
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The definitions of invariant subspaces and irreducibility are almost the same
as in the finite case, but with the exception that we require an invariant subspace
to be closed subspace of H.

Theorem 3.1.9. Let G be a compact group.

1. The set
{
√

dim([Π])D
[Π]
ij (U)}[Π]∈Ĝ,1≤i,j≤dim([Π])

is an orthonormal basis of L2(G, dµG);

2. The set
{χ[Π]}[Π]∈Ĝ

is an orthonormal basis of the subspace {f ∈ L2(G, dµG) | f(U1U2U
−1
1 ) =

f(U2) for all U1 and almost every U2 with respect to µG};

3. Let H be a separable, complex Hilbert space, and Ψ be a unitary represen-
tation of G, acting on H. Then Ψ is equivalent to direct sum of finite-
dimensional irreducible representations. If H is infinite-dimensional, then
the direct sum is infinite.

In particular, 3. implies that if G is a compact group, then every irreducible
representation of G must be finite-dimensional: there simply does not exists
infinite-dimensional irreducible representation of G. It follows that the Πm’s,
the finite-dimensional irreducible representations of SU(2) found in the previous
chapter, are all irreducible representations of SU(2), up to equivalence.

3.2 Lie groups
We now turn to the specific class of topological groups, namely Lie groups.

Definition 3.2.1. A Lie group is a topological group G which is also a C∞-
manifold and such that the product operation and taking an inverse are smooth
(C∞) maps.

We use the terms "C∞" and "smooth" interchangeably.

We hope that the reader is familiar with basics of differential geometry and
theory of differential manifolds, and we will not give any recap of these topics
here. Nevertheless, it is important to mention that, for any Lie group G, there
exists a real vector space g consisting of left invariant vector fields on G (a vec-
tor field X on G is called left-invariant if and only if for all g ∈ G we have
X(gh) = (Lg)∗(X(h)) with Lg(h) = gh). This real vector space is closed under
the vector field commutator, and its dimension (as a real vector space) is equal
to the dimension of G (as a C∞-manifold). Moreover, we have

g ∼= Te(G), (3.15)

where Te(G) is a tangent space of G at the point e - the group identity of G.
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Definition 3.2.2. g defined above is called the Lie algebra of a Lie group G.

Definition 3.2.3. If G,H are two Lie groups with Lie algebras g, h, respectively,
then we define a Lie group homomorphism Φ : G → H to be a continuous
group homomorphism. A Lie group homomorphism which is a bijection is called
a Lie group isomorphism. If there exists an isomorphism between Lie groups
G and H, then we say that G and H are isomorphic and this property is denoted
by G ∼= H. We define Lie algebra homomorphism for Lie algebras of general Lie
groups in the same way as in Definition 2.3.3.

It turns out that, if a group homomorphism between two Lie groups is contin-
uous (that is, it is a Lie group homomorphism), then it is also smooth. Thus, we
have only two classes of homomorphisms between Lie groups: discontinuous and
smooth ones.

We will now give the definition of a general Lie algebra, without explicit refer-
ence to a Lie group.

Definition 3.2.4. A finite dimensional real (complex) Lie algebra is a fi-
nite dimensional, real (complex) vector space, denoted g, with an additional prod-
uct operation [·, ·] : g × g → g (one often calls [·, ·] a bracket), which has the
following properties:

1. [·, ·] is bilinear (R -bilinear if g is real and C -bilinear if g is complex);

2. [X, Y ] = −[Y,X] for all X, Y ∈ g.

3. the Jacobi identity holds: [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

We define the real or complex subalgebra of g as a real or complex subspace
of g which is closed under the bracket. Of course, a subalgebra of a Lie algebra is
itself a Lie algebra. There is a result which says that every finite-dimensional Lie
algebra is isomorphic to a Lie algebra of a Lie group.

The following proposition is extremely important.

Proposition 3.2.1. Every matrix Lie group is a Lie group. Every matrix Lie
group homomorphism is a Lie group homomorphism. A Lie algebra of a Lie
group (Definition 3.2.2) is a real Lie algebra in the sense of Definition 3.2.4, and
a Lie algebra of a matrix Lie group is (isomorphic to) a Lie algebra in the sense
of Definition 3.2.2.

We introduced the notion of "matrix Lie group" in Chapter 1 to emphasize the
fact that every matrix Lie group is a Lie group, as stated in the above proposition,
although this is not obvious and requires proof. We will not prove this here, but
notice that a matrix Lie group is defined to be a closed subgroup of GL(n,C), and
GL(n,C) is an open subset of Cn2 ∼= R2n2 . It turns out that a matrix Lie group is
a manifold embedded in some Rm. Note also that suC(2) is a complex Lie algebra.
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Another reason for introducing notions of matrix Lie group and its Lie algebra,
without explicit reference to manifold theory, is that at the level of matrix Lie
groups everything is much easier, especially when it comes to the Lie algebra,
which is defined simply via the exponential mapping being standard power series.

For a compact Lie group G, it is known that the Haar measure is induced from
left-invariant volume form on G. This volume form is unique up to multiplication
by a constant.

One of the most important objects in the study of Lie groups are tori, the
groups which are (isomorphic to) products of circle groups.

Definition 3.2.5. Let G be a compact Lie group. A torus T is an abelian subgroup
of G which is connected and compact. A maximal torus is a maximal (in the sense
of inclusion) subgroup with these properties.

It turns out that a compact abelian (the product is commutative) connected
Lie group is necessarily a torus. It is a consequence of classification of compact
Lie groups obtained in the works of E. Cartan [4] and H. Weyl [3].

Example. Let G = GL(n,K) or G = SL(n,K), where K = R or K = C. Let
B+ and B− be groups of upper- and lower-triangular matrices with entries in K,
respectively. Their intersection, B+ ∩ B−, is a maximal torus - the subgroup of
diagonal matrices.

Once the notion of a Lie group was established, we can now introduce a slightly
more advanced concept of a complex Lie group.

Definition 3.2.6. The complex Lie group G is a group which is also a complex-
analytic manifold, such that the maps G 3 g 7→ g−1 ∈ G and G×G 3 (g1, g2) 7→
g1g2 ∈ G are holomorphic.

Example. The group SL(2,C), viewed as a subset of C4, is a complex Lie group.
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Chapter 4

Basic theory of representations of
semisimple Lie groups and
Borel-Weil theorem

In this chapter we present Borel-Weil theorem, which gives a geometric construc-
tion of irreducible representations of compact connected Lie groups. However, in
order to formulate and prove it, one needs a significant background in representa-
tion theory. Thus Borel-Weil theorem will be presented in the last section of this
chapter and in the first three sections we will recall the necessary definitions and
facts concerning representation theory. In the first section we present the most
basic notions such as that of an ideal or complexification. These notions will be
used throughout the rest of the paper, although the more experienced reader may
skip reading this section. In the second and third sections we present some of the
most important properties of semisimple and compact Lie groups and semisimple
Lie algebras. In particular, we present definitions of important decompositions,
such as Cartan decomposition, and the definitions of weights and roots. Finally,
in the last section we formulate Borel-Weil theorem and present one of its proofs.
We also mention some of the generalizations of this theorem.

4.1 Basic terminology
The only purpose of this section is to recall some definitions which will be widely

used in this chapter. They are absolutely elementary, and if the reader is familiar
with notions of simplicity, semisimplicity, ideals, etc., they can skip it and go to
the next section.

Definition 4.1.1. Let g be a Lie algebra of a Lie group G. An ideal of g,
denoted i, is a subalgebra of g with [i, g] ⊆ i. The commutator series (or
central series) of g is the non-increasing (in the sense of inclusion) sequence of
ideals gi with g0 = g and gi+1 = [gi, gi]. The lower central series of g is the
non-increasing sequence of ideals gj with g0 = g and gj+1 = [g, gj]. We say g is
solvable if its cummutator series ends in 0, nilpotent if its lower central series
ends in 0, and abelian if [g, g] = {0}. A Lie algebra g is called simple if it is
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nonabelian and has no proper non-zero ideals, and semisimple if it is a direct
sum of simple Lie algebras. We say that Lie group G is semisimple if its Lie
algebra g is semisimple, and G is said to be simple if its Lie algebra g is simple.

In particular, SU(2) and SL(2,C) are semisimple Lie groups.

Definition 4.1.2. We say that a Lie group G is linear if it is (isomorphic to) a
subgroup of GL(n,C).

Definition 4.1.3. Let G be a semisimple Lie group, and suppose that GC is a
complex semisimple Lie group such that G is a Lie subgroup of GC and the Lie
algebra of GC is the complexification of the Lie algebra of G. Then we say that
GC is a complexification of G.

For example, SU(n) and SL(n,R) both have SL(n,C) as a complexification.

It is worth noting that not every real Lie group has a complexification. A
connected semisimple Lie group (defined in the following definition) has a com-
plexification if and only if it is linear. On the other hand every compact Lie group
has a complexification.

Proposition 4.1.1. Let g be a Lie algebra. There exists a unique maximal solvable
ideal, called radical.

Proof. Let a and b be two solvable ideals of g. Then a + b is again an ideal of
g, and it is solvable because it is an extension of (a + b)/a ∼= b/(a ∩ b) by a.
Now consider the sum of all the solvable ideals of g. It is nonempty since {0} is
a solvable ideal, and it is solvable ideal by the sum property just derived. Clearly
it is unique maximal solvable ideal.

There is an equivalent definition of semisimple Lie algebra; a Lie algebra g is
semisimple if the radical of g is zero.

Definition 4.1.4. A linear connected reductive group is a closed connected
group of matrices that is closed under hermitian conjugation. A linear connected
semisimple group is a linear connected reductive group with finite center. We
call a Lie group reductive if its Lie algebra g is reductive, i.e. it is a direct sum
of a semisimple Lie algebra s and an abelian Lie algebra a, g = s⊕ a.

Every group mentioned in this paper is reductive, but for the sake of com-
pleteness, we will sometimes stress that the groups are reductive. We will later
show that any compact connected Lie group can be realized as a linear connected
reductive Lie group.
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4.2 Some of the most important notions
Definition 4.2.1. The Killing form on g is the symmetric bilinear form B :
g× g→ C given by

B(x, y) = Tr(ad(x)ad(y)), (4.1)

for (x, y) ∈ g× g. Here and in the rest of this paper, ad : g→ gl(g) is the adjoint
representation, ad(x)(y) = [x, y] for x, y ∈ g.

The Killing form appears often in the theory of Lie algebras, for example in
the following useful theorems:

Theorem 4.2.1. Let g be a Lie algebra and B(x, y) a Killing form. Then we
have:

1. Cartan’s criterion for solvability:
g is solvable if and only if B(x, y) = 0, for all x ∈ g and y ∈ [g, g].

2. Cartan’s criterion for semisimplicity:
g is semisimple if and only if the Killing form on g is nondegenerate.

There are many ways to decompose Lie groups into products of its subgroups
and such decompositions are useful tool in the study of Lie groups. One of them,
namely the Iwasawa decomposition, is explicitly used in a proof of Borel-Weil
theorem - the central theorem of this chapter. We begin, however, with Cartan
decomposition of semisimple Lie algebras.

Definition 4.2.2. An involution (i.e. an automorphism of the Lie algebra with
square equal to identity) θ̃ of a real semisimple Lie algebra g such that the sym-
metric bilinear form

Bθ̃(X, Y ) = −B(X, θ̃Y ) (4.2)

is positive definite is called a Cartan involution.

The map θ(X) = −X∗ is the Cartan involution. To see that it respects
brackets, we can simply write

θ[X, Y ] = −[X, Y ]∗ = −[Y,X]∗ = [−X∗,−Y ∗] = [θ(X), θ(Y )].

One can check that any real semisimple Lie algebra has a Cartan involution and
that the Cartan involution is unique up to inner automorphism. As a consequence
of the proof, one can also obtain a converse: Every real semisimple Lie algebra
can be realized as a Lie algebra of real matrices closed under transpose.
The Cartan involution θ of a real semisimple Lie algebra g yields an eigenspace
decomposition

g = k⊕ p (4.3)

of g into +1 and −1 eigenspaces. Since θ is an automorphism, these space must
bracket according to the following rules

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.
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Definition 4.2.3. The decomposition (4.3) is called the Cartan decomposition.

We now have the following important lemma:

Lemma 4.2.2. If g is a real semisimple Lie algebra and θ is a Cartan involution,
then

(adX)∗ = −ad(θX) for all X ∈ g,

where (·)∗ is defined relative to the inner product Bθ.

Proof. We have

Bθ((ad(θX))Y, Z) = −B([θX, Y ], θZ)

= B(Y, [θX, θZ]) = B(Y, θ[X,Z])

= −Bθ(Y, (adX)Z) = −Bθ((adX)∗Y, Z).

Now we will present the theorem, which collects basic properties of semisimple
Lie groups. The proof of this theorem is not difficult but we shall omit it, because
it is fairly long.

Theorem 4.2.3 ([2]). Let G be a semisimple Lie group, let θ be a Cartan involu-
tion of its Lie algebra g. Let g = k⊕p be the corresponding Cartan decomposition,
and let K be the Lie subgroup of G with Lie algebra k. Then

1. there exists a Lie group automorphism Θ of G with differential θ, and Θ2 =
idG.

2. the subgroup of G fixed by Θ is K.

3. the mapping K × p → G given by (k,X) 7→ k exp(X) is a diffeomorphism
onto.

4. K is closed.

5. K contains the center Z of G.

6. K is compact if and only if Z is finite.

7. when Z is finite, K is a maximal compact subgroup of G.

We now let B be any nondegenerate symmetric invariant bilinear form on
semisimple Lie algebra g such that B(X, Y ) = B(θX, θY ), for all X and Y in g,
and such that Bθ defined in terms of 4.2 is positive definite. The form is invariant
in the sense that

B((adX)Y, Z) = −B(Y, (adX)Z) (4.4)

for all X,Y and Z in g. The alternative way of writing 4.4 is

B([X, Y ], Z) = B(X, [Y, Z]).

One of the possible choices for B is the Killing form.
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Proposition 4.2.1 ([1]). (Iwasawa decomposition of Lie algebra) Let g be
a semisimple Lie algebra and g = k ⊕ p its Cartan decomposition. Then g is a
vector-space direct sum g = k ⊕ a ⊕ n. Here a is abelian, n is nilpotent, a ⊕ n is
solvable, and [a⊕ n, a⊕ n] = n.

This result can be lifted to the Lie groups and so we have:

Theorem 4.2.4 ([1]). (Iwasawa decomposition) Let G be a semisimple Lie
group, let g = k ⊕ a ⊕ n be an Iwasawa decomposition of the Lie algebra g of G,
and let A and N be the Lie subgroups of G with corresponding Lie algebras a and
n. Then the map K × A×N → G given by (k, a, n) → kan is a diffeomorphism
onto. The groups A and N are simply connected.

Example. Let G = SL(m,C). The group K from the Cartan decomposition
is SU(m). Let A be the subgroup of G of diagonal matrices with positive di-
agonal entries, and let N be the group of upper-triangular matrices with 1 in
each diagonal entry. The Iwasawa decomposition is G = KAN in the sense that
multiplication K × A × N → G is a diffeomorphism onto. One can think of
the Gram-Schmidt orthogonalization process in linear algebra as a prototype of
Iwasawa decomposition. To see that Iwasawa decompostion of SL(m,C) amounts
to the Gram-Schmidt orthogonalization process, let {e1, . . . , em} be the standard
basis of Cm. Form the basis {ge1, . . . , gem}, for fixed g ∈ G. The Gram-Schmidt
process yields the orthonormal basis {v1, . . . , vm} such that

span{ge1, . . . , gej} = span{v1, . . . , vj}
vj ∈ R+(gej) + {v1, . . . , vj−1}

for 1 ≤ j ≤ m. Define a matrix k ∈ U(n) by k−1vj = ej. Then k−1g is upper-
triangular with positive diagonal entries. Since g has determinant 1 and k has
determinant of modulus 1, k must have a determinant 1. Then k is inK = SU(m),
k−1g is in AN and g = k(k−1g) exhibits g as in K(AN). This proves that
K × A × N → G is onto. It is 1 − 1 since K ∩ AN = {1}, and the inverse is
smooth because of the explicit formulas for the Gram-Schmidt process.

Definition 4.2.4. A Borel subgroup of a Lie group G is a maximal connected
solvable closed subgroup of G.

Example. Let G = SL(n,C). Then the Borel subgroup can be taken to be the
subgroup B+ or B− of the upper- and lower-triangular matrices in G, respectively.

Definition 4.2.5. Cartan subalgebra h of g is a maximal abelian subalgebra
of Lie algebra g. Such subalgebra exists and contains Z(g) - the center of g.
A Cartan subgroup T of G is a maximal connected abelian subgroup. Such
subgroups are closed and are exactly the Lie subgroups of G which correspond to
Cartan subalgebras.
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Example.
1. T ↪→ U(n) is the group U(1)n ↪→ U(n) of diagonal matrices with entries of

absolute value one.

2. T ↪→ SU(n+ 1) is U(1)n ↪→ SU(n+ 1).
The notions of the Cartan subalgebra and Cartan subgroup play major role in
the classification of compact Lie groups.

Recall that the centralizer of a subset S of group G is defined as

ZG(S) = {g ∈ G : gs = sg for all s ∈ S},
and the normalizer of S in group G is defined as

NG(S) = {g ∈ G : gS = Sg}.
The centralizer subalgebra of a subset of Lie algebra S ⊂ g is the set of
elements commuting with S, i.e.

zg(S) = {X ∈ g | [X, s] = 0 for all s ∈ S},
and the normalizer subalgebra of a subset of Lie algebra S ⊂ g is the set

ng(S) = {X ∈ g | [X, s] ∈ S for all s ∈ S}.
Definition 4.2.6. For maximal torus T and connected Lie group G, we define
the Weyl group, denoted W (G, T ), by

W (G, T ) = NG(T )/ZG(T ).

The Weyl group defined above is often called analytically defined Weyl
group. Later in the text we introduce the algebraically defined Weyl group.

We finish this section with a very important theorem.
Theorem 4.2.5. Any compact connected Lie group G can be realized as a linear
connected reductive Lie group.
Proof. Since a finite dimensional representation of a compact group is unitary, it
is enough to produce a 1 − 1 finite dimensional representation of G. It follows
from Peter-Weyl theorem that for each x 6= 1 in G there is a finite dimensional
representation Φx of G such that Φx 6= 1. If the identity component G0 is not {1},
pick x1 6= 1 in the identity component G0. Then G1 = ker Φx1 is a closed subgroup
of G, and its identity component is a proper subgroup of G0. If (G1)0 6= {1},
pick x2 6= 1 in (G1)0. Then G2 = ker(Φx1 ⊕ Φx2) is a closed subgroup of G1,
and its identity component is a proper subgroup of (G1)0. Continuing in this
way and using finite-dimensionality of G, and the fact that proper subgroup of
connected Lie group has strictly lower dimension, we can find a finite dimensional
representation Φ0 of G such that ker Φ0 is 0-dimensional. Then ker Φ0 is finite,
being a comapact 0-dimensional Lie group. Let ker Φ0 = {y1, . . . , yn}. Then

Φ = Φ0 ⊕
n⊕
j=1

Φyj

is a 1− 1 finite dimensional representation of G.

37



4.3 More on the structure of Lie algebras and Lie
groups

In this section we introduce the most important notions of this paper, namely,
we present the fundamental concepts and properties of weights and roots, and
finish with the theorem of the highest weight.

Definition 4.3.1. Let V be a representation of a Lie group G. A form (·, ·) :
V × V → C is called G-invariant if (gv, gw) = (v, w) for g ∈ G and v, w ∈ V .

Lemma 4.3.1. Let G be a compact Lie group with Lie algebra g, and (Φ, V ) a
finite dimensional representation of G. Let φ be the differential of Φ.

1. There exists a G-invariant inner product (·, ·) on V and for any such G-
invariant inner product on V , φ(X) is skew-Hermitian, i.e. (φ(X)v, w) =
−(v, φ(X)w) for X ∈ g and v, w ∈ V .

2. There exists an Ad-invariant inner product (·, ·) on g, i.e. (Ad(g)Y1,Ad(g)Y2) =
(Y1, Y2) for g ∈ G and Yi ∈ g. For any such inner product on g, ad is skew-
symmetric.

Now let G be a compact semisimple Lie group and (Φ, V ) a finite dimensional
representation of G. Fix a Cartan subalgebra h of g. By lemma 4.3.1, there exists
an inner product on V that is G-invariant and for which φ is skew-Hermitian on
g and is Hermitian on ig. Thus hC acts on V as a family of commuting normal
operators and so V is simultaneously diagonalizable under the action of hC. We
have the following definition

Definition 4.3.2. Let G be a compact semisimple Lie group, (Φ, V ) a finite di-
mensional representation of G, and h a Cartan subalgebra of g. There is a finite
set ∆(V, hC) ⊆ (hC)∗, called the weights of V , so that

V =
⊕

λ∈∆(V,hC)

Vλ, (4.5)

where
Vλ = {v ∈ V |φ(H)v = λ(H)v, H ∈ hC}

is nonzero. The equation (4.5) is called weight space decomposition.

Theorem 4.3.2. Let G be a compact Lie group, (Φ, V ) a finite dimensional rep-
resentation G, T a maximal torus of G, and V =

⊕
λ∈∆(V,hC) Vλ the weight space

decomposition.

1. For each weight λ ∈ ∆(V, hC), λ is purely imaginary on h and is real valued
on hR.

2. For t ∈ T , choose H ∈ h so that eH = t. Then tvλ = eλ(H)vλ for vλ ∈ Vλ.
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Let G be a compact semisimple Lie group. For g ∈ G, we extend the domain
of Ad(g) from g to gC by C-linearity. Then (Ad, gC) is a representation of G with
differential given by ad (again extended by C-linearity). It has a weight space
decomposition

gC =
⊕

λ∈∆(gC,hC)

gλ.

Note that the zero weight space is g0 = {X ∈ gC | [H,X] = 0, H ∈ hC}. Thus
g0 = hC since h is a maximal abelian subalgebra of g. This gives us the following
definition

Definition 4.3.3. Let G be a compact semisimple Lie group and h a Cartan
subalgebra of g. There is a finite set of nonzero elements ∆(gC, hC) ⊆ (hC)∗ called
the roots of gC, so that

gC = hC ⊕
⊕

α∈∆(gC,hC)

gα, (4.6)

where gα = {X ∈ gC | [H,X] = α(H)X, H ∈ hC} is nonzero. The equation
(4.6) is called the root space decomposition of gC.

Theorem 4.3.3. Let G be a compact semisimple Lie group, (Φ, V ) a finite di-
mensional representation G, and h a Cartan subalgebra of g. Denote ∆(gC, hC) =
∆(gC) and ∆(V, hC) = ∆(V ).

1. For α ∈ ∆(gC) and λ ∈ ∆(V ), φ(gα)Vλ ⊆ Vα+λ.

2. In particular, for α, β ∈ ∆(gC) ∪ {0}, [gα, gβ] ⊆ gα+β.

3. Let (·, ·) be an Ad(G)-invariant inner product on gC. For α, β ∈ ∆(gC)∪{0},
(gα, gβ) = 0 when α + β 6= 0.

4. ∆(gC) spans (hC)∗.

Recall that for a finite dimensional representation Φ of a Lie group G, acting
on a space with an inner product 〈·|·〉, its character is the function

χΦ(x) = Tr(Φ(x)) =
∑
i

〈ui|Φ(x)ui〉,

where {ui} is an orthonormal basis with respect to the inner product 〈·|·〉 and
x ∈ G.

Definition 4.3.4. Let G be a compact semisimple Lie group with Lie algebra g,
h a Cartan subalgebra of g, and λ ∈ (hR)∗. Let Hλ ∈ hR be uniquely determined
by the equation λ(H) = B(H,Hλ) for all H ∈ hR. When λ 6= 0, let

uλ =
2Hλ

B(Hλ, Hλ)
.

Definition 4.3.5. An abstract root system in a finite dimensional real inner
product space V is a finite set ∆ of nonzero elements of V such that
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• ∆ spans V .

• The orthogonal transformations sα(φ) = φ − 2〈φ,α〉
‖α‖2 α, for α ∈ ∆, leave ∆

invariant.

• 2〈β, α〉/‖α‖2 is in Z for all α, β ∈ ∆.

An abstract root system is reduced if α ∈ ∆ implies 2α /∈ ∆. An abstract
root system is irreducible if ∆ admits no nontrivial disjoint decomposition ∆ =
∆′ ∪∆′′ with every member of ∆′ orthogonal to every member of ∆′′.

In the above definition we also introduced the root reflection

sα(φ) = φ− 2〈φ, α〉
‖α‖2

α,

for α ∈ ∆ and φ ∈ (h0)∗, where h0 denotes the R−linear span of all Hα, and the
inner product 〈·, ·〉 is defined as

〈φ, φ′〉 = B(Hφ, Hφ′).

This is −1 on α and 1 on orthogonal complement of α. It can be shown that if
α ∈ ∆, then the root reflection sα carries ∆ into itself.

Among all the structure of roots and weights, the notion of positivity will play
a crucial role.

Definition 4.3.6. A subset δ = {α1, . . . , αn} of ∆ is called a base for the root
system if

1. δ is a basis for V .

2. Every element β ∈ ∆ can be written as β =
∑
kiαi where all ki are integers

with the same sign (or zero).

Given a choice of base δ, the roots in ∆ are called simple roots, and roots which
are a positive linear combination of simple roots are called positive roots and
denoted ∆+.

We have the following proposition, which relates roots defined in 4.3.3 and
abstract root systems.

Proposition 4.3.1. The root system for a compact connected linear semisimple
Lie group G with respect to a Cartan subalgebra h forms an abstract reduced root
system in (hR)∗. The system is irreducible if and only if the Lie algebra g of G is
simple, if and only if gC is simple.
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Definition 4.3.7. Let G be a compact semisimple Lie group and T a maximal
torus of G with corresponding Cartan subalgebra h.
The set of algebraically integral weights is the set P (h) in (hR)∗ given by

P (h) = {λ ∈ (hR)∗ | λ(uα) ∈ Z for α ∈ ∆(gC)}

where (hR)∗ is extended to an element of (hC)∗ by C-linearity.
The set of analytically integral weights is the set A(T ) in (hR)∗ given by

A(T ) = {λ ∈ (hR)∗ | λ(H) ∈ 2πiZ whenever exp(H) = I for H ∈ h}.

Lemma 4.3.4. Let G be a compact connected semisimple Lie group with Cartan
subalgebra h. For H ∈ h, exp(H) ∈ Z(G) if and only if α(H) ∈ 2πiZ for all
α ∈ ∆(gC).

Definition 4.3.8. Let G be a compact semisimple Lie group and T a maximal
torus. Write χ(T ) for the character group on T , i.e. χ(T ) is the set of all Lie
homomorphisms ζ : T → C×.

Theorem 4.3.5. Given λ ∈ (hR)∗, λ ∈ A(T ) if and only if there exists ζλ ∈ χ(T )
satisfying

ζλ(exp(H)) = eλ(H)

for H ∈ h, where λ ∈ (hR)∗ is extended to an element of (hC)∗ by C-linearity. The
map λ→ ζλ establishes a bijection

A(T )→ χ(T ).

Definition 4.3.9. A linear functional λ ∈ (hC)∗, which is real on hR, is said to
be dominant if

2〈λ, α〉
‖α‖2

≥ 0 for all α ∈ ∆+.

Having the notion of positivity of roots, we can introduce partial ordering on
the set of weights.

Definition 4.3.10. If λ, µ ∈ (hC)∗, then we say that λ is higher than µ if λ− µ
is a linear combination of positive roots with non-negative real coefficients. We
denote this relation by λ � µ). The weight which is the highest with respect to
this partial ordering is called the highest weight.

Now we can introduce a fundamental theorem which characterizes irreducible
representations of compact connected Lie groups.

Theorem 4.3.6. (Theorem of the highest weight) Let G be a compact con-
nected semisimple Lie group and V an irreducible representation of G.

1. The highest weight λ0 is dominant and analytically integral.

2. Up to isomorphism, representation V is uniquely determined by λ0.
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3. The weight space Vλ of the highest weight λ is 1-dimensional.

4. V has a unique highest weight, λ0.

5. Every dominant, analytically integral weight is the highest weight of an ir-
reducible representation.

Theorem of the highest weight gives a parametrization of the irreducible rep-
resentations of a compact Lie group. Lacking is an explicit realization of these
representations, and Borel-Weil theorem repairs this gap. Now we algebraically
define the Weyl group.

Definition 4.3.11. Let ∆ be a reduced abstract root system in a finite dimensional
real inner product space V . The group generated by the sα for α ∈ ∆ is called the
algebraically defined Weyl group of ∆.

One can immediately see two properties of an algebraically defined Weyl group:

• W is a finite group of orthogonal transformations of V. For example, for
g = sl(n,C), W = {permutations of {e1, . . . , en}} and |W | = n!.

• Straightforward computation shows that

srα(rφ) = rφ− 2〈rφ, rα〉
‖rα‖2

rα = rφ− 2〈φ, α〉
‖α‖2

rα = r(sαφ),

for any orthogonal transformation r ∈ W of V , and we see that srα = rsαr
−1.

It is also worth noting that for compact connected Lie group G, the analytically
defined Weyl group W (G, T ) (considered as acting on (hR)∗) coincides with the
algebraically defined Weyl group of the root system ∆ [8].

4.4 Borel-Weil theorem
In what follows, we will formulate and prove Borel-Weil theorem. We assume

that the reader is familiar with basic notions of differential geometry such as line
bundle and its sections. Borel-Weil theorem asserts that if B the Borel subgroup
of the complex semisimple group GC, then all unitary irreducible representations
can be obtained as the space of holomorphic line bundles associated to the fiber
bundle over GC/B ∼= G/T with the fiber Cχ, which is the one dimensional rep-
resentation corresponding to a dominant integral character χ; and vice versa.
With use of structure theory we will embed our compact connected Lie group in
a complexification and then we will interpret Iwasawa decomposition of complex-
ification.
Before formulating and proving Borel-Weil theorem, we will state two very useful
theorems which we will use in a proof of Borel-Weil theorem itself.
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Theorem 4.4.1. (Weyl’s unitary trick) Let G be a linear connected semisimple
group, let g = k ⊕ p be the Cartan decomposition of its Lie algebra, and suppose
k ∩ ip = 0. Let U and GC be the Lie groups of matrices with Lie algebras u =
k ⊕ ip and gC = (k ⊕ p)C, and suppose U is simply connected. If V is any finite
dimensional complex vector space, then a representation of any of the following
kinds on V leads, via the formula

gC = g⊕ ig = u⊕ iu,

to a representation of each of the other kinds. Under this correspondence, invari-
ant subspaces and equivalences are preserved:

1. a representation of G on V ,

2. a representation of U on V ,

3. a holomorphic representation of GC on V ,

4. a representation of g on V ,

5. a representation of u on V ,

6. a complex-linear representation of gC on V .

Theorem 4.4.2. (Weyl’s theorem) If G is a compact linear connected semisim-
ple Lie group, then the universal covering group of G is compact.

In the following notation we follow [8]. We will denote our compact connected
Lie group by K, and its Lie algebra by k. Complex Lie group KC will be denoted
by G with Lie algebra g = kC = k⊕ ik. One can show that G in this case is linear
connected reductive and g = k⊕ ik is the Cartan decomposition of g.

Let g = k ⊕ a ⊕ n be an Iwasawa decomposition with corresponding group
decomposition G = KAN . We have m = zk(a) = ia, and m is a Cartan subalgebra
of k, where mC = a⊕m. From the fact that the roots in ∆(gC, kC) are just complex-
linear extensions to mC of their restrictions to a it follows that the root space
decomposition of (g, a) coincides with the root space decomposition of (kC,mC):

kC = mC ⊕
⊕
α∈∆

kα = a⊕m⊕
⊕
α∈∆

gα = g. (4.7)

Thus the choice of n determines a positive root system ∆+ of ∆. With M =
ZK(A), the group B = MAN , where N = ΘN , is a complex subgroup of G
because its Lie algebra

b = m⊕ a⊕ θn = mC ⊕
⊕
α∈∆+

k−α
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is complex. Let λ be analytically integral on (mC)∗ and let ζλ be the correspond-
ing character of subgroup M . We extend it to a holomorphic one dimensional
representation ζλ : B → C× by defining

ζλ =

{
exp(λlogx) for x ∈ A
1 for x ∈ N.

Theorem 4.4.3. (Borel-Weil theorem) Let K be a compact connected Lie
group, and let G = KC and B be as above. If λ is dominant and analytically
integral and if ζλ denotes the corresponding holomorphic one dimensional repre-
sentation of B, then a realization of an irreducible representation of K with the
highest weight λ is as follows; we have a space

Γ(λ) =
{
F : G→ C | F (xb) = ζλ(b)

−1F (x) for x ∈ G, b ∈ B
}
,

where F is holomorphic and K operates by the left regular representation.

For an outline of the proof from the perspective of complex analysis, see Chap-
ter 14 of [10]. This proof follows [8] and therefore utilizes highest-weight theorem
and proceeds in several steps, each in form of a lemma.
We introduce a structure of inner product space on Γ(λ) by defining

(F1, F2) =

∫
K

F1(k)F2(k)dk.

The left regular representation L of K operates isometrically.

Lemma 4.4.4. Let τ be a finte dimensional representation of K on a complex
vector space V . Then τ extends to a holomorphic representation of G on V .

Proof. We will give a proof for K semisimple. By Theorem 4.4.2 and the fact
that any compact connected Lie group may be taken to be a subgroup of a unitary
group, we may assume K is simply connected. The result then follows from
Theorem 4.4.1.

�

We apply now the theorem of the highest weight to obtain an irreducible unitary
representation Φλ of K with highest weight λ. Let Φλ act in V and vλ be a highest
weight vector (a weight vector v with (

⊕
α∈∆+ gα)v = 0) of norm one. By Lemma

4.4.4, we can extend Φλ to a holomorphic representation of G. For v ∈ V we
define Ψv on G by

Ψv(x) = (Φλ(x)−1v, vλ).

Lemma 4.4.5. For each v in V , Ψv is in Γ(λ). Moreover, L(k)Ψv = ΨΦλ(k)v, so
that {Ψv|v ∈ V } is an irreducible subspace of Γ(λ) under K equivalent with Φλ.
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Proof. Let φv be the differential of Φλ. Since Φλ is unitary on K, φλ is skew-
Hermitian on k. Since φλ is complex-linear on g, φv(θX) = −φv(X)∗ for all X in
g. Thus Φλ(Θx) = Φλ(x

−1)∗ for x in G. Hence b = man in MAN implies

Ψv(xman) = (Φλ(man)−1Φλ(x)−1v, vλ)

= (Φλ(x)−1v,Φλ(ma
−1n)vλ)

= (Φλ(x)−1v,Φλ(ma
−1)vλ)

= (Φλ(x)−1v, ζλ(m)ζλ(a)−1vλ)

= ζλ(m)ζλ(a)−1(Φλ(x)−1v, vλ)

= ζλ(b)
−1Ψv(x).

The second equality comes from n = Θn, the third from the fact that vλ is the
highest weight vector and the fourth - from the fact that vλ has weight λ.
We can see that Ψv is holomorphic, and thus Ψv is in Γ(λ). The lemma finally
follows from

ΨΦλ(k)v(x) = (Φλ(x)−1Φλ(k)v, vλ)

= (Φλ(k
−1x)−1v, vλ)

= Ψv(k
−1x) = L(k)Ψv(x).

�

Now we want to prove that the mapping v 7→ Ψv from Lemma 4.4.5 carries V onto
Γ(λ); this will allow us to end the proof of the theorem. Let us denote Ψvλ = Ψλ.

Lemma 4.4.6. If F is in Γ(λ), then∫
M

F (mxm−1)dm = F (1)Ψλ(x),

for all x ∈ G. In this case dm denotes normalized Haar measure on M .

Proof. The main idea is to show near x = 1 that the left side is F (1) times a
power series in x that is independent of F . The power series is evaluated as the
series for Ψλ(x) by putting F = Ψλ. Since both sides are holomorphic on G and
equal in a neighbourhood of 1, they are equal everywhere. We omit the rest of
this proof, because it utilizes Birkhoff-Witt theorem and the notion of enveloping
algebras which are out of the scope of this article.

�

We now can proceed to the end of the proof of the theorem in the following
steps:
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1.

‖F‖2 =

∫
K

|F (k)|2dk =

∫
K

|F (mkm−1)|2dk for all m ∈M

=

∫
K

∫
M

|F (mkm−1)|2dmdk

≥
∫
K

|
∫
M

F (mkm−1)dm|2dk by the Schwarz inequality

= |F (1)|2
∫
K

|Ψλ(k)|2dk by Lemma 4.4.6

= |F (1)|2‖Ψλ‖2.

2. To each compact set E ⊆ G corresponds a constant CE <∞ such that

|F (x)| ≤ CE‖F‖,

for all F in Γ(λ) and x in E.

3. Γ(λ) is complete. By 2., we have that Cauchy sequences converge uniformly
on compact sets in G; moreover, the limit function is holomorphic and sat-
isfies the correct transformation law under B.

4. Γ(λ) is irreducible. Thus the map v 7→ Ψv is onto Γ(λ). Let U ⊆ Γ(λ) be
nonzero closed invariant subspace and let F 6= 0 be in U . We can apply
L(k) and thus assume that F (1) 6= 0. Then, by 3.,∫

M

ζλ(m)L(m)Fdm

is in U . But from Lemma 4.4.6 we have that this is F (1)Ψv, therefore Ψv is
in U . Now assume that U⊥ 6= 0. Then Ψv is also in U and this gives us a
contradiction. Hence we have that U = 0 or U⊥ = 0.

This concludes the proof of Borel-Weil theorem.

�

There are many generalizations of Borel-Weil theorem, one of them being Bott-
Borel-Weil theorem, which extends it to higher cohomologies. In the language
of sheaf cohomology, we have been looking at the zero degree cohomology of the
sheaf of sections of a line bundle

Γ(Lλ) = H0(KC/B,O(Lλ)),

where O(Lλ) is a space of all sections of a line bundle Lλ, but there are higher
degree cohomology groups which also provide irreducible representation of K.
There is also an extension to quantum groups or to Harish-Chandra sheaves to
construct the infinite dimensional representations, but these are out of the scope
of this article.

46



4.5 Borel-Weil theorem for SU(2)
In the case of K = SU(2) we have explicit construction of irreducible representa-
tions in terms of homogeneous polynomials of two variables.
We can express that in the language of Borel-Weil theorem by identifying holo-
morphic sections in terms of homogeneous polynomials. In this case we have
K = SU(2), T = U(1), KC = G = SL(2,C), Lλ = SU(2)×U(1) C, so

K/T = SU(2)/U(1) = SL(2,C)/B = CP1.

Elements of SL(2,C) are of the form{(
α β
γ δ

) ∣∣∣∣ α, β, γ, δ ∈ C, αδ − βγ = 1

}
and

B =

{(
α β
0 α−1

) ∣∣∣∣ α, β ∈ C} .
One can check that for b ∈ B we have

b

(
1
0

)
= α

(
1
0

)
.

Subgroup N of B (corresponding to n+ =
⊕

α∈∆+ gα) consists of matrices of the
form {(

1 α
0 1

) ∣∣∣∣ α ∈ C} .
We also have subgroup TC corresponding to an algebra hC which appears in de-
composition of g, gC = hC ⊕

⊕
α∈R gα. TC consists of matrices of the following

form
TC =

{(
α 0
0 α−1

) ∣∣∣∣ α ∈ C} .
Space of holomorphic sections Γ(L−k) is the space of functions on SL(2,C)

on which N acts trivially from the right and TC acts via character of T , which
corresponds to an integer k. Explicitly we have

Γ(L−k) = {f : SL(2,C)→ C|f(gb) = αkf(g)∀b ∈ B}.

Let b ∈ N and we have

gb =

(
α β
γ δ

)(
1 β′

0 1

)
=

(
α β′α + β
γ β′γ + δ

)
The condition f(gb) = f(g) implies that f acts only on the first column of the
matrix. Choosing b ∈ TC gives

gb =

(
α β
γ δ

)(
0 (α′)−1

)
=

(
αα′ (α′)−1β
γα′ (α′)−1δ

)
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and condition f(gb) = (α′)kf(g) implies that

f(α′
(
α
γ

)
) = (α′)kf(

(
α
γ

)
).

It follows that our homogeneous polynomials of degree k in two variables
(
α
γ

)
are elements of Γ(L−k). These polynomials are all such sections, so we have
that, up to equivalence, homogeneous polynomials are only finite-dimensional
irreducible representation of SL(2,C) (and so of SU(2)).
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