WYKtAD 11
Na popradnim wyltadrie udowodnilimy twiendieme o lokahng oduracaimoici: fink cia $f \mathbb{R}^{k} \gg \rightarrow \mathbb{R}^{k}$ klay C^{1}, którey pochodna $f^{\prime}(a) \in L\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ jest macierza oduracalng jest wotocreniu punktu a bijekig na efiò otwastly i fankye durdna f^{-1} teri jest Kay C^{1}. ProykTadow $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ gotrie $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$ spetivia zatazonia twr. o lokabny oduracaluisu we wrystkich punktech $a=\left[\begin{array}{l}a_{x} \\ a_{y}\end{array}\right] \in \mathbb{R}^{2}$. Rremynticie, $\operatorname{def} f^{\prime}(a)=\operatorname{det}\left[\begin{array}{ll}\left.e^{a_{x}} \cos a_{y}\right) & \left.-e^{d_{x}} \sin \phi_{y}\right) \\ e^{a_{x}} \sin \left(a_{y}\right), & e^{a_{x}} \cos \left(a_{y}\right)\end{array}\right]=e^{2 a_{x}}>0$ cyli $f^{\prime}(a)$ jest macioray odionacalras. Pohodma f^{-1} w puntcie $b=f(a)$ jest odurotnoicicy $f^{\prime}(a)$:

W notaiji zepplongimamy: $z=x+i y \quad f(z)=e^{z}=e^{x+i y}$ $=e^{x}(\cos y+i \sin y)=e^{x} e^{i y}$. cry $f^{\prime}(z)=e^{z}$. Ale jak to? Wszystion ne zqaaza! Wezmy horbe zespalama $w=u+i v, u, v \in \mathbb{R}$. Rozwarimy, odramowame $l i-$ mowe $\mathbb{R}^{2} \ni z \longmapsto w \cdot z \in \mathbb{R}^{2}$ Tak wygho, de maaionz togo odurowamia? $w z=(u+i v)(x+i y)=u x-v y+$ $+i(u y+v x) \simeq\left[\begin{array}{c}u x-v y \\ v x+u y\end{array}\right]=\left[\begin{array}{cc}u & -v \\ v & u\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$. Ale, moment
csyli f́́a) jost mowemen proz e^{a}. W tym senne $f^{\prime}(a)=e^{a}$. Podobnie, mozwa sis prekonai ze $\left(f^{-1}\right)(b)=\frac{1}{b}$ Lanhyiraj $f^{-1}(b)^{\prime} \stackrel{\text { ornacommy }}{=} \log b:=\log |b|+\operatorname{larg} b$

Uwaga: lokaly charakter twientzoma preja-(2) wà is wtym, ze log mymage dopnecy rowania: ktöng argb poniminy wisi.
"Cata, glowna logaryfinu" definilejeny jako oduronourame odurotue fink yi e^{z} obcigtej do $\left.z: J m z \in\right]-\pi, \Pi[$. Wónozol $\log : \mathbb{C} \backslash]-\infty, 0] \rightarrow\{z \in \mathbb{C}:$ Im $x \in]-\Pi, \Pi[\}$ detimicjerny worrem $\log b=|t|+i \operatorname{Arg}(b)$ golzie Aigbt $]-\pi$ II $[$.
Zmiening temat narrych rozvorzani \rightarrow
TWIERDZENE O FUNKCJi UWIKLANEI (TFU). Twienoheme to doprecy zowne nastspujosca, intuigg: jeili many m rownan na $n+m$ nieariadomych to znajer n nieviadonych, powstate m meniadomych nozina wyrnathyi'm rionan. W prypradian winan' limonych mozine to zilestowai hasts pijergm prukticdem: Niech $x \in \mathbb{R}^{3} y \in \mathbb{R}^{2}$. Rowaring sytuago of..., w Ktorg mamy dwaróunania himowe né pige zmemych $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{3+2}=\mathbb{R}$. $\begin{array}{ll}\text { Many wis } \quad & a_{11} x_{1}+\ldots+a_{13} x_{3}+\tilde{a}_{11} y_{1}+\tilde{a}_{12} y_{2}=4 \\ a_{21} x_{1}+\ldots+a_{23} x_{3}+\tilde{a}_{21} y_{1}+\tilde{a}_{22} y_{2}=1\end{array}$
Prepiszny w postaci macierzonve: $\left.A=\left[a_{1 j}\right]\right]_{i \in\{1,2\}} \in\{, 1,2,3\}$ $\left.\tilde{A}=[\tilde{a} p q]]_{p, q \in\{1,2\}} \quad b=\left[\begin{array}{l}4 \\ 1\end{array}\right] \quad A\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]+\tilde{A}\left[\begin{array}{l}\left.y_{1}, \tilde{y_{2}}\right]\end{array}\right]=\hat{\{ }, 2,3\right\}(*)$ zaunazimy, ze jeit ty cko macuerz $\widetilde{A} \in M_{2 \times 2}$ (仅) jest oduracalná to ((x) bardia latua da ais romikTai ze wigledu na $\bar{y} \in \mathbb{R}^{2}: \quad y=(\widetilde{A})^{-1}(A x+b)$. Problem wongisey ma swoje bantrie skomphikowa-

Na pryflad odurownanie limoue $x \rightarrow A x$ mozine zastypic" cumpolune $k^{n} \mathbb{R}^{3} \ni x \mapsto g(x) \in \mathbb{R}^{2}$ Wtedy problem $g(x)+\tilde{A} y^{(+x)}=b$ rozurgrije sif dajp
$y=A^{-1}(b-g(x))$. Mozime na $(* *)$ popatnee jexal ogjinnef: Hozwarmy odwronowamie
$F: \mathbb{R}^{3+2} \rightarrow \mathbb{R}^{2}$ dane warem $F(x, y)=g(x)+\hat{A} y 1$ ustalny $b \in \mathbb{R}^{2}$ Wownas Nomanie
$F(x, y)=b$ zadaje y w spood'b uniklavey.
 Kgo $x: y=y(x)=\tilde{A}^{-1}(b-g(x))$. No dobone, to ladimy najbandruy ogohm i wapytajimy is co treba meoniel D_{0} odreomomamh $F \cdot \mathbb{R}^{3+2} \rightarrow \mathbb{R}^{2}$ zeby móc stwierolic', ze $F(x, y)=b$ iadaje y wsposit numitany. Na pringtad, ay

$$
F(x, y)=\left[\begin{array}{l}
x_{1}^{2} y_{1}+\exp \left(x_{2}^{2}+y_{1}\right) \sin \left(x_{3}\right) \\
x_{3}^{2} \log \left(y_{1}^{2}+y_{2}^{2}\right) \operatorname{tg}\left(x_{2} y_{1}\right)
\end{array}\right] \quad \text { adaje } y
$$

w spusit munktamy Tutay me daje notpame
 lo mie macy, ze mo. pongzac pythme me da dis odponnedaci. Mwar a tym twevonomic ofunkyi uviklany. Prypwom iny $/$ uppradzing pamacining wotaje. Nied $F: \mathbb{R}^{n+m} \rightarrow \theta \rightarrow \mathbb{R}^{m}$ ledue odurorouromil klas ϵ^{1} ne otwastgm phisne $\theta \subset \mathbb{R}^{n+m}$. (mopnedmo $n=3, m=2$) Wowehas $F^{\prime}(a) \in M_{m, n+m}(\mathbb{R})$ $\left(a=\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{n+m} \quad x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m} \cdot\right)$ zapssemny w motoge
blowowomacmon blowowo macimave $F^{\prime} / a \mid=\left[F_{x}^{\prime}(x, y), F_{y}^{\prime}(x, y)\right]$ gotrie $F_{x}^{\prime}(x, y) \in M_{m \times n}(\mathbb{R})$ $F_{y}^{\prime}(x, y) \in M_{m} \times m(\mathbb{R})$
wty notoje dle pmywoter $h=\left[\begin{array}{l}h_{x} \\ h y\end{array}\right] \in \mathbb{R}^{n+m}$ many (4)

$$
\begin{aligned}
& F^{\prime}(x, y)\left[\begin{array}{l}
h_{x} \\
h_{y}
\end{array}\right]=F_{x}^{\prime}(x, y) h_{x}+F_{y}(x, y) h_{y}= \\
& =\left[F_{x}^{\prime}(x, y), F_{y}^{\prime}(x, y)\right]\left[\begin{array}{l}
h_{x} \\
h_{y}
\end{array}\right] \text {. Jeiti wipc } \\
& F(x, y)=\left[\begin{array}{l}
F_{1}\left(x_{1}, \ldots, x_{n}, y_{1}, y_{m}\right) \\
F_{m}\left(x_{1}, \ldots, x_{n}, y_{n}, y_{n}\right)
\end{array}\right] \text { to } \quad F_{x}^{\prime}(x, y)=\left[\frac{\partial F_{j}}{\partial x_{i}}(x, y)\right]_{i \in\{4,\{1, m\}}
\end{aligned}
$$

oran $F_{y}^{\prime}(x, y)=\left[\frac{\partial F_{j}}{\partial y_{j}},(x, y)\right]_{j \in\{1, m\}}$, Zawmainuy ze $F_{y}^{\prime}(x, y)$ jest macionag kivadnatowp mxm. Jako tako moze byc odwracama. Jeih istmieje *o jej odwrotimic̀ o hnanamy sis prostu $\left[F_{y}^{\prime}(x, y)\right]^{-1} \in M_{m \times m}(\mathbb{R})$. Zamin stommTijeny TFU prypusimy, ze $F(x, y)=b$ zadaje y w syosilb uniktany: $F(x, y(x))=b$ ay mozino oblicuy $y^{\prime}(x) 2$ tesp nownome? Skoro $F(x, y(x))=b=$ coust to pochodve odmomoname $x \mapsto F(x, y(x))_{\text {jest }}$ zero. 2 dnugiej strovy 2 reguty Tanioncha manny $0=F_{x}^{\prime}(x, y(x))+F_{y}^{\prime}(x, y(x)) \cdot y^{\prime}(x)$. A wisc $x^{x} y^{\prime}(x)=-\left[F_{y}^{\prime}(x, y(x))\right]^{-1} \cdot F_{x}(x, y(x))$, hylione tradaa unac joung pstaci y aby rómenkowal y!l! Twievonemie (amkyi mondoayj)
Niech $F: \mathbb{R}^{n+m}, \theta \rightarrow \mathbb{R}^{m}$ bedue funkyg klay e^{1} na O Zatóing, ize $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right] \in O$ oran $F\left(x_{0}, y_{0}\right)=b \in \mathbb{R}^{2 h}$. Niech $F_{y}^{\prime}\left(x_{0}, y_{0}\right)$ bsdie ma vieng odwacaling. Istiniga wour cans zbrony otworte $\sigma_{x_{0}} \subset \mathbb{R}^{n}$, $\theta_{y_{0}} \subset \mathbb{R}^{m}$ takie, ze $y \in e^{1}\left(\sigma_{x_{0}}, \mathbb{R}^{m}\right)$ takie, ze $\xrightarrow[\text { vente }]{\text { ren }}$
$\left(x_{0}, y_{0}\right) \in \theta_{x_{0}} \times \theta_{y_{0}} \subset \theta \subset \mathbb{R}^{n+m}$, ani, wanmek $F(x, y)=b$ Whe $(x, y) \in \theta_{x}, \theta_{y o}$ zachadre wtedy, tyko intedy gdy $y=y(x)$ dla newnepo $x \in \theta_{x_{0}}$.
Ponadto $y^{\prime}(x)=-\left[F^{\prime} y(x, y(x))\right]^{-1} \cdot F_{x}^{\prime}(x, y(x))$.
Dourdd: (patrz Sknypt prof. Strzeleckieyp p.6567)
Krok 1 Odwonowana prysine panocmione $\quad H: \theta \rightarrow \mathbb{R}^{n+m}=\mathbb{R}^{n} \times \mathbb{R}^{m}$ dane wonem $H(x, y)=(x, F(x, y))$ ma pochodus $H^{\prime}(x, y)=\left[\begin{array}{ll}\mathbb{1}_{n \times n} & O_{n \times n} \\ F_{x}^{\prime}(x, y) & F_{y}^{\prime}(x, y)\end{array}\right]$. Zaunrazimy, ze

$$
\left.\left[H^{\prime}\left(x_{0}, y_{0}\right)\right]^{-1}=\left[\begin{array}{lc}
1 & O_{n \times n} \\
{\left[-F_{y}^{\prime}\left(x_{0} y_{0}\right)\right.}
\end{array}\right]^{-1} F_{x}^{\prime}\left(x_{0} y_{0}\right),\left[F_{y}^{\prime}\left(x_{0} y_{0}\right)\right]^{-1}\right]
$$

W szeaepolmiá H spetma zat twierdnemia o bokalny odwacolnoll: istrigje $K\left(\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right], r\right)$ orar zbior otwanty $V \subset \mathbb{R}^{n+m} t \cdot z e$

$$
\left.\left.H\right|_{K\left(\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right], r\right)}: K \subset \mathbb{R}^{n+m} t\left[_{x_{0}}^{y_{0}}\right], r\right) \rightarrow V \text { jest Vijekigs, }
$$

odurorowanne admotae $G: V \rightarrow K\left(\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right], r\right)$ jest klasy e^{1}. tatuo prandrac, ze G ma paitoi $G(x, y)=(x, \tilde{G}(x, y))$ garie $\tilde{G}: V \rightarrow \mathbb{R}^{m}\binom{10 H$ mo takp }{ postac } . Krok2 Riumanie $F(x, y)=0$ jest dre $\left[\begin{array}{l}x \\ y\end{array}\right] \in K\left(\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right], r\right)$ Jpetrione wtedy i tylko whedy
gdy $H(x, y)=(x, 0) \in V$. Skaro $H=G^{-1}$ to rownic $H(x, y)=(x, 0)$ opetmone itedy. ty loo whedy galy $(x, y)=G(x, 0)=(x, \tilde{G}(x, 0))$ cryhi artedy: tyeleo
uteoy any $\quad y=\tilde{G}(x, 0)$ urtedy goy $y=\tilde{G}(x, 0)$

Defimiyerng zatem $y(x)=\tilde{G}(x, 0)$; na jakief chiedrimie. P priemore dobieramy $\rho>0$ tak aby $K\left(x_{0}, \rho\right) \times K\left(y_{0}, \rho\right) \subset K\left(\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right], \gamma\right)$ it tak aby $K\left(x_{0}, \rho\right) \times\{0\} \subset V$ ganie chiedrane H^{-1} (wsouegónwila \bar{G} èt aneilane we V). Skoro $\tilde{G}\left(x_{0}, 0\right)=y_{0}$ to istivieje $\tilde{\rho}<\rho$ takie, ze dla $x \in K\left(x_{0}, \tilde{\rho}\right) ; y(x) \in K\left(y_{0}, \rho\right)$. KTedtacc $O_{x_{0}}=K\left(x_{0}, \hat{\rho}\right)$ and $\partial_{y_{0}}=k\left(y_{0}, \rho\right)$ dostije my tere nopacso thierobenia
Wzor $y^{\prime}(x)=-\left[F_{y}^{\prime}(x, y(x))\right]^{-1} \cdot F_{x}^{\prime}(x, y(x))$ wostat uypmonablawy poen dowodem turemoma
Ulwaga frukge wadang us pooob suriklayy mozive bodai ue weylede na ekstrema.

$F(x, y)=0$ - 1 rónnanieskalanych $F_{x}^{\prime}(x, y)=0-n$-wimarn skakaryd golie $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ gran $y: \theta_{x_{0}} \rightarrow \mathbb{R}$ Jak badac 2 gos podnadu- kolejn uylled

