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Chapter 1

Introduction

1.1 Motivation

Patterns observed in nature frequently originate from instabilities. For example, the Rayleigh-
Bénard instability initiates convection cells in a fluid film heated from below. The Kelvin-
Helmholtz instability is responsible for the formation of ocean waves and curly clouds at the
boundary between two layers of air moving with different velocities, and can be experienced
as turbulence during an aircraft flight. Two remarkable examples of the Kelvin-Helmholtz
instability can be observed in Fig. 1.1. On the left panel of Fig. 1.1, the instability developed
in the atmosphere of the planet Jupiter, at the boundary between its two bands. On the
right panel, one can see a similar curly pattern “frozen” in a rock. It is interpreted as a trace
of a Kelvin-Helmholtz instability, which occurred after a seismic event in the early staged of
diagenesis, when the rock was not yet consolidated [1]. Note that a similar pattern was also
preserved in the younger layers of the rock, which suggests that the event which caused the
pattern formation reoccurred (although probably with a smaller magnitude). The Saffman-
Taylor instability is another remarkable example of an instability. It occurs whenever a less
viscous fluid is pushed to replace a more viscous one. As a consequence of this instability, the
boundary between the fluid first becomes wavy, and later “fingers” of the less viscous fluid
grow and gradually reach further and further into the body of the more viscous fluid. The
phenomenon is unwelcome to petroleum engineers, who pump water into oil-bearing reservoirs
in order to extract hydrocarbons. A regular water-oil front can only be obtained if some
additional substances (e.g. polycarbonates) are added to the water. The mixture is then more
viscous than oil, which prevents the Saffman-Taylor instability to occur. Otherwise the front
would soon get perturbed and a finger of water would penetrate to the outlet well, leaving the
oil behind.

Most of the patterns which arise as a consequence of instabilities cease to exist soon after the
driving force disappears. Geological systems are notable exceptions, since the pattern carved
in rocks can persist even for millions of years [2, 3]. On the other hand, geological processes
often occur on extremely long time scales, and the ongoing evolution of the patterns cannot
be directly observed. Some notable examples of geological patterns which are believed to have
been formed due to symmetry-breaking instabilities and self-organization are travertine terraces
(Fig. 1.2), crystal dendrites (Fig. 1.3), or solution pipes (Fig. 1.4).

Solution pipes, which belong to a wider class of karst forms, are of our specific interest. The
formation of solution pipes is an example of a wide range of symmetry-breaking phenomena
driven by couplings between fluid infiltration, ion transport in the groundwater flow, and chem-
ical transformation of the rock. Whenever groundwater is out of equilibrium with the porous
rocks it is infiltrating, dissolution and precipitation can take place in the pore space. As a result,
the chemical composition and morphology of the rock might undergo significant changes, up to
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Figure 1.1: (Left) A Kelvin-Helmholtz instability in the atmosphere of Jupiter. Source: Wiki-
media Commons. (Right) Dislocated layers of a sedimentary rock in the Lisan Formation,
Israel. The pattern is interpreted as a result of a Kelvin-Helmholtz instability. The height of
the rock formation presented in the image is 2-3 m. Photo: Author.

Figure 1.2: Travertine terraces in Pamukkale, southern Turkey. The terraces were formed as a
result of precipiation of travertine, a calcium carbonate mineral, from hot springs [3]. Source:
Wikimedia Commons.
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Figure 1.3: A crystal dendrite on an exposed fracture wall. The coin illustrates the scale of the
pattern. Photo: Author.

the complete replacement of the parent (primary) rock by a product (secondary) one. Among
numerous natural examples of such transformations are dolomitization [7], serpentine carbon-
ation [8], albinitization [9] and feldspar alteration [10]. Fluid-mediated replacement reactions
have also been studied in the laboratory, although most of the experiments were conducted in
the absence of the flow [9].

The replacement of one rock by another one is not instantaneous. Instead, reaction fronts
form. These are regions of increased chemical activity, separating the secondary and the primary
phase. Reaction fronts propagate in the direction of the flow, but with much lower velocity
than that of the infiltrating water [11, 12, 13]. This time scale separation is due to the large
molar concentration difference between ions in the fluid phase and the consolidated material in
the solid phase.

When the secondary phase is more permeable than the primary phase, reaction fronts are in-
herently unstable. Even if the reaction front is initially planar, soon small perturbations, which
absorb more flow, emerge and grow into finger-like or funnel-like structures. These structures
go under various names: “dissolution fingers”, “wormholes”, or “solution pipes” [14, 15, 4]. The
mechanism of their formation is referred to in the literature as the reactive-infiltration instabil-
ity [16]. Arguably the most famous example of such a process is the dissolution of a carbonate
matrix by an incoming acidic solution, giving rise to a rich variety of karstic forms [17, 18]. How-
ever, the opposite situation can also occur, when precipitation of minerals from ions present
in the infiltrating fluid decreases the porosity of the rock. In this case the reaction front is
stabilized by the permeability decrease [19] and any protrusions in the front get flattened out.

Due to the complex, nonlinear nature of reactive-infiltration processes, analytical results
in this field are rather limited. They were focused either on analysis of morphology of one-
dimensional reaction fronts [20, 21], or performing linear stability analysis of the fronts, but in
the simplest case of a single-component dissolution system [16, 22]. This thesis aims to partly
fill this gap by providing strict analytical results beyond these simplest cases.
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Figure 1.4: (Top) An array of solution pipes in limestone bedrock near Smerdyna (Poland).
They are postulated to have been formed by a dissolving action of meltwater during Elsterian
deglaciation [4, 5]. The brown rims in the clay filling the pipes are formed as a result of
clay and iron oxide accumulation due to the illuviation processes [6]. The clay particles are
transferred by water from the upper parts of the soil and then flocculate at the clay-limestone
boundary, where the pH changes from mildly acidic to alkaline. The photo is courtesy of dr
Łukasz Użarowicz, SGGW. (Bottom) Two solution pipes of a regular, parabolic shape. The
length scale is provided by the hammer. The photo is courtesy of prof. Piotr Szymczak, UW.
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1.2 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we introduce a general large-scale reactive-
infiltration model, which will serve as the starting point for the further analysis. In Chapter 3
we derive some classic results of the reactive-infiltration instability, studying linear stability of a
thin planar dissolution front. Chapter 3 serves also as an introduction to our own results, which
are presented in the subsequent part of the thesis. In Chapter 4 we go beyond linear stability,
studying the onset of nonlinear competition between spontaneously developing corrugations in
a dissolution front. Chapter 5 presents a typical nonlinear evolution of a single-component
reactive-infiltration system. In Chapter 6 asymptotic nonlinear dissolution forms are studied.
Chapter 7 is devoted to the dynamics of dissolution-precipitation fronts. Here we study the
morphology of planar replacement fronts, and then their stability. Next, in Chapter 8, nonlinear
replacement dynamics is studied by numerical simulations. Finally, a summary of the thesis is
given in Chapter 9.
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Chapter 2

General reactive-infiltration model

In the current chapter the model will be introduced, which aims to capture three basic com-
ponents of the reactive infiltration system — fluid flow, transport of aqueous species, and the
porous matrix evolution — as well as couplings between these three phenomena. The length
scales considered in this model are much larger than the typical sizes of the pores, which justifies
the adoption of the continuum approach: all the physical fields (such as the the Darcy velocity,
the matrix porosity, or concentrations of the aqueous species) are treated as continuous fields
and represented by continuous functions of both position r and time t.

2.1 Fluid flow through the porous matrix

If at least some part of the pore voids are interconnected, the porous rock can be infiltrated
by groundwater. In our model we assume that all the pores of the matrix are interconnected
and that they are completely filled with the (moving) fluid. Another assumption, of the incom-
pressibility of the fluid, yields the continuity equation which couples the porosity ϕ(r, t) with
the volumetric Darcy velocity u(r, t),

∂ϕ

∂t
+∇ · u = 0. (2.1)

The fluid flow is driven by the externally imposed pressure difference. The relationship
between the Darcy velocity and the pressure gradient over length scales larger than the char-
acteristic pore sizes is given by the celebrated Darcy’s law [23], which states that the fluid flux
density is proportional to the pressure gradient,

u = −K
µ
∇p. (2.2)

In fact, u is often referred to as the “Darcy velocity” or the “superficial velocity” in the context
of groundwater flow. The proportionality coefficient is the ratio between the porous matrix
permeability K = K(r, t) and dynamic viscosity of the fluid µ. The viscosity of the fluid is
assumed to be constant in our model. The law was discovered by Henry Darcy experimentally,
but can also be derived from the Navier-Stokes equations, assuming that the flow is incom-
pressible, stationary, and creeping, and that the resisting viscous force is linear in the mean
fluid velocity within the pores [24, 25, 26].

The permeability K is a function of the local properties of the porous matrix. In general it is
a tensor field, which may account for anisotropy in rocks (e.g. layering). In our model porosity
is the only field which bears information about the local structure of the matrix. Therefore
the permeability is assumed to be a scalar field related to the porosity, K(r, t) = K(ϕ(r, t)).
There is no universal relationship between the matrix porosity and its permeability. The latter
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depends on the type of the rock, mainly through the structure of the pore network. It is however
natural to expect that K should be an increasing function of ϕ 1. One of the most common
models of permeability is the Kozeny equation [26]. In his theory, Kozeny modeled the porous
medium as a bundle of capillary tubes of equal length [28]. After solving the Navier-Stokes
equations for such a system, he derived the following expression for permeability:

K(ϕ) =
c0ϕ

3

s2
. (2.3)

In the above, s is the specific surface area (i.e. surface area per a unit volume of the rock), and
c0 is a dimensionless factor which accounts for the structure of the pore network. In this thesis
two models of the porosity-permeability relation will be utilized. Assuming that the specific
surface area s is constant, the Kozeny equation (2.3) simplifies to the cubic permeability model,

K(ϕ) = K1ϕ
3. (2.4)

The second porosity-permeability relation will be the the exponential model,

K(ϕ) = K0e
V ϕ, (2.5)

which is sometimes used to model hydraulic properties of rocks that are partly soluble [29]. In
sandstones, for instance, insoluble grains (typically composed of quartz or feldspar) are often
binded together by soluble carbonate cement. Dissolution of the cement hardly changes the
porosity of the rock, but its permeability increases significantly. Such a strong response of
permeability to porosity changes is well represented by the exponential relation (2.5).

2.2 Transport of the aqueous species

In an unconfined flow the aqueous species (typically ions) are transported in the flow both by
advection and diffusion. As regards the flow in the pore network, similar transport mechanisms
occur. However, the microscopic diffusion is enhanced due to the fact that in the pore network
there always exists a number of distinct paths which a single ion can pass through while being
transported by the flow [30]. The term “dispersion” was coined to refer to such a mechanism.
In general the dispersion coefficient is a tensor depending on the porosity and the fluid flow
[31, 30, 26]. Since the chemical reactions occur in porous reservoirs, the continuity equation for
the concentration of each species, ci, is

∂(ϕci)

∂t
+∇ · (u ci −D∇ci) = −

∑
j

nijrj, (2.6)

where D = D(ϕ,u) is the dispersion tensor, and the right-hand side represents the reaction
terms: nij’s are stoichiometric coefficients, while rj = rj({ck}, {vk}) denotes the speed of the
jth reaction (in moles per unit time and per unit volume of the rock), which in general depends
on the concentrations of all the aqueous species ck and on the volume fractions of the solid
phases (minerals) vk. The sign convention is such that a “positive” reaction depletes the fluid
from the respective species.

1However, some (rather exotic) counterexamples can be found. Acidic water flushing of fractured argillaceous
limestone causes its permeability reduction, despite the fact that the porosity of the sample increases [27]. Apart
from carbonates, the rock is composed of a significant (> 20%) amount of clay minerals. The reason of the
counterintuitive permeability behaviour is reorganization and localized accumulation of weakly soluble clay
particles in the fractures.
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2.3 Evolution of the porous matrix

The primary porous rock is constituted of a number of minerals, each one occupying some
volume fraction vj. Obviously, the volume fractions of all the minerals and the porosity should
sum up to unity, ∑

i

vi + ϕ = 1. (2.7)

As the reactive infiltration proceeds, the chemical reactions transform the porous matrix by
dissolving or precipitating minerals. As a result, the volume fractions evolve as

∂vi
∂t

= niνiri, (2.8)

where νi is the molar volume of the ith mineral, and ni is the relevant (possibly negative)
stoichiometric coefficient. Since (2.7) is satisfied at any time, the evolution of the mineral
volume fractions leads to porosity changes.

2.4 Assumptions and simplifications of the model

The model presented in Secs. (2.1–2.3) has been posed as quite general. In the current section
we introduce some further simplifying assumptions.

2.4.1 Time scale separation

The time derivatives occur both in the transport equations (2.6) and in the mineral composition
evolution equations (2.8). We are interested in time scales Tv which are associated with the
solid phase evolution,

Tv ∼
|v|

|n||ν||r|
. (2.9)

In the above, |x| denotes the characteristic values of quantity x. In fact, the volume fractions
vi and the stoichiometric coefficients ni are of the order of one, |v| ∼ |n| ∼ 1, so

Tv ∼
1

|ν||r|
. (2.10)

After a simple scale analysis of Eq. (2.6) one reveals that the term with the time derivative,
∂t(ϕci), is smaller than the reaction term by a factor (|ϕ||ν||c|)−1 ∼ (|ν||c|)−1. In other words,
the time scale at which the concentration converges to a steady state, Tc, is (|ν||c|)−1 times
smaller than the time scale of the solid phase evolution Tv. The product |ν||c| is small in typical
geochemical conditions. For instance, the molar volume of calcite is 31.20 cm3/mol, while the
equilibrium concentration of Ca2+ during dissolution of calcite by meteoric water at 25◦C is
approx. 5 · 10−4 mol/L, which eventually sets the time scale ratio Tc/Tv ∼ 2 · 10−5.

Similar reasoning applies to the time derivative of the porosity in the fluid continuity equa-
tion (2.1). Consequently, the longest time scale is the one corresponding to the porous matrix
evolution. Since this is the time scale of our interest, we can neglect the time derivatives in
(2.1) and (2.6). From now on, stationarity of these continuity equations will be assumed.

2.4.2 Dispersion

The tensor form of the dispersion coefficient accounts for the fact that the dispersive transport
might be anisotropic either due to the porous rock anisotropy, or the symmetry violation due
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to the flow [32]. Here we disregard the dependence of the dispersion on the flow, and further
assuming the isotropy of the medium, reduce the tensor to the scalar,

D(ϕ,u) ≈ D(ϕ)I, (2.11)

where I is a 3 × 3 unit tensor. In the first approximation, such a scalar dispersion coefficient
is a product of porosity and molecular diffusivity, D = ϕDmol [32]. Thus further on we shall
loosen our naming convention and use the terms “dispersion” and “diffusion” interchangeably
when referring to the same transport mechanism. Such a convention will be particularly useful
in Sec. 3.6 and in Chapter 7, where the word “dispersion” will have to be used in a completely
different context of “dispersion curves”.

2.4.3 Reaction kinetics

So far we have not proposed any specific form of the reaction kinetics functions, ri = ri({ck}, {vk}).
One of the most successful theories of reaction kinetics was developed by Lasaga and co-workers
[33, 34]. The key point is the assumption that the rate of a chemical reaction depends on the
extent of supersaturation (or undersaturation). For instance, in case of a single-reaction system,
a general form of the reaction rate is

dm

dt
= −sAe−E/(RT )f({ai})g(∆Gr). (2.12)

In the above, we have adapted the notation from Ref. [35]: dm/dt is the reaction rate (mol/s),
s is the surface area (m2), A is the Arrhenius pre-exponential factor (mol/(m2·s)), E is the
activation energy (J/mol), T is the temperature (K), R ≈ 8.31 J/(mol·K) is the gas constant,
f is a function of activities of the ions participating in the reaction, and g is a dimensionless
function of the Gibbs free energy difference between the current state and the equilibrium state.
Typically f is assumed to be a product of the activities,

f({ai}) =
∏
i

anii ; (2.13)

g is expressed in terms of the saturation index Ω,

g(∆Gr) = (1− Ωpi)qi , (2.14)

where pi, qi are fitting parameters; and the saturation index itself is the ratio of the activity
product and the chemical equilibrium constant.

However, even in laboratory experiments it is often difficult to measure the reaction rate
and find the fitting parameters. Sometimes the values reported in the literature can vary
significantly, even by a few orders of magnitude (compare, for instance, the data for gypsum
dissolution in Refs. [36] and [37]). Another issue is that dissolution and precipitation are often
surface processes and the (effective) specific surface area of the porous medium has to be taken
into account [38]. Alas, this quantity is quite difficult to measure. In fact, the surface of
a porous mater can be self-similar (fractal) across a few orders of magnitude and thus the
reactive surface area itself might be ill-defined for a certain class of natural porous materials.

In order to bypass these apparent difficulties, scientists working on reactive flows in porous
media and related topics often take the reductionist approach and propose simple, yet at least
qualitatively reasonable models of chemical kinetics [34]. Chemical reaction rates are often
supposed to depend on the concentration of one species only. The assumption is justified
whenever one of the reactions is significantly slower than the others and its rate limits the rate
of the overall process [39]. Moreover, the reaction kinetics is often approximated by a linear
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or power function [40]. On the other hand, experimental measurements suggest that some
chemical reactions, such as dissolution of pure gypsum by distilled water, in fact do follow
linear or power-law kinetics [34, 36, 37, 41].

Luckily, the problem of choosing the appropriate reaction kinetics model becomes in some
cases irrelevant. In the case of reactive flows, one can assume that the fluid, which is initially
in chemical equilibrium with a rock it is flushing through, instantaneously equilibrates with
the other one once passing the boundary between these two porous media. Consequently, all
the chemical activity is concentrated in an infinitely thin reaction front, which is the surface
between the two porous rocks. The velocity of the reaction front can then be found from the
mass balance between the incoming and outgoing ions. Such an approach, dubbed the thin-
front approximation, is justified if the length scales of interest are significantly larger than the
thickness(es) of the reaction front(s) (which are closely related to the penetration lengths of
the relevant species transported in the flow [42]).

In Chapters 3–6 of this thesis the thin front approximation is applied. Then, in Chapter 7,
linear kinetics models are utilized.
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Chapter 3

Reactive-infiltration instability in the
thin front limit

The simplest and classical example of the reactive-infiltration system has only one chemical
reaction. One of the minerals in the primary rock undergoes dissolution by a single reactant
brought by the flow. Such a system has been proved to exhibit a certain type of instability,
dubbed the “reactive-infiltration instability” — an infinitely wide planar dissolution front is
always unstable with respect to its arbitrarily small perturbation. The instability leads to the
spontaneous front breakup and, in the next stages of the evolution, to the formation of highly-
porous channels, which serve as dominant flow paths. Since the pioneering work of Chadam et
al. [43], the reactive-infiltration instability has been studied by a number of authors [16, 22, 40].
In this chapter we briefly discuss the most important results of the theory, derived previously
by other authors. We concentrate on the thin-front limit, since it will be relevant for the next
three chapters.

3.1 The infiltration-dissolution system

Figure 3.1 schematically presents our system of interest: a porous rock being gradually dissolved
by a solvent brought by groundwater flow. Let us briefly recall the model of such a system,
discussed in more detail previously. The groundwater flow is governed by the Darcy’s law,

u = −K(ϕ)

µ
∇p, (3.1)

where u is the Darcy velocity (i.e. the volumetric fluid flux density), K = K(ϕ) is the rock
permeability, µ = const is the fluid viscosity, and p is the fluid pressure. As argued in Sec. 2.4,
to a good approximation the Darcy velocity is a sourceless field,

∇ · u = 0. (3.2)

Only one chemical reaction occurs in the system: primary mineral MP is dissolved by the
incoming reactant X,

MP + nX −−→ AP. (3.3)
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c = c in u = u0 e x

φ 0 < φ < φ 1φ = φ 1
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Figure 3.1: Geometry of the system: a reactive fluid is injected from the left side and dissolves
the porous matrix through chemical reactions. The reaction front separates the dissolved,
upstream domain of porosity ϕ1 and the partly dissolved, downstream domain of a varying
porosity ϕ (ϕ0 < ϕ < ϕ1). As time proceeds, the reaction front migrates, which is schematically
represented by the transition from the dashed-line domain boundary to the solid-line boundary.

In the above, n is a stoichiometric coefficient and AP represents the products of the reaction1.
We assume that the reaction rate is independent from the concentration of AP, and track the
reactant X only. Its concentration will be denoted by c. The transport of the reactant is
described by the advection-dispersion-reaction equation

∇ · (uc−D(ϕ)∇c) = −nr(c, ϕ), (3.6)

where D = D(ϕ) is the scalar dispersion coefficient. The solid phase content in the rock
decreases as the soluble mineral undergoes dissolution,

∂v

∂t
= −∂ϕ

∂t
= −νr(c, ϕ), (3.7)

where ν is the molar volume of the soluble mineral.
As discussed in Sec. 2.4.3, a choice of a appropriate model of chemical kinetics, r(c, ϕ), is a

highly nontrivial task. For simplicity, let us choose a model, in which the dissolution is a first
order reaction: r ∝ c. Additionally, the reaction ceases when there is no soluble material (i.e.
when porosity is maximal). The simplest model which has both of these features is

r = αcΘ(v) = αcΘ(ϕ1 − ϕ), (3.8)

where α is the kinetic constant and Θ is the Heaviside step function. Dissolution is a surface
process, but the specific surface area s is assumed to be constant and is incorporated into α.
This assumption is coherent with the previously made assumption that the surface area is
constant, which led to the simplification of the Kozeny equation (2.3) to the cubic porosity-
permeability relation (2.4). Nevertheless, one should bear in mind that it is a simplification.

1For instance, dissolution of calcite by acidic fluids follows this scheme, as it can be represented by the
following reaction,

CaCO3 + H+ −−→ Ca2+ + HCO3
−. (3.4)

After a slight modification, the model presented in this chapter can be also used to model another class of
dissolution processes, in which the rate of dissolution depends on the concentration of the products only. Here,
dissolution of gypsum by distilled water,

CaSO4 · 2 H2O −−→ Ca2+ + SO4
2− + 2 H2O, (3.5)

can be given as an example [36].
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A more rigorous approach would have to take into account variation of the surface area with
porosity, s = s(ϕ). An appropriate choice of the s(ϕ) dependence is, however, a difficult
task. Limestone dissolution experiments suggest that such a function is not monotonic: it
increases for small ϕ (onset of the dissolution) and decreases for large ϕ (late stages of the
dissolution) [44]. On the other hand, by examining linear stability of planar dissolution fronts
it can be shown that the choice of a specific s(ϕ) function changes the dissolution system
dynamics only quantitatively, not qualitatively [40].

Equations (3.1–3.7) are supplemented by boundary conditions on the velocity and concen-
tration field. Far downstream (at x→∞)

u(x→∞) = u0ex, c(x→∞) = 0, (3.9)

which accounts for the fact that far from the dissolution front the flow becomes uniform and
the reactant concentration approaches the value given by chemical equilibrium. The conditions
far upstream (x→ −∞) are somewhat more subtle. If the reaction front assumes such a form
that sufficiently far upstream everything is dissolved, then it is possible to impose

∂xux(x→ −∞) = 0 (3.10)

on the flow field and
c(x→ −∞) = cin (3.11)

on the concentration field; the former representing the condition that the flow becomes uniform
far upstream, the latter corresponding to the reactant concentration imposed at the inlet.

However, if the undissolved phase extends towards x→ −∞ (as it is the case for a solitary
dissolution finger surrounded by an undissolved matrix), then the condition analogous to (3.11)
should be imposed only within the finger, and not on the entire x → −∞ line. We will come
back to this issue later on in Chapter 6.

Formally, equations (3.1–3.8) have to be also supplemented by the initial condition of the
form

ϕ(x, y, z, t = t0) = ϕinit(x, y, z). (3.12)

Let ϕ0 and ϕ1 denote the porosities the primary (undissolved) and the secondary (dissolved)
rock. Obviously, ϕ1 > ϕ0. We demand that the initial porosity distribution has well-defined
asymptotes: the rock downstream is undissolved, ϕinit(x → ∞) = ϕ0, and the rock upstream
is completely dissolved, ϕinit(x→ −∞) = ϕ1. An exactly stationary front demands an infinite
time to develop, thus we formally select t0 → −∞ as the starting point of the system evolution.

In course of the evolution, as the porous matrix is infiltrated by an incoming flux of reactive
fluid, a reaction front develops. It divides the area which is completely dissolved (of final
porosity ϕ1) from the region which is not yet completely dissolved (of ϕ < ϕ1) and propagates
through the rock. All the chemical activity is concentrated in the vicinity of the front.

3.2 Length scales in a stationary front

Let us consider a one-dimensional case: all the fields depend only on time t and one spatial coor-
dinate, x. Incompressibility of the Darcy velocity (3.2) along with the boundary condition (3.9)
immediately yield

ux = u0 = const. (3.13)

During its evolution, the front approaches a stationary state, when the fields depend on a
single variable, x′ = x − Ut. The front velocity U is to be determined. Let x′ = 0 denote the
rightmost position where porosity is maximal: ϕ(x′ < 0) = ϕ1 and ϕ(x′ > 0) < ϕ1. There is
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Figure 3.2: Length scales of a stationary dissolution front. Upstream (x′ < 0) the reactant con-
centration decays exponentially in the vicinity of the front, with the characteristic length scale
Ldiff. Downstream (x′ > 0) it also decreases since the reactant is consumed in the dissolution
reaction. The characteristic penetration length is denoted by Lpen.

no soluble material in the upstream (x′ < 0) domain, and the reaction term r vanishes there.
Eq. (3.6) yields

∂x′(u0c−D(ϕ1)∂x′c) = 0, x′ < 0, (3.14)

and can be easily solved as

c(x′) = cin + C1 exp

(
u0x

′

D(ϕ1)

)
. (3.15)

The concentration profiles decays exponentially near the dissolution front (x′ = 0). The char-
acteristic length of the decay (see Fig. 3.2) is

Ldiff =
D(ϕ1)

u0

. (3.16)

Downstream the transport-reaction equation reads

∂x′(u0c−D(ϕ)∂x′c) = −αc, x′ > 0. (3.17)

Due to presence of the nonlinear dispersion factor, the equation cannot be solved unless it
is coupled with the porosity evolution equation (3.7). However, an approximate analysis can
be still performed if we assume that the dispersion factor D(ϕ) is approximately constant.
Due to continuity, it has to be of the same order of magnitude as its counterpart upstream,
D(ϕ) ≈ D(ϕ1) = const. Then Eq. (3.17) can be easily solved to yield

c(x′) = C2 exp (x′/Lpen) , (3.18)

where

Lpen =
2D(ϕ1)√

u2
0 + 4αD(ϕ1)− u0

(3.19)

is the downstream penetration length of the reactant. The C1,2 constants can be found from
continuity of c and ∂x′c across x′ = 0.

The ratio of Ldiff and Lpen is equal to

Ldiff

Lpen
=

√
1 + 4H − 1

2
, (3.20)
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Figure 3.3: Geometry of the system: a reactive fluid is injected from the left side and dissolves
the porous matrix through chemical reactions. The reaction front separates the dissolved,
upstream domain (Ω) of porosity ϕ1 and the undissolved, downstream domain (Ω̄) of porosity
ϕ0, complementary to Ω. As time proceeds, the reaction front migrates, which is schematically
represented by the transition from the dashed-line domain boundary to the solid-line boundary.

where

H =
αD(ϕ1)

u2
0

(3.21)

is a dimensionless coefficient [42]. For H � 1 the upstream diffusive decay length is much
larger than the downstream penetration length, Ldiff � Lpen, and vice versa.

3.3 Thin front approximation

In the following analysis we will make one more approximation, mainly that the penetration
length Lpen is significantly smaller than any other length scale of our interest. All the chemical
activity is then concentrated in the region of negligible thickness just at the reaction front.
This “thin front” approximation is justified whenever H is much larger than unity, H � 1. In
this case Lpen � Ldiff.

Once the reaction front is formed, it divides two distinct regions. Upstream of the front,
all the soluble material has dissolved and the porosity is constant, ϕ = ϕ1. Ahead of the front
the matrix has not been dissolved yet and the porosity is still equal to its initial value, ϕ = ϕ0.
The thickness of the reaction front in our approximation is zero, so in fact the porosity changes
discontinuously at the front from ϕ1 to ϕ0. As a consequence, we obtain a Stefan-like problem
in which the rock is divided into two domains: the dissolved, upstream domain (denoted by Ω)
of porosity ϕ1 and the undissolved, downstream domain (complementary to Ω and denoted by
Ω̄) of porosity ϕ0. The system is illustrated in Fig. 3.3.

In both domains the porosity (and hence permeability) is constant, so Eqs. (3.1–3.2) can
be combined to yield the Laplace equation for the pressure,

∇2p = 0, (3.22)

in either Ω or Ω̄. The thin-front approximation implies infinitely fast equilibration of the
reactant concentration,

c|∂Ω = 0, (3.23)

where ∂Ω denotes the reaction front. In the downstream domain (Ω̄) the reactant concen-
tration is constant, c = 0. In the upstream domain (Ω), it satisfies the advection-dispersion
equation (3.6),

∇ · (uc−D(ϕ1)∇c) = 0, (3.24)
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where u = −K(ϕ1)µ−1∇p. Since the porosity jump at the front is discontinuous, the evolution
equation (3.7) has to be replaced by an equation for the reaction front velocity. Combining
Eqs. (3.6–3.7), we obtain

∇ · (uc−D(ϕ)∇c) = −n
ν

∂ϕ

∂t
. (3.25)

Let us choose a particular time moment t1 and consider a small rectangle R centered at a
point rf located at the reaction front. The two sides of this rectangle will be aligned with the
vectors normal (en) and tangential (et) to the front: R = {r : −εn < (r − rf ) · en < εn,−εt <
(r− rf ) · et < εt}. The normal vector en will point downstream (en · eξ > 0). Integrating both
sides of (3.25) over R, and using the Gauss’s theorem, we obtain∫∫

R

dξ dη∇ · (uc−D(ϕ)∇c) = −n
ν

∫∫
R

dξ dη
∂ϕ

∂t
, (3.26)

en · (uc−D(ϕ)∇c)|rf+εn en
rf−εn en

= −n
ν

d

dt

∫
[rf−εn en,rf+εn en]

dl ϕ. (3.27)

The left-hand side of Eq. (3.27) is the difference of the reactant fluxes at both sides of the front.
The right-hand side of Eq. (3.27) is the (rescaled by n/ν) rate at which the local integral of
porosity changes, and is directly related to the local front velocity U. Taking the limit εn → 0,
in the thin-front approximation one obtains

D(ϕ1)en · ∇c|∂Ω− = −n
ν
en ·U(ϕ1 − ϕ0). (3.28)

The left-hand side of Eq. (3.28) is the diffusive flux of the reactant, incoming to the front.
The outgoing diffusive reactant flux and advective fluxes vanish, since c = 0 at the front and
downstream from the front. In Eq. (3.28) only normal components are compared with each
other. Since the tangential components are both zero, Eq. (3.28) can be written as

U = − ν

n(ϕ1 − ϕ0)
D(ϕ1)∇c

∣∣∣∣
∂Ω−

= − γ

cin
D(ϕ1)∇c

∣∣∣∣
∂Ω−

, (3.29)

where the acid capacity number γ ≡ νcin/(n(ϕ1−ϕ0)) is defined as the volume of rock (of molar
volume ν) that is completely dissolved by a unit volume of reactant (of molar concentration cin).

Similarly as before the thin-front approximation was introduced, both the pressure and the
normal component of the Darcy velocity need to be continuous across the reaction front ∂Ω:

p|∂Ω(t)− = p|∂Ω(t)+ , (3.30)
un|∂Ω(t)− = un|∂Ω(t)+ (3.31)

Lastly let us note that the thin-front approximation was derived assuming that the reaction
is a first-order one, but similar reasoning can be applied for other chemical kinetics as well.
After taking the thin-front limit, the equations of the dynamics become independent of the
chemical kinetics. In principle, Eq. (3.29) for the front velocity results solely from mass balance
between the incoming reactant and the soluble material.

3.4 Scaling

Equations (3.22–3.24, 3.29) can be simplified by scaling the velocity, concentration, and porosity
fields by their characteristic values,

û =
u

u0

, ĉ =
c

cin
, ϕ̂ =

ϕ− ϕ0

ϕ1 − ϕ0

, (3.32)
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where the scaled, dimensionless variables are marked by hats. Additionally, we want to scale
the spatial coordinates by some length L, characterizing the system, and time by T = L/(γ u0),

r̂ = r/L, t̂ = t/T. (3.33)

Using L, we can scale the pressure as follows

p̂ =
K(ϕ0)

u0µL
p. (3.34)

In this thesis two length scales will considered. In this chapter and in the following one, the
diffusive length Ldiff (3.16) will be chosen as the length scale,

L = Ldiff =
D(ϕ1)

u0

. (3.35)

In fact, it is the only length scale which can be naturally derived from the parameters of the
model in the thin front limit. In Chapter 6, where the stationary geometry of the front will be
of our interest, another length scale will be chosen. We will come back to this issue later on.

With these scalings, the governing equations take the form

∇̂2p̂ = 0 r ∈ Ω(t̂) (3.36)

κ∇̂p̂ · ∇̂ĉ+ ∇̂2ĉ = 0 r ∈ Ω(t̂) (3.37)

in the upstream region and

∇̂2p̂ = 0 r ∈ Ω̄(t̂) (3.38)

ĉ = 0 r ∈ Ω̄(t̂) (3.39)

in the downstream one. In the above,

κ ≡ K(ϕ1)

K(ϕ0)
(3.40)

is the ratio of permeabilities of the domains. In typical geological conditions the permeability
is an increasing function of porosity, thus κ > 1. The boundary conditions (3.9–3.11) in the
scaled variables take the form

û(x→∞) = ex, ĉ(x→∞) = 0, (3.41)

and

(∂xûx)(x→ −∞) = 0, ĉ(x→ −∞) = 1, (3.42)

which, as before, need to be supplemented by the continuity conditions for the pressure p̂ and
the normal component of the velocity ûn across the interface2 at the boundary (reaction front)
∂Ω. Finally, the condition (3.29) for the front advancement velocity takes the form

Ûn = −(∇̂ĉ)n (3.43)

Noting that at the reaction front the concentration satisfies a purely kinematic condition

Û · ∇̂ĉ+
∂ĉ

∂t̂
= 0, (3.44)

one can rewrite (3.43) in terms of ĉ only:

∂ĉ

∂t̂
− |∇̂ĉ|2 = 0 r ∈ ∂Ω(t̂) (3.45)

2Note that û = −κ∇̂p̂ in Ω and û = −∇̂p̂ in Ω̄.
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3.5 One-dimensional (planar) solutions

It is relatively straightforward to derive the one-dimensional solutions of Eqs. (3.36–3.39),
corresponding to the planar reactive front propagating with a constant velocity, U0. Assuming
that both ĉ and p̂ are functions of x̂ and t̂ only, leads to

p̂0(ξ) =

{
−κ−1ξ ξ < 0
−ξ ξ > 0,

(3.46)

where ξ = x̂−Û0t̂ is the coordinate moving with the front, and ξ = 0 denotes the front position.
For the concentration we get an exponentially decaying, diffusive profile

ĉ0(ξ) =

{
1− eξ ξ < 0
0 ξ > 0.

(3.47)

Finally, inserting the above into the front velocity condition (3.43) we obtain the result Û0 = 1,
i.e. in the chosen units the planar reaction front advances with a unit velocity along the flow
direction. Note that the dimensional planar front velocity is

U0 = γ u0 =
cin ν u0

n(ϕ1 − ϕ0)
, (3.48)

which in fact could have been derived simply by considering mass balance between the incoming
reactant and the dissolved mineral.

3.6 Instability of the planar dissolution front

As already shown in the 1980s [43, 16], the planar dissolution front is unstable with respect to
arbitrarily small perturbations. The origin of this instability, dubbed the “reactive-infiltration
instability”, can be understood intuitively. Suppose that a small protrusion developed in the
initially planar reaction front (solid line in Fig. 3.4). Such a bump is more permeable than its
neighbourhood, and focuses the fluid flow. Consequently, the bump is exposed to a higher reac-
tant flux, which further promotes its dissolution, and the reaction front propagates faster there
(dashed line in Fig. 3.4). The bump gets amplified. To sum up, the reactive-infiltration instabil-
ity is a consequence of the existence of the positive feedback loop between the flow, the reactant
transport and porosity generation in course of dissolution. In this section, performing linear
stability analysis of the one-dimensional stationary solutions (3.46–3.48) of equations (3.36–
3.39), we show that the planar dissolution front is unstable. The derivation is equivalent to the
one presented in the classical Ref. [43]. For simplicity, we will consider a two-dimensional case.
It is most convenient to work in the reference frame moving with the front, i.e. having applied
the following transformation from (x̂, ŷ, t̂) to (ξ, η, τ),

ξ = x̂− Û0t̂ (3.49)
η = ŷ (3.50)

τ = t̂. (3.51)

The stability analysis proceeds by assuming that the dissolution front (initially located at
ξ = 0) is perturbed by a small perturbation ζ(η, τ)� 1, so that the front position is given by

ξ = ζ(η, τ). (3.52)
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Figure 3.4: An arbitrarily small bump in the dissolution front attracts more flow than its
neighbourhood and gets amplified, as its dissolution is increased. Source: [16].

The perturbation of the front causes similar, infinitesimal perturbations of the pressure and the
concentration fields,

p̂±(ξ, η, τ) = p̂±0 (ξ) + p̃±(ξ, η, τ) (3.53)
ĉ(ξ, η, τ) = ĉ0(ξ) + c̃(ξ, η, τ), (3.54)

where the ± superscript denotes, respectively, the downstream (ξ > ζ) and upstream (ξ < ζ)
domains 3, and the tildes denote the perturbations to the base solutions. The perturbed fields
are then inserted to the equations of dynamics (3.36–3.39), yielding

∇̂2(p̂±0 + p̃±) = 0, (3.55)

κ∇̂(p̂−0 + p̃−) · ∇̂(ĉ0 + c̃) + ∇̂2(ĉ0 + c̃) = 0. (3.56)

Noting that the unperturbed solutions satisfy the original equations and disregarding terms
which are smaller than linear in the perturbations, the problem simplifies to

∇̂2p̃± = 0 (3.57)

− ∂ξ c̃− κ eξ∂ξp̃− + ∇̂2c̃ = 0. (3.58)

The boundary conditions follow from the ones for the general formulation of the problem,

∂2
ξ p̃
−∣∣

ξ→−∞ = 0, ∂ξp̃
+
∣∣
ξ→∞ = 0, (3.59)

c̃|ξ→−∞ = 0. (3.60)

At the reaction front the pressure, the normal component of the Darcy velocity, and the con-
centration should be continuous, (

p̂−0 + p̃−
)
ξ=ζ

=
(
p̂+

0 + p̃+
)
ξ=ζ+

(3.61)

−κ∇̂(p̂−0 + p̃−) · (n̂0 + ñ)
∣∣∣
ξ=ζ

= −∇̂(p̂+
0 + p̃+) · (n̂0 + ñ)

∣∣∣
ξ=ζ

(3.62)

(ĉ0 + c̃)ξ=ζ = 0, (3.63)

3The concentration field is nontrivial only in the upstream domain, thus a similar indexing would be redun-
dant here.

23



which, after linearization in the perturbations, yields(
p̃− − κ−1ζ

)
ξ=0

=
(
p̃+ − ζ

)
ξ=0

(3.64)(
−κ∂ξp̃−

)
ξ=0

=
(
−∂ξp̃+

)
ξ=0

(3.65)

(c̃− ζ)ξ=0 = 0. (3.66)

So far we have not assumed any specific form of the perturbations, which we shall do now.
It is most convenient to choose a perturbation which is harmonic in the direction perpendicular
to the dominant flow direction,

ζ(η, τ) = a(τ) sin(k̂η). (3.67)

Similarly, the pressure and concentration field perturbations are also supposed to be composed
of the sinusoidal factor and the (ξ, τ)-dependent amplitude,

p̃±(ξ, η, τ) = a±p (ξ, τ) sin(k̂η) (3.68)

c̃(ξ, η, τ) = ac(ξ, τ) sin(k̂η). (3.69)

The Laplace equations for the pressure can be immediately solved to yield the general
solution

a±p (ξ, τ) = C±1 (τ)e−k̂ξ + C±2 (τ)ek̂ξ (3.70)

in either of the domains. The far-field conditions for the pressure (3.59) allow us to find two of
the integration constants (which are equal to zero), thus

a−p (ξ, τ) = C−2 (τ)ek̂ξ, a+
p (ξ, τ) = C+

1 (τ)e−k̂ξ. (3.71)

The continuity conditions for the pressure and the normal Darcy velocity are sufficient to find
the remaining two of the integration constants,

C−2 (τ) = a(τ)
κ−1 − 1

κ+ 1
, C+

1 (τ) = a(τ)
κ− 1

κ+ 1
. (3.72)

Now the perturbed transport equation reads

− ∂ξac(ξ, τ) + a(τ)
κ− 1

κ+ 1
k̂e(k̂+1)ξ + (∂2

ξ − k̂2)ac(ξ, τ) = 0 (3.73)

and can be solved analytically as

ac(ξ, τ) = C3(τ)e
1
2

(√
4k̂2+1+1

)
ξ
− a(τ)

κ− 1

κ+ 1
e(k̂+1)ξ (3.74)

(where we have already made use of the concentration-vanishing far-field condition at ξ → −∞,
Eq. (3.60)). The continuity condition for the concentration (3.66) allows us to determine the
last integration constant,

C3(τ) = a(τ)
2κ

κ+ 1
, (3.75)

and find ac,

ac(ξ, τ) =
a(τ)

κ+ 1

(
2κe

1
2

(√
4k̂2+1+1

)
ξ

+ (1− κ)e(k̂+1)ξ

)
. (3.76)

Note that for each Fourier mode, both the pressure and the concentration perturbations can
be factorized as products of functions of single variables: ξ, η, and τ .
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Figure 3.5: Dispersion curves characterizing the stability of a dissolution front in the thin-front
limit, as given by Eq. (3.80), for κ = ∞, 10, 2 (top to bottom). The front gets more unstable
as the permeability contrast κ increases.

As the last step of our analysis, we use the front propagation condition (3.45) to determine
the form of the time growth function a(τ). The linearized condition (3.45) reads

(∂τ − ∂ξ)c̃− 2ĉ′0∂ξ c̃+
(
−ĉ′0 − 1(ĉ′0)2

)′
ζ
∣∣∣
ξ=0

= 0 (3.77)

which, after some simplifications, gives the first-order equation for the growth function a(τ),

(κ+ 1)ȧ(τ) = a(τ)

(
κ

(
1−

√
4k̂2 + 1

)
+ (κ− 1)k̂

)
. (3.78)

The solution of Eq. (3.78) is the exponential function

a(τ) = a(0)eσ̂τ , (3.79)

where the growth factor σ̂ is equal to

σ̂(k̂;κ) =
(κ− 1)k̂ − κ

(√
4k̂2 + 1− 1

)
κ+ 1

. (3.80)

Expression (3.80) is analogous to Eq. (VIII.3) from [16] and to Eq. (5.1) from [40]. However, the
notation of these authors is different from ours. In principle, their definition of the permeability
contrast (denoted by Γ in both [16] and [40]) is the inverse of ours.

Eq. (3.80) gives the dispersion relation, i.e. the relation between the rate of growth of a
small sinusoidal perturbation of the dissolution front, and its wavenumber. The permeability
ratio κ is a parameter here. Let us recall that for dissolution the permeability ratio κ is always
larger than unity. The dispersion curves are illustrated in Fig. 3.5. In any case the infinitely
long perturbations are marginally stable,

σ̂(k̂ = 0) = 0. (3.81)

This is expected, since an infinitely long-wave perturbation is a mere translation of the front.
Since the domain which we consider is infinite in the x direction, such a translation should
not affect the system. (In the case of finite-length domains, however, the zero-wavenumber
perturbation can be unstable [40]). Therefore stability of long-wave perturbations can be
assessed by studying the first derivative of σ̂(k̂) at k̂ = 0,

σ̂′(k̂)
∣∣∣
k̂=0

=
κ− 1

κ+ 1
. (3.82)
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Long-wave perturbations are unstable whenever κ > 1 (i.e. when the secondary phase is more
permeable than the primary phase). In the case of equal permeabilities across the front (κ = 1),
σ̂′(k̂ = 0) = 0 and the second derivative has to be evaluated at k̂ = 0 to asses the front stability.
As it turns out,

σ̂′′(k̂;κ = 1)
∣∣∣
k̂=0

= −2 < 0, (3.83)

so in the marginal case of κ = 1, the front is stable with respect to long-wave perturbations.
For a given κ (except for the limiting case of κ = 1) a dispersion relation has a single

maximum. The most unstable mode corresponds to the wavenumber

k̂∗ =
κ− 1√

κ+ 1
√

12κ− 4
. (3.84)

The critical wavenumber, above which all the modes are stable (due to diffusion, which stabilizes
the front) is equal to

k̂cr =
2(κ− 1)κ

3κ2 + 2κ− 1
. (3.85)

Consequently, the most unstable and the critical wavelength are equal to

λ̂∗ =
2π
√
κ+ 1

√
12κ− 4

κ− 1
, (3.86)

λ̂cr =
π(3κ2 + 2κ− 1)

(κ− 1)κ
. (3.87)

The front gets more unstable as the permeability contrast increases. The limit of large
permeability contrast (κ→∞) is finite,

σ̂(k̂;κ→∞) = k̂ −
√

4k̂2 + 1 + 1. (3.88)

In this case, the most unstable mode and the critical mode are, respectively,

lim
κ→∞

k̂∗ =
1

2
√

3
, lim

κ→∞
λ̂∗ = 4

√
3π (3.89)

lim
κ→∞

k̂cr =
2

3
, lim

κ→∞
λ̂cr = 3π. (3.90)

In the dimensional length units, the most unstable and the critical wavelengths are

λ∗ =
2π
√
κ+ 1

√
12κ− 4

(κ− 1)

D(ϕ1)

u0

, (3.91)

λcr =
π(3κ2 + 2κ− 1)

(κ− 1)κ

D(ϕ1)

u0

. (3.92)

Fig. 3.6 shows the domains of stable and unstable perturbation waves, with the length scale
chosen as Ldiff.

In this section we were assuming that our system is two-dimensional. A linear stability
analysis in 3D is fully analogous to the 2D one. One would have to assume that the front
perturbation is

ξ = ζ(η1, η2, τ) = a(τ) sin(k̂1η1 + k̂2η2), (3.93)

where (ξ, η1, η2) are the three orthogonal spatial coordinates. In fact, such a three-dimensional
LSA can be reduced to the two-dimensional one, since the perturbation (3.93) can be posed as

ξ = ζ(η, τ) = a(τ) sin(k̂η), (3.94)
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Figure 3.6: Domains of unstable (shaded; long waves) and stable (not shaded; short waves)
perturbation modes for varying κ, illustrated in terms of the wavenumber (left) or the wave-
length (right). The dotted and the solid lines correspond to, respectively, the critical and the
most unstable wavenumber/wavelength. As the permeability contrast κ increases, the unstable
domain grows and the most unstable perturbation mode shifts towards shorter waves.

where k̂ =

√
k̂2

1 + k̂2
2 and η = (k̂1η1 + k̂2η2)/k̂.

Lastly, let us note that in the preceding stability analysis we were assuming that the un-
perturbed reaction front is infinitely long (in the y direction). For finite-size domains, waves
longer than the system width cannot develop. Since it is the long-wave part of the spectrum
which is unstable, the finite width of the system stabilizes the front. In principle, if the width
of the system is lower that λcr, Eq. (3.92), the reaction front is linearly stable.
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Chapter 4

Onset of the competition between
dissolution fingers

The linear stability analysis presented in Chapter 3 allows one to predict the growth rate of an
arbitrary harmonic mode of a small perturbation of the dissolution front. Since the amplitudes
of the unstable modes grow exponentially, the fastest-growing mode would quickly outgrow the
other ones. Thus soon after a spontaneous front breakup, the perturbed front should be almost
sinusoidal, with the characteristic wavelength equal to the one characterizing the linearly fastest
growing mode. The linear theory, however, does not provide any information about nonlinear
effects associated with interactions between protrusions of finite amplitude. Due to complexity
of the problem, strict analytical results in the nonlinear regime are very limited. The only
relevant study which we are aware of, was a weakly nonlinear analysis by Chadam at al. [45].
The authors analyzed nonlinear effects in the vicinity of the critical mode, kcr. They showed
that modes of slightly longer wavelengths than the critical mode, k . kcr, are stabilized by
nonlinear effects.

In the current chapter we also develop a weakly nonlinear theory for the reactive-infiltration
model, but we concentrate on different phenomena. We conjecture that one of the first effects
of nonlinearities in the dynamics would be competition between the protrusions — slightly
larger protrusions would attract more reactant flux than the shorter ones, and amplify faster.
(Note that a similar mechanism is responsible for the reactive-infiltration instability itself). Our
weakly nonlinear analysis thus aims to capture the onset of competition between spontaneously
forming protrusions.

Similarly as in Chapter 3 we will consider the thin-front limit (H � 1), in which the problem
is analytically solvable. The model of the system is again given by Eqs. (3.36–3.39) and (3.45)
with the appropriate matching conditions across the interface. As in Chapter 3, we will consider
small perturbations to the planar stationary solutions (3.46–3.47). Now, however, the reaction
front is perturbed by two harmonic modes, so that its position is given by

ξ = ζ(η, τ) = a1(τ) cos(k̂1η) + a2(τ) cos
(
k̂2η + δ

)
. (4.1)

Here, a1, a2 = O(ε), with ε being a small parameter. The limitation to just two harmonic modes
might seem controversial, but in fact it is based on reasonable assumptions. Firstly, we wish to
consider the mode which in the linear theory is the fastest growing one. Let us then set (after
(3.84))

k̂1 = k̂∗ =
κ− 1

2
√

(κ+ 1)(3κ− 1)
. (4.2)

Additionally, since the couplings are strongest between neighbouring protrusions, it should be
expected that the first effect of their competition would be suppression of every second protru-
sion by its neighbours, which is shown schematically in Fig. 4.1. Such an effect is connected

29



t1:

λ*

t2 > t1:

Figure 4.1: Schematic illustration of the first effects of the nonlinearities in the dissolution
front dynamics. The dissolution front has spontaneously developed as (almost) sinusoidal,
with the characteristic wavelength of the fastest-growing mode (top panel). However, soon
the competition between the protrusions starts to play a significant role in the front evolution.
Since the competition is stronger at smaller distances, every second protrusion outgrows its
neighbours (bottom panel). The amplitudes are not drawn up to the scale in this schematic
picture. In reality, they are much smaller than the wavelengths at this stage of the evolution.
Also, the vertical scales are different in the panels: the amplitudes at time t2 are larger than
those at time t1, since the protrusions are constantly growing.

with the amplification of the first subharmonic mode of k̂∗. Therefore we set

k̂2 = k̂∗/2. (4.3)

We conjecture that the interplay between these two harmonic modes is the dominant nonlinear
effect at the onset of the reactive-infiltration instability development.

The idea of our study is due to Huang et al. [46], who were studying the onset of the
competition between protrusions developing during Laplacian growth. In their analysis, they
also considered weak coupling between just two harmonic modes, whose wavelengths differ by
a factor of two. A more extensive weakly nonlinear study of Laplacian growth was conducted
by Miranda & Widom [47], who proved that indeed a two-mode approximation is a relevant
one.

Due to the front perturbation, the pressure and the concentration fields are also perturbed,

p̃(ξ, η, τ) = fp(ξ)αp(τ) cos(k̂∗η) + gp(ξ)βp(τ) cos

(
1

2
k̂∗η + δ

)
, (4.4)

c̃(ξ, η, τ) = fc(ξ)αc(τ) cos(k̂∗η) + gc(ξ)βc(τ) cos

(
1

2
k̂∗η + δ

)
. (4.5)

The pressure field satisfies the Laplace equation, and its perturbations should vanish far from
the front, at ξ → ±∞. We immediately find the spatial part of the pressure perturbation
amplitudes,

fp(ξ) = C1e
k̂∗ξ, gp(ξ) = C2e

k̂∗ξ/2, ξ < 0 (4.6)

fp(ξ) = C3e
−k̂∗ξ, gp(ξ) = C4e

−k̂∗ξ/2, ξ > 0. (4.7)

Since we aim to describe quantitatively the onset of the competition between the fingers, the
continuity conditions at the dissolution front need to be evaluated up to the second order
in ε. The nonlinear couplings cause the development of higher harmonics, but in the following
analysis we shall disregard them, projecting the boundary conditions and the solutions of ODEs
onto the two initial modes. The pressure and normal velocity equality across the reaction
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Figure 4.2: Coupling coefficients µ∗1,2 as functions of κ and δ. Both are positive, which leads to
the nonlinear effect of suppressing the shorter mode and enhancing the longer one.

front allows one to find the C1,...,4 coefficients (up to O(ε2)). Then the transport equation,
accompanied by the condition of the concentration vanishing at the reaction front, yields fc(ξ)
and gc(ξ), which are rather lengthy linear combinations of exponential functions. Finally, the
front evolution equation allows one to derive the system of two first-order ODEs, which describes
the evolution of the two modes. The ODEs are of the form

ȧ1 = σ∗1a1 − µ∗1a2
2, (4.8a)

ȧ2 = σ∗2a2 + µ∗2a1a2, (4.8b)

which is equivalent to the analogous result obtained for a simpler system of Laplacian growth [46].
Not surprisingly, the σ∗1,2 coefficients are given by the standard (linear) dispersion relation (3.80),

σ∗1 = σ̂(k̂ = k̂∗) =
2κ−

√
(κ+ 1)(3κ− 1)

2(κ+ 1)
, (4.9)

σ∗2 = σ̂(k̂ = k̂∗/2) =
κ
(
κ+ 4

√
(κ+ 1)(3κ− 1)− 2

√
κ(13κ+ 6)− 3− 2

)
+ 1

4(κ+ 1)3/2
√

3κ− 1
. (4.10)

The coupling coefficients, µ∗1,2 = µ∗1,2(κ, δ), have quite complicated functional forms and we
shall not quote the exact formulas. Figs. 4.2 and 4.3 illustrate their dependence on κ and δ.

In the limit of large permeability contrast between the dissolved and undissolved domains,
κ→∞,

lim
κ→∞

σ∗1 =

(
1−
√

3

2

)
≈ 0.134 (4.11)

lim
κ→∞

σ∗2 =
1

12

(
12 +

√
3− 2

√
39
)
≈ 0.104 (4.12)

lim
κ→∞

µ∗1 =
2
(
5
√

3− 7
) (

1 +
√

13
)

cos(2δ)− 90
√

3−
√

13 + 6
√

39 + 143)

96
(
1 +
√

13
)

≈ (0.047 + 0.035 cos(2δ)) (4.13)

lim
κ→∞

µ∗2 =

(
−845 + 117

√
3− 29

√
13 + 147

√
39
)

cos(2δ)− 754
√

3 + 387
√

13 + 104
√

39− 429

48
(
2 + 3

√
3
) (

13 +
√

13
)

≈ (0.054 + 0.030 cos(2δ)) . (4.14)

31



σ1
*

σ2
*

1 10 100 1000
κ

0.02

0.04

0.06

0.08

0.10

0.12

0.14

μ1
*

μ2
*

1 10 100 1000
κ

0.02

0.04

0.06

0.08

Figure 4.3: Coefficients appearing in the two-mode evolution dynamics, Eq. (4.8), for δ = 0,
and κ varying from 1 to 103. (Left) One-mode growth rates σ∗1,2. Both are positive (i.e. both
modes are unstable), but the shorter mode (no. 1) grows (linearly) faster. (Right) Coupling
coefficients µ∗1,2.
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Figure 4.4: The shape of the reaction front (solid line) is a linear combination of two modes:
ξf = ξ0 cos(k̂η) + 0.5 ξ0 cos(k̂η/2 + δ) (the subharmonic model has a twice smaller amplitude
than the base mode). The δ parameter is equal to: (a) δ = nπ, n ∈ Z; (b) δ = nπ+π/2, n ∈ Z.
The shaded region represents the dissolved domain, and the white region above is undissolved.

Note that the competition is strongest for 2δ = 2nπ and weakest for 2δ = 2nπ + π. It has a
straightforward interpretation. In each case adding the subharmonic mode to the base mode has
a slightly different effect on the shape of the reaction front. In the first case the ξ coordinates
of the tips of the protrusions take two different values, and every second one reaches further
downstream than its neighbours. At the same time, their bases (the roots) are at the same
level along the ξ axis (Fig. 4.4a). The second case is opposite, with the tips at the same level
and the roots on two distinct levels (Fig. 4.4b). In case of uncorrelated noise, no value of δ is
preselected. A whole continuum of subharmonic modes characterized by different values of δ
can then develop. However, as our analysis shows, there is one particular solution, which grows
fastest. Nonlinear couplings are strongest for δ = 0, and this particular subharmonic mode
is going to dominate. It has a straightforward impact on the shape of the front. As can be
deduced from Fig. 4.4, selection of δ = 0 means that the x coordinates of the tips of the bumps
are much more dispersed than the x coordinates of their bases. Interestingly, analogous results
were obtained during the weakly nonlinear analysis of Laplacian growth [47].

Numerical solutions of the system of ODEs (4.8) are shown in Fig. 4.5. As one can note,
both modes initially grow exponentially — the nonlinear effects are weak. The k̂∗ mode, i.e.
the linearly most unstable one, grows faster. However, when the modes have sufficiently large
amplitudes, the nonlinear effects arise, which suppress this mode and enhance the (twice) longer
one. Physically, every second bump in the front is screened by its neighbours. Alas, the theory
was developed as only slightly nonlinear and should not be expected to give quantitatively
proper results for a1,2 ∼ 1 (i.e. when the dimensional amplitudes are ∼ Ldiff). However,
qualitatively the picture should be correct.
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Figure 4.5: Growth of the linearly fastest growing mode, k̂∗, and its first subharmonic, for
δ = 0, and κ = 2 (left) or κ→∞ (right). The results for larger times should be rather treated
as qualitative, since the theory is valid only for small perturbations (|a1|, |a2| � 1).

As an additional result of the presented analysis, we are able to estimate the moment when
the nonlinear effects become important. It happens when the amplitudes of the modes become
comparable with the upstream diffusive length, ai ≈ 1. If the initial amplitudes of the modes
are all equal to ai(τ = 0) = ε, then the characteristic length of the linear growth period is given
by

τcr = − ln ε

σ∗1
. (4.15)

The critical time τcr is the time required for the linearly dominant mode to increase its amplitude
from a1 = ε to a1 = 1, assuming that there are no couplings between the modes.
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Chapter 5

Nonlinear evolution of the dissolution
system

In Chapter 3 we have shown that a (planar) dissolution front is unstable with respect to
arbitrarily small perturbations. As a consequence, in the presence of noise it is going to break
up into a wavy, quasi-sinusoidal front, with a well-defined characteristic distance between the
individual protrusions. Next, in Chapter 4 we have shown that these protrusions start to screen
each other while competing for the flow and the solvent flux. The further, fully-nonlinear regime
of the system dynamics is difficult to study analytically. Some insight into the full dynamics of
the system is provided by numerical simulations of the reactive-infiltration dynamics [32, 48, 49].
In the current chapter we present some of the main results of these numerical studies. The
conclusions are illustrated by a numerical simulation of the system given by Eqs. (3.1–3.12)
(Fig. 5.1).

The initial state of the porous medium is (Fig. 5.1a)

ϕ(x, y, t = 0) = ϕ1Θ(−x+ x0) + (ϕ0 + η(x, y)) Θ(x− x0), (5.1)

where ϕ0 (ϕ1) is the porosity of the undissolved (dissolved) matrix, and η is a noise. We
assume that η is an uncorrelated Gaussian noise of zero mean and standard deviation equal to√
〈η2〉 = 10−2ϕ0. As regards the values of porosity, we assumed ϕ0 = 0.02 and ϕ1 = 0.2. The

value of the transport parameter is H = 10 here, which makes the thin-front approximation
justified when describing the system evolution. The cubic permeability model was assumed,
K ∝ ϕ3, and the resulting permeability ratio between the primary and secondary phases is
κ = (ϕ1/ϕ0)3 = 103.

The initial state of the system has a translational invariance in the y direction, and it remains
almost one-dimensional for some time. In fact, the dissolution front seems to evolve towards its
stationary shape, propagating with a constant velocity in the x direction (Fig 5.1b). However,
as the reasoning presented in Chapter 3 suggests, such a state is not stable. Indeed, small
disturbances in the initial porosity distribution cause the reaction front to break up and array
of bumps (fingers) develops (Fig 5.1c). The larger the fingers, the weaker is the impact of noise
on the evolution of the system. Until the fingers are small, the nonlinear couplings between them
are negligible. They grow independently, according to the linear theory (Sec. 3.6). However, as
soon as the lengths of fingers become comparable with the diffusive length, the couplings cannot
be neglected. During this period of the evolution, the weakly nonlinear theory from Chapter 4
should be an appropriate approximation of the dynamics. Indeed, in Fig 5.1d we can see that
the x coordinates of the finger tips are much more dispersed that the x coordinates of their
roots, which is an effect predicted by the theory. In the subsequent stages of the evolution the
nonlinear effects are even stronger. The competition between the dissolution fingers typically
leads to a cascade of merging and screening events: smaller fingers are either absorbed by larger
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Figure 5.1: Numerical simulation of the dissolution system, Eqs. (3.1–3.12. The partial dif-
ferential equations are discretized on a rectangular grid, 2048 × 2048 points, which translates
to 204.8Ldiff × 204.8Ldiff. The (rescaled) porosity distribution, ϕ/ϕ0, is plotted at different
moments: (a) t̂ = 0, (b) t̂ = 0.8, (c) t̂ = 3.2, (d) t̂ = 4.4, (e) t̂ = 6, and (f) t̂ = 8 (the time scale
is equal to T = Ldiff/(u0γ)).
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Figure 5.2: Number of dissolution fingers per a unit width of the system, as a function of time.
The data was acquired from the numerical simulation presented in Fig. 5.1.

ones, or their growth ceases, because the larger ones absorb all the reactant flux. The number
of active fingers decreases in time (Fig. 5.2), but they are getting wider and longer (Fig 5.1e–f).
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Chapter 6

Stationary dissolution forms

In this chapter we study single, invariantly translating dissolution forms. First, in Sec. 6.1
we aim to find the geometry of a single dissolution finger. Such a form can be regarded as
a model of the tip of a long finger (see Fig. 6.1). So far, this problem has not been given
much attention by other authors. Propagation of individual dissolution fingers was studied by
petroleum engineers [50, 51, 52]. In these works, simple geometric models of wormhole shapes
were adopted, which are not preserved during the growth. The closest in spirit to the present
study is the work by Nilson and Griffiths from 1990 [53]. They also tackle the problem of steadily
propagating dissolution forms and find them to be parabolic (in 2D) or paraboloidal (in 3D).
Their reactive-infiltration model seems to be based, however, on rather strong assumptions
which are hardly satisfied in natural systems, and the resemblance of their results to ours is
only superficial. We discuss it in more detail near the end of Sec. 6.1.1. Here we just mention
that in [53] the reactant concentration field is not resolved, but is assumed to be uniform within
the finger. Consequently, the dissolution front velocity is taken to be proportional to the local
fluid velocity. Additionally, the fluid pressure inside the finger is also assumed to be uniform,
which is only justified if the permeability of the dissolved phase is significantly higher than the
permeability of the primary rock. As a result of these simplifications, the problem is effectively
reduced to a single-phase one, requiring the solution of the Laplace equation for pressure outside
the finger only. As discussed in Refs. [54, 55] such “one-phase” growth problems are in general
much easier to solve than the “two-phase” problems in which the pressure (and flow field)
both inside and outside the finger need to be found, which is the case in the present study.
Additionally, we have to solve not only for the pressure, but also for the concentration field, as
in our model the reaction front propagation velocity is proportional to the diffusive flux of the
reactant.

In Sec. 6.2 we are looking for the counterparts of the dissolution fingers, i.e. for the invari-
antly translating roots (see Fig. 6.1). Similar problems were studied before, both experimen-
tally [56] and theoretically [57], but contrary to our study, the primary rock was assumed to
be impermeable. Our results are thus more general than the previous ones.

In principle, the dynamics of the system was given in Sec. 3.3 (Eqs. 3.36–3.45). However,
now we do not want to choose a priori any particular length scale L, assuming that a more
relevant one might appear during our analysis. Such a length scale would be connected with
the geometry of the stationary forms which we are going to look for. With the yet unspecified
length scale L, the dynamics of our reactive infiltration system is the following. We have

∇̂2p̂ = 0 r ∈ Ω(t̂) (6.1)

κ∇̂p̂ · ∇̂ĉ+ Pe−1∇̂2ĉ = 0 r ∈ Ω(t̂) (6.2)
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Figure 6.1: The dissolution front (solid line) is a boundary between the dissolved domain
upstream and the undissolved domain upstream. A “tip” and a “root” are marked by dashed
circles.

in the upstream region and

∇̂2p̂ = 0 r ∈ Ω̄(t̂) (6.3)

ĉ = 0 r ∈ Ω̄(t̂) (6.4)

in the downstream one. In the above,

Pe ≡ u0L

D(ϕ1)
(6.5)

is the Péclet number which measures the relative magnitude of convective and diffusive effects
in the upstream domain on the length scale L. The boundary conditions are

û(x→∞) = ex, ĉ(x→∞) = 0, (6.6)

and

(∂xûx)(x→ −∞) = 0, ĉ(x→ −∞) = 1, (6.7)

which, as before, need to be supplemented by the continuity conditions for the pressure p̂ and
the normal component of the velocity ûn across the interface at the boundary (which is the
reaction front) ∂Ω. At this boundary, the concentration field also satisfies

∂ĉ

∂t̂
− Pe−1|∇̂ĉ|2 = 0 r ∈ ∂Ω(t̂). (6.8)

6.1 Stationary dissolution fingers

In this section, we derive the shape of a single, invariantly propagating dissolution finger. The
exposition follows Ref. [58]. We begin with the two-dimensional case.

6.1.1 Two-dimensional stationary dissolution fingers

Ivantsov’s ansatz and finger geometry

At the boundary between the phases, Eq. (6.8) is satisfied. Without any loss in generality, one
might extend this equation to the whole domain Ω as

F (r̂, t̂)
∂ĉ

∂t̂
− |∇̂ĉ|2 = 0, (6.9)
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with F formally given as F = |∇̂ĉ|2/∂t̂ĉ and satisfying F |r̂∈∂Ω(t) = Pe. To proceed, we use the
ansatz due to Ivantsov [59, 60] by assuming that the functional dependence of F on spatial and
time coordinates is of the form

F (r̂, t̂) = F (c(r̂, t̂)), (6.10)

so that
F (ĉ)

∂ĉ

∂t̂
− |∇̂ĉ|2 = 0 (6.11)

is satisfied in the whole domain Ω. Obviously, F must satisfy

F (ĉ = 0) = Pe (6.12)

for the consistency with the boundary condition (3.45). Using this idea, Ivantsov has found
his famous set of steady-state solutions to the dendrite growth problem in a supercooled melt.
Note that assuming the ansatz (6.10) might lead to losing some of more general solutions of
the problem.

Let us now suppose that our problem has a stationary solution: a dissolution finger moving
invariantly in the x direction with velocity U . Rewriting Eq. (6.11) in the moving coordinate
system gives

− ÛF (ĉ)
∂ĉ

∂x̂
− |∇̂ĉ|2 = 0 (6.13)

or
∇̂ĉ · (∇̂ĉ+ ÛF (ĉ)∇̂x̂) = 0. (6.14)

Let us note that both the Laplace equation (6.1) and the advection-diffusion equation with
potential flow (6.2) are conformally invariant. A large class of conformally invariant, non-
Laplacian physical problems has been identified by Bazant [61, 62] and involves such phenom-
ena as nonlinear diffusion, advection, or electromigration coupled to diffusion. The conformal
invariance of these processes provides an effective way of solving these problems [63]. In the
context of growth processes, these techniques have been used to track the evolution of the inter-
face in solidification and melting under the action of a potential flow [64, 65, 66, 57, 67, 61, 68].
However, in these works the growth has been taking place in external flows (with the fluid
outside of the growing object), in contrast to the present case where the medium is porous, and
the driving flow goes through the growing finger and then into the undissolved medium.

In our case, Eq. (6.14) is also conformally invariant. This allows us to make a conformal
coordinate transformation (x̂, ŷ) → (χ, ψ) such that ĉ = ĉ(χ) (i.e. the isolines of ĉ coincide
with the curves χ(x̂, ŷ) = const). Since Eq. (6.14) is conformally invariant, we get

dĉ

dχ
+ ÛF (ĉ(χ))

∂x̂

∂χ
= 0. (6.15)

The immediate conclusion is that ∂x̂/∂χ must be a function of χ only1, hence

x̂(χ, ψ) = Φ1(χ) + Φ2(ψ). (6.17)

The Cauchy-Riemann conditions,

∂ŷ

∂ψ
=
∂x̂

∂χ
,

∂ŷ

∂χ
= − ∂x̂

∂ψ
, (6.18)

1Note that if one sought a stationary solution without having assumed the Ivantsov ansatz, one would obtain
at this point

dĉ

dχ
+ ÛF (χ, ψ)

∂x̂

∂χ
= 0 (6.16)

which does not provide any information about the mapping.
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lead to the Laplace equation for x̂, ∇2
χψx̂ = 0, the general solution of which, compatible

with (6.17), is

x̂(χ, ψ) =
1

2
ρ̂
(
(χ− χ∗)2 − (ψ − ψ∗)2

)
. (6.19a)

Using again (6.18) allows us to find ŷ(χ, ψ) in the form

ŷ(χ, ψ) = ρ̂(χ− χ∗)(ψ − ψ∗) + ŷ∗. (6.19b)

Without any loss of generality we can set χ∗ = ψ∗ = y∗ = 0. Furthermore, we can assume that
the parabola characterized by χ = 1 corresponds to the dissolution front (any other parabola
can be scaled onto it by an appropriate choice of parameter ρ̂). Note that the parameter ρ̂
corresponds to the (dimensionless) radius of curvature of the parabolic finger. This suggests
that the (dimensional) radius of curvature, ρ, could be used as a length parameter in our
problem. Taking L = ρ leads to ρ̂ = 1 which simplifies the further analysis.

Our final conclusion is the following: the only conformal mapping (x̂, ŷ) → (χ, ψ) which
makes the concentration field in the dissolution finger a function of one variable only, ĉ(x̂, ŷ) =
ĉ(χ(x̂, ŷ)), is (up to translation)

x̂(χ, ψ) =
1

2

(
χ2 − ψ2

)
(6.20)

ŷ(χ, ψ) = χψ, (6.21)

which is the usual transformation to the parabolic coordinates. The inverse transformation is

χ2 =
√
x̂2 + ŷ2 + x̂ = r̂ + x̂, (6.22)

ψ2 =
√
x̂2 + ŷ2 − x̂ = r̂ − x̂, (6.23)

where r̂ has been introduced as a shorthand notation. The transformation can be written in a
more compact form using complex numbers:

χ+ iψ = Φ(x̂+ iŷ) =
√

2(x̂+ iŷ) (6.24)

x̂+ iŷ = Φ−1(χ+ iψ) =
1

2
(χ+ iψ)2. (6.25)

It is worth noting that parabolic geometries have also been obtained by other authors
studying steadily translating growth forms. The classical example are Ivantsov’s dendrites [59].
In fact, Adda Bedia and Ben Amar [60] have shown that, at least in the context of steady
state dendritic growth at zero surface tension, the parabolic solutions are the only admissible
solutions once the Ivantsov ansatz is adopted and that even when one modifies this approach
by making a more general ansatz, no new forms are found.

Once the shape of the finger is known, we can find the pressure and the concentration both
inside and outside of it.

Pressure field

Inside the finger (χ < 1), the pressure field satisfies the Laplace equation (6.1), which in the
parabolic coordinates has the same simple form as in the Cartesian ones,

∂2p̂

∂χ2
+
∂2p̂

∂ψ2
= 0. (6.26)

To proceed, one should note that the solvent transport equation inside the finger, Eq. (6.2),
posed in the (χ, ψ) coordinates is

Peκ
∂p̂

∂χ

dĉ

dχ
+
d2ĉ

dχ2
= 0. (6.27)
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Now it is straightforward to conclude that ∂χp̂ must be a function of χ only. Along with the
fact that p̂ satisfies the Laplace equation (6.26), this gives, similarly as in the case of conformal
mapping derivation,

p̂(χ, ψ) = −1

2
A0(χ2 − ψ2) + A1χ+ A2ψ, (6.28)

where the constant term has been dropped. However, the constants A1 and A2 have to be zero,
otherwise the flow û = −κ∇̂p̂ would diverge at r̂ = 0.

Outside the dissolution finger, in the undissolved matrix, the pressure still obeys the Laplace
equation,

∂2p̂

∂χ2
+
∂2p̂

∂ψ2
= 0. (6.29)

The continuity conditions for p̂ and ûn ≡ ûχ yield here

−1

2
A0(1− ψ2) = p̂|χ→1+ (6.30)

−κA0 =
∂p̂

∂χ

∣∣∣∣
χ→1+

. (6.31)

This is supplemented by the boundary condition (6.6)

−∇̂p̂
∣∣∣
χ→∞

= ex = ∇̂x̂, (6.32)

which can be written in the (χ, ψ) coordinates as

lim
χ→∞

1

χ

∂p̂

∂χ
= −1 lim

χ→∞

1

ψ

∂p̂

∂ψ
= 1. (6.33)

The solution of Eq. (6.29) fulfilling (6.30–6.33) is

p̂(χ, ψ) = −1

2
(χ2 − ψ2)− (κ− 1)(χ− 1). (6.34)

Additionally, the condition (6.31) gives A0 = 1 for the constant appearing in the solution of
the internal problem, Eqs. (6.28).

To sum up, the pressure field in the system is

p̂(χ, ψ) =

{
−1

2
(χ2 − ψ2), 0 ≤ χ ≤ 1,

−1
2
(χ2 − ψ2)− (κ− 1)(χ− 1), χ ≥ 1.

(6.35)

Fig. 6.2 shows the pressure fields, plotted for various permeability contrasts κ, in the physical
(x, y)-plane. Note that inside the finger the isobars are parallel to each other and oriented along
the y direction, which is a manifestation of the fact that the flow is uniform there:

p̂(x̂, ŷ) = −x̂, r ∈ Ω, (6.36)
û(x̂, ŷ) = κex, r ∈ Ω. (6.37)

In the dimensional variables, the (constant) Darcy velocity inside the finger is

uin = κu0ex (6.38)

Outside the finger, in the undissolved domain Ω̄, the pressure field is

p̂(x̂, ŷ) = −x̂− (κ− 1)
(√

r̂ + x̂− 1
)
. (6.39)
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Figure 6.2: Pressure field inside and outside of the two-dimensional stationary dissolution
finger (marked by the thick parabola), for different values of permeability contrasts: (a) κ = 2,
(b) κ = 10, and (c) κ = 100. The (dimensionless) pressure drop between the neighbouring
isobars is (a) 2, (b) 5, and (c) 50.

The term linear in x̂ dominates far from the boundary ∂Ω, which agrees with the far-downstream
condition for the flow field (6.6). Note that both the pressure field inside the finger (6.36) as
well as that outside (6.39) obey the upstream boundary condition (3.10).

The above-obtained pressure field is analogous to that derived by Kacimov and Obnosov [69],
who analyzed the groundwater flow in a porous medium with a parabolic inclusion. In fact
the pressure problem solved in [69] is more general than that considered here, since it involved
the far-field flow velocity oriented at an arbitrary angle with respect to the parabola axis, not
necessarily parallel as in (6.6). Interestingly, in each case the flow within the parabola is found
to be uniform. This is the parallel of the classical result by Poisson and Maxwell who noted
that the electric field inside elliptic or ellipsoidal inclusions is uniform [70, 71], see also Carslaw
and Jaeger [72] for the interpretation of this fact in the context of heat transfer.

Finally, let us note that the higher the permeability contrast κ, the more disturbed is the
pressure field by the presence of the finger and the more aligned are the isobars along the
reaction front. In the limit of κ → ∞, the dissolution front ∂Ω would corresponds to one of
the isobars.

Solvent concentration field

As mentioned before, the solvent concentration field inside the finger is governed by the trans-
port equation (6.27). Additionally, at the front itself, the reactant concentration vanishes, i.e.
ĉ(χ = 1) = 0. It is harder to formulate the second boundary condition for the concentration,
necessary to close the equation. As mentioned in Chapter 2, the upstream condition in the form
of Eq. (6.7) is inconsistent with the presence of the finger extending towards x→ −∞. Instead,
we need to prescribe the concentration within the finger. In accordance with the assumption
that ĉ is a function of χ only, we impose ĉ = 1 on one of the parabolas, defined by χ = χ0 (see
Fig. 6.3).

Inserting the resolved pressure field, Eq. (6.35), into the transport equation (6.27) yields
the concentration field

ĉ(χ) =
erfi
(√

1
2
κPeχ

)
− erfi

(√
1
2
κPe

)
erfi
(√

1
2
κPeχ0

)
− erfi

(√
1
2
κPe

) , χ0 ≤ χ ≤ 1, (6.40)
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Figure 6.3: Schematic representation of the boundary conditions for the concentration field ĉ
inside the parabolic dissolution finger. The finger is represented in the Cartesian coordinate
system, with the x axis pointing rightwards and the lengths scaled by the radius of curvature
ρ. The outer parabola, denoted by χ = 1, constitutes the boundary of the finger and is char-
acterized by vanishing of the reactants concentration, ĉ(χ = 1) = 0. At the inner parabola of
χ = χ0 (here χ0 = 0.1) the boundary condition (3.11) is imposed, ĉ(χ = χ0) = 1. Additionally,
the line χ = 0 is shown.

where erfi(x) is the imaginary error function defined as erfi(x) ≡ 2√
π

∫ x
0
et

2
dt, and as mentioned

above, the inlet concentration, ĉ = 1, has been imposed on the parabola χ = χ0 (0 ≤ χ0 < 1).
As a special case, one can choose χ0 = 0, which yields

ĉ(χ) = 1−
erfi
(√

1
2
κPeχ

)
erfi
(√

1
2
κPe

) , 0 ≤ χ ≤ 1. (6.41)

A closer inspection of Eq. (6.40) reveals that the relevant parameter controlling the concentra-
tion field is the product

Pe′ = κPe =
ρ uin
D(ϕ1)

, (6.42)

with uin given by Eq. (6.38). This parameter is interpreted as the Péclet number related to the
flow within the finger.

The impact of this parameter on the concentration profiles is analyzed in Fig. 6.4. For
small values of Pe′, Eq. (6.40) is approximated by

ĉ ≈ χ− 1

χ0 − 1
, χ0 ≤ χ ≤ 1, (6.43)

i.e. the concentration depends linearly on the parabolic coordinate χ. The gradient of the
concentration field is then relatively uniform (cf. Fig. 6.4a). This situation can be referred
to as the “diffusive” regime. In the opposite case of large Pe′ (the “convective” regime), the
concentration boundary layer is formed, with uniform concentration ĉ = 1 in the body of the
finger and high gradients near the boundary (Fig. 6.4c). In this limit the solutions found by
us acquire direct physical relevance since a somewhat artificial choice of χ0 becomes irrelevant
here, as long as the parabola χ = χ0 lies in the bulk. By comparing the argument of erfi in the
numerator of Eq. (6.40) with unity, χ

√
Pe′/2 ∼ 1, one can find the characteristic width of the

boundary layer, ∆χ,

∆χ ∼
(

1

2
Pe′
)− 1

2

. (6.44)
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Figure 6.4: Reactant concentration field ĉ inside the two-dimensional stationary dissolution
finger (marked by the thick parabola), for (a) Pe′ = 0.1, (b) Pe′ = 5, and (c) Pe′ = 10. The
boundary condition for the concentration (3.11), has been imposed on the line χ = χ0 = 0.
The (dimensionless) concentration drop between the neighbouring isolines of ĉ (thin parabolas)
is set to 0.1. The boundary of the finger is also an isoline of the concentration (for ĉ = 0).

The condition

χ0 � 1−
(

1

2
Pe′
)− 1

2

(6.45)

guarantees that χ0 lies in the bulk and thus its precise value does not affect the concentration
profiles. This is confirmed by the comparison of ĉ profiles for Pe′ = 10 and χ0 = 0.05 with
those for χ = 0.2, which are found to be almost indistinguishable, as shown in Fig. 6.5.

Finger propagation velocity

Finally, Eq. (6.15) allows us to find the advancement velocity of the dissolution finger,

Û = − ĉ′(χ)

F (ĉ(χ))∂χx̂

∣∣∣∣
χ=1

=

√
2κ exp

(
1
2
Pe′
)

√
π Pe′

(
erfi
(√

1
2
Pe′
)
− erfi

(√
1
2
Pe′χ0

)) , (6.46)

where we have used the fact that F (ĉ(χ = 1)) = Pe = Pe′/κ. Two limiting cases, corresponding
to small/high values of Pe′), are given by

lim
Pe′→0

Pe Û = (1− χ0)−1, (6.47)

lim
Pe′→∞

Û = κ. (6.48)

The velocity scale is L/T = γ u0. Thus in the limit of small Pe′, the dimensional finger
advancement speed approaches

U ≈ γ u0

Pe(1− χ0)
=

γ D(ϕ1)

ρ(1− χ0)
, (6.49)

i.e. it is inversely proportional to the radius of curvature of the tip. Such a behavior is in full
analogy to the Ivantsov result for the dendrite propagation speed [59]. On the contrary, for
large Péclet numbers the propagation velocity becomes constant with respect to the curvature
of the finger tip and simply proportional to the Darcy velocity inside the finger,

U ≈ γ u0κ = γ uin. (6.50)
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Figure 6.5: (a,b) Reactant concentration field ĉ inside the two-dimensional stationary dissolu-
tion finger in the “convective” regime, with Pe′ = 10. The thick solid lines mark the finger
boundary and the χ = χ0 parabola with (a) χ0 = 0.05 and (b) χ0 = 0.2, on which the inlet
concentration has been imposed, ĉ(χ = χ0) = 1. The (dimensionless) concentration drop be-
tween the neighbouring isolines of ĉ (thin parabolas) is set to 0.1. The dashed line marks the
parabola ψ = 2 (locally orthogonal to the isolines of concentration) parametrized by the arc
length ŝ. The reactant concentration profile along this parabola, ĉ(ŝ), is plotted in panels (c)
and (d).
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Notice the inherent indeterminacy of the general result (6.46): we have obtained the relation
between the tip radius (via Pe′) and the propagation speed with no means of evaluating each
of these quantities independently. This is connected with the scale-invariance of the original
equations (3.22–3.29) and can be lifted only after the introduction of an additional lengthscale.
Again, this feature is shared by both the Ivantsov parabolas and the Saffman-Taylor fingers,
which also represent families of growth forms and need the short-scale regularization mecha-
nism such as surface tension or kinetic undercooling for the selection of a particular tip radius
and advancement velocity. In the case of dissolution patterns, the additional lengthscale might
originate from the reaction front width (assumed to be zero in our analysis) or from the inter-
actions with other dissolution fingers: in real system, the finger is never infinite, but always
constrained by the presence of its neighbours.

Comparison with the Nilson & Griffiths model

At this point it is worth noting the main differences between our finger growth model and
the one of Nilson and Griffiths [53]. Firstly, the boundary conditions at infinity are different.
While we assume that the whole system is infiltrated by the reactive fluid (with a constant
pressure gradient at x → ∞), Nilson & Griffiths assume constant pressure at x → ∞, which
means that the fluid far downstream ahead of the finger is kept immobile. In their model,
however, the reactive fluid is constantly injected into the system, displacing the original pore
fluid, so the latter becomes compressed. Such an assumption does not seem to be a realistic
one for water under typical groundwater pressures. In another case considered in [53] the rock
is initially unsaturated, with no fluid present in the pores. Then the reactive fluid enters the
system, creating the finger and flooding the medium, which is associated with the formation
of a ’product layer’ of chemically equilibrated fluid ahead of the finger tip. Since no pressure
gradient is imposed far downstream, the fluid in the product layer gradually slows down, as the
thickness of the layer increases until it reaches a stationary situation in which both the finger
and the product layer advance with equal velocities. Again, this is a fundamentally different
situation from the one considered in the present work. In particular, the solution pipes shown
in Fig. 1.4 were formed under the melting glacier, with gravity imposing the pressure gradient
across the entire system.

There is yet another difference between our approaches, now related to the constraints on
the values of physical parameters, under which the finger model is supposed to work. Similarly
to us, Nilson & Griffiths adopt the thin-front approximation, stating that the reactant is entirely
consumed immediately after reaching the finger boundary. As mentioned in Sec. 3.1, such a
simplification is justified if H � 1. At the same time, however, it is assumed in [53] that
the concentration of the reactant inside the finger is constant, so that the dissolution front
velocity is proportional to the local fluid velocity. This is only possible if the advection within
the finger dominates over the diffusive transport, i.e. the Péclet number Pe′ = uinL/D � 1,
which puts rather stringent constraints on the admissible values of D, uin and the reaction rate.
The flow rates should be on one hand sufficiently large (to keep the transport advective within
the finger), but on the other hand, since H ∝ |u|−2, small enough to keep the reaction front
thin. In our study the constraints on the admissible parameters are much broader, since while
keeping the front thin, we fully resolve the concentration field inside the finger, and thus obtain
the finger propagation velocities over the entire range of Péclet numbers, cf. Eq. (6.46). At
smaller Pe′, the effects connected with the buildup of a diffusive layer of the depleted reactant
appear [42], which have a significant impact on the wormhole propagation speed.

Similarly as in our case, Nilson & Griffiths recover a whole family of parabolic wormholes,
which propagate with different velocities. However, the differences in the boundary conditions
between our model and theirs result in different relations between the finger propagation velocity
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and the curvature of its tip. Let us recall that the model of Nilson & Griffiths is supposed to
be valid for high Péclet numbers. Their wormholes propagate with the velocity proportional
to their tip curvature. We also recover a similar scaling, U ∝ ρ−1, but only in the opposite
regime of small Péclet numbers. On the contrary, for large Pe′ the finger propagation velocity
is independent from its curvature.

In some respect Nilson & Griffiths go one step further than we do and aim to find the
regularization mechanism, which would select a certain parabolic solution from the whole family.
They manage to do this, however paying a price of introducing another assumption to their
model, namely that the chemical reaction is a zeroth order one, i.e. the reaction rate does not
depend on the concentration of the reactants. They also make use of the specific nature of
their wormholes, which are surrounded by the “product layer” of the fluid which came through
them. The purely chemical regularization mechanism which they propose indeed seems to select
a particular solution, however it is arguable whether its presence does not violate the initial
assumption that the reaction front is thin.

6.1.2 Three-dimensional stationary dissolution fingers

In this section we study the geometry of three-dimensional dissolution fingers. The physical,
Cartesian coordinates will be denoted by the letters x, y, z (while the spatial coordinates scaled
by the yet undefined length scale L are x̂, ŷ, ẑ). In the following, we will assume that the fluid
flow is directed along the z axis.

Ivantsov’s ansatz and finger geometry

Similarly as in the two-dimensional case, we assume the Ivantsov ansatz as well as the station-
arity of the fingers, so the starting point of our investigations is the following set of equations
for the pressure and concentration inside the finger

κ∇̂p̂ · ∇̂ĉ+ Pe−1∇̂2ĉ = 0 (6.51a)

∇̂2p̂ = 0 (6.51b)

∇̂ĉ · (F (ĉ) Û ∇̂ẑ + ∇̂ĉ) = 0. (6.51c)

As before, on the boundary of the finger we put ĉ = 0 and F = Pe. In the region outside the
finger the pressure obeys the Laplace equation whereas the concentration vanishes.

Let us switch to the cylindrical coordinate system, (x̂, ŷ, ẑ) → (r̂, φ, ẑ) and look for the
solutions with rotational invariance, i.e. independent of φ. Eqs. (6.51) in the new variables
take the form

κPe∇̂rzp̂ · ∇̂rz ĉ+ ∇̂2
rz ĉ+

1

r̂

∂ĉ

∂r̂
= 0 r ∈ Ω(t̂) (6.52a)

∇̂2
rzp̂+

1

r̂

∂p̂

∂r̂
= 0 r ∈ Ω(t̂) (6.52b)

∇̂rz ĉ · (F (ĉ) Û ∇̂rz ẑ + ∇̂rz ĉ) = 0 r ∈ Ω(t̂) (6.52c)

where ∇̂rz = (∂r̂, ∂ẑ) acts as if the (r̂, ẑ) were Cartesian coordinates. Similarly, ∇̂2
rz = ∂2

r̂ + ∂2
ẑ .

Analogously to the previous case we are looking for a conformal map (ẑ, r̂) → (χ, ψ) such
that ĉ becomes a function of one variable only, ĉ = ĉ(χ). Again, from Eq. (6.52c) we draw the
conclusion that such a map needs to be a parabolic one,

ẑ =
1

2
(χ2 − ψ2) (6.53a)

r̂ = χψ, (6.53b)
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with the radius of curvature of the finger chosen as the length unit. As before, we assume that
the finger boundary coincides with the χ = 1 paraboloid.

Pressure field

Let us now use this mapping to solve the Laplace equation for the pressure inside and outside
the dissolution finger. Since the Lamé coefficients hχ, hψ for the transformation (6.53) are equal
to

hχ =

∣∣∣∣ dr̂dχ
∣∣∣∣ =

√(
∂r̂

∂χ

)2

+

(
∂ẑ

∂χ

)2

=
√
χ2 + ψ2, (6.54)

hψ =

∣∣∣∣ dr̂dψ
∣∣∣∣ =

√(
∂r̂

∂ψ

)2

+

(
∂ẑ

∂ψ

)2

=
√
χ2 + ψ2 = hχ, (6.55)

equation (6.52a) written in terms of χ and ψ becomes

Pe′
∂p̂

∂χ
ĉ′(χ) + ĉ′′(χ) +

1

χ
ĉ′(χ) = 0. (6.56)

Its form suggests that ∂χp̂ is a function of χ only and thus the pressure field p̂ inside the
dissolution finger is separable into

p̂(χ, ψ) = X(χ) + Y (ψ). (6.57)

The Laplace equation for the pressure inside the dissolution finger, Eq. (6.52b), in the χ, ψ
coordinates transforms into

∂2p̂

∂χ2
+
∂2p̂

∂ψ2
+

1

χ

∂p̂

∂χ
+

1

ψ

∂p̂

∂ψ
= 0, 0 ≤ χ < 1. (6.58)

Inserting (6.57) into Eq. (6.58) gives the result that the pressure field inside the dissolution
finger should be of the form

p̂(χ, ψ) = −1

2
C0(χ2 − ψ2) + C1 lnχ+ C2 lnψ + C3, 0 ≤ χ < 1. (6.59)

We immediately set C1 = C2 = 0, to avoid singularities at χ = 0 or ψ = 0, while the constants
C0 and C3 are to be determined from the boundary and the continuity conditions. Next, we
look for the solution of the Laplace equation for the pressure field outside of the finger of the
same functional form as that inside,

p̂(χ, ψ) = −1

2
D0(χ2 − ψ2) +D1 lnχ+D2 lnψ, χ > 1. (6.60)

where the constant term has been skipped.
The continuity conditions and the far-downstream boundary condition for the flow are

analogous to the two-dimensional case (Eqs. (3.9–3.31)). The downstream boundary condition
yields D0 = 1. The continuity of the pressure and the normal component of the flux at the
finger boundary χ = 1 yields D2 = C3 = 0, C0 = 1 and D1 = 1− κ.

Eventually, the pressure field in the whole space is

p̂(χ, ψ) =

{
−1

2
(χ2 − ψ2) 0 ≤ χ ≤ 1

−1
2
(χ2 − ψ2)− (κ− 1) lnχ χ ≥ 1,

(6.61)
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Figure 6.6: Pressure field inside and outside of the three-dimensional stationary dissolution
finger. The cross-section of the finger is shown, with the finger boundary marked by a thick
parabola. The pressure field is plotted for different values of permeability contrast: (a) κ = 2,
(b) κ = 10, and (c) κ = 100. The (dimensionless) pressure drop between the neighbouring
isobars is (a) 2, (b) 2.5, and (c) 10.

or, in the Cartesian coordinates,

p̂(ẑ, r̂) =

{
−ẑ 0 ≤

√
ẑ2 + r̂2 + ẑ ≤ 1

−ẑ − κ− 1

2
ln
(√

ẑ2 + r̂2 + ẑ
) √

ẑ2 + r̂2 + ẑ ≥ 1,
(6.62)

This solution has been plotted in Fig. 6.6 for different values of the permeability contrast, κ.
The overall picture is similar to that in the two-dimensional case, with a uniform flow inside
the finger and the flow disturbance around it relaxing to a uniform flow field far downstream.
For small values of the permeability contrast κ, the presence of the finger does not significantly
disturb the isobars, whereas in the opposite case the isobars become almost parallel to the
finger boundary.

Solvent concentration field

Using (6.61) one can solve Eq. (6.56) and find the concentration field inside the finger. The

solution can be written in terms of the exponential integral function Ei(x) = −
∞∫
−x
t−1e−tdt,

ĉ(χ) =
Ei
(

1
2
Pe′χ2

)
− Ei

(
1
2
Pe′
)

Ei
(

1
2
Pe′χ2

0

)
− Ei

(
1
2
Pe′
) , χ0 < χ < 1, (6.63)

where, as before, we set the condition ĉ = 1 on the parabola χ = χ0 (with 0 < χ0 < 1). The
concentration fields for various parameters have been plotted in Fig. 6.7. Qualitatively, the
behavior is similar to the one observed for the 2D case. The “diffusive” regime is observed for
small values of Pe′ (see Fig. 6.7a) and is characterized by relatively uniform distribution of the
concentration gradient. In this case, the concentration field can be approximated by2

ĉ(χ) ≈ lnχ

lnχ0

, χ0 < χ < 1. (6.64)

2Expanding the exponential integral function for small arguments yields Ei(x) = γE+lnx+x+O(x2), where
γE ≈ 0.5772 is the Euler-Mascheroni constant.
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Figure 6.7: Reactant concentration field ĉ in the cross-section of the three-dimensional station-
ary dissolution finger, for (a) Pe′ = 0.1, (b) Pe′ = 5, and (c) Pe′ = 20. The parameter χ0 was
chosen to be 0.1. The (dimensionless) concentration drop between the neighbouring isolines is
set to 0.1.

In the opposite case of high Pe′ (see Fig. 6.7c), the boundary layer characterized by high
gradients of the concentration ĉ is formed near the finger boundary, while in the interior of
the finger the ĉ field is almost uniform. The characteristic width of the boundary layer in the
(χ, ψ)-plane is, similarly as in the 2D case, equal to

(
1
2
Pe′
)−1/2, which sets the constraint on

the choice of χ0, analogous to the two-dimensional one (Eq. (6.45)).
The only significant difference between the 3D and the 2D cases is that in 3D we cannot

demand χ0 = 0, since the Ei function diverges at zero and the solution becomes singular.
However, this constraint becomes irrelevant in the “convective” regime (Pe′ � 1), since then
ĉ ≈ 1 throughout the bulk of the finger.

Finger propagation velocity

Finally, the finger propagation velocity, derived analogously to the 2D case, is given by

Û = − ĉ′(χ)

F (ĉ(χ))∂χẑ

∣∣∣∣
χ=1

=
2κ(Pe′)−1 exp

(
1
2
Pe′
)

Ei
(

1
2
Pe′
)
− Ei

(
1
2
Pe′χ2

0

) , (6.65)

with the limiting cases characterized by

lim
Pe′→0

Pe Û = −(lnχ0)−1, (6.66)

lim
Pe′→∞

Û = κ. (6.67)

Again, there is a significant similarity with the 2D case. The (dimensional) propagation velocity
of dissolution fingers at small Péclet numbers is inversely proportional to ρ,

U ≈ − γ u0

Pe lnχ0

= −γ D(ϕ1)

ρ lnχ0

, (6.68)

whereas at high Péclet numbers the propagation velocity becomes independent of the radius of
curvature and yields

U ≈ γ uin. (6.69)
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6.1.3 Natural solution pipes

Geological studies of the solution pipe system in Smerdyna [5] (Fig. 1.4) suggest that they
were formed at the end of the Elsterian glaciation, when huge amounts of meltwater were
infiltrating the bedrock . Such mildly acidic water was able to dissolve the underlying calcite.
It was a typical reactive-infiltration system: nonlinear couplings between the fluid flow, chemical
activity, and permeability evolution led to the formation of the pipe network. At the area of
approximately S = 2 km2, the pipe density is 0.16/m2. They cover about 6.1% of the surface
area. The average volume of a pipe is approx. 1 m3, which gives the host rock removal volume
of ∆V/S ≈ 1600 m3/ha = 16 cm.

Relatively simple mass balance considerations allow us to assess the total meltwater fluxes
which the area had to receive during the deglaciation so that such an extensive pipe network
could be formed. Cold meltwater was most probably mildly acidic, of pH ≈ 5, which translates
to the hydrogen cation concentration of cin = [H+] ≈ 10−5 mol/L. The equilibrium concentra-
tion of H+ is of the order of ceq ≈ 10−8 mol/L � cin. Taking into account the molar volume
of calcite, ν = 31.2 cm3/mol, and the porosity of the bedrock, ϕ0 ≈ 30%, the acid capacity
number can be estimated as

γ ≈ νcin
1− ϕ0

≈ 5 · 10−7. (6.70)

Consequently, the whole area had to receive the total volume of meltwater equal to

Vw = γ−1S ·∆V/S = 104 km3, (6.71)

which translates to the water column of height

Vw/S = 104 km3/2 km2 = 5 · 103 km. (6.72)

This is four orders of magnitude more than the estimated height of the glacial cover (500 m).
The above estimation was apparently overlooked by geologists studying the piping system
[73, 5]. It suggests that the area was infiltrated by meltwater originating from quite distant
sources, and was presumably transported by a river network developed on the surface or under
the glacier. The host rock near Smerdyna is highly porous (ca. 30%), which might explain why
this particular area was a convenient place for meltwater to infiltrate into deeper groundwater
reservoirs.

The time scale of the overall process is more difficult to estimate. An upper bound can
be given as the length of the Elsterian glacial period (400-320 ky ago): ∆t < 8 · 104 years.
Another estimate can be provided by studying footprints of the last (Weichsel a.k.a. Vistulian)
glaciation, which are easier to study than its older counterparts. In principle, surface exposure
dating based on measurements of the cosmogenic 36Cl content can be used to track the glacier
withdrawal. Such studies reveal that typical time scales of this process where ∆t = 103 −
−104 years [74]. Taking ∆t = 104 years as the reference value, we can estimate the mean Darcy
velocity of the infiltrating water,

u0 = γ−1∆V/(S∆t) = 44 cm/day. (6.73)

Since the geometry of the pipes can be measured, it is in principle possible to estimate the
Péclet number characterizing the environmental conditions under which the pipes were formed.
The radii of curvature of the tips of the solution pipes presented in Fig. 1.4 (bottom) are ρ ≈
20 cm. Next, we estimate the molecular diffusivity to be Dmol ≈ 10−5 cm2/s, which is a typical
order of magnitude for the diffusion coefficient of small molecules under normal conditions. The
porosity difference between the limestone and the pipe fill is approximately 10%. Consequently,
the Péclet number can be approximated as

Pe =
u0ρ

ϕ1Dmol
≈ 2.5 · 103 � 1. (6.74)
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Figure 6.8: A schematic picture showing a root (the white region) surrounded by the totally
dissolved matrix (the shaded region). The thin arrowed lines represent streamlines of the Darcy
flow.

The solution pipes were formed in the high Péclet number regime.
The 10% porosity difference between the rocks typically corresponds to the permeability

contrast of κ ≈ 10 [75]. Thus, according to (6.69), the longest wormhole length can be estimated
as U∆t = γu0κ∆t ≈ 8 m. Up to the order of magnitude, this estimate is consistent with the
field observations.

6.2 Stationary roots

Reasoning analogous to the one presented in Section 6.1 can be applied to find another family of
invariantly propagating dissolution forms. Contrary to the dissolution fingers which are convex,
these forms are concave. These concave forms will be dubbed “roots”. The tips of the roots
are the local minima of the curve representing the reaction front, ξ = ζ(η; τ) (contrary to the
fingers, whose tips are the local maxima). A single root is sketched in Fig. 6.8. As one can
easily deduce, the fluid flow should go mainly around the root. However, if the permeability
contrast κ is finite, one might expect that some part of the fluid penetrates it as well. In this
chapter we will pose the problem of finding the geometry of an invariantly translating root.
Our intuitions regarding the flow in the vicinity of such a root will also be verified.

6.2.1 Two-dimensional stationary roots

In Sec. 6.1.1, while looking for the geometry of stationary two-dimensional fingers, we adopted
the Ivantsov’s ansatz. As a result, we were able to find the conformal transformation from the
Cartesian coordinates to the coordinates coinciding with the isolines of the reactant concen-
tration. It turned out that the transformation has to be a parabolic one, Eqs. (6.19). Next,
we identified the radius of curvature of the finger’s tip ρ as the length scale L, making a silent
assumption that the finger is convex, i.e. its tip’s curvature is positive. However, one can also
consider concave dissolution forms. Then the length scale should be rather set as L = −ρ.
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Consequently, the desired conformal transformation is

x̂(χ, ψ) = −1

2

(
χ2 − ψ2

)
, (6.75)

ŷ(χ, ψ) = −χψ, (6.76)

and the inverse one is

χ2 =
√
x̂2 + ŷ2 − x̂ = r̂ − x̂ (6.77)

ψ2 =
√
x̂2 + ŷ2 + x̂ = r̂ + x̂. (6.78)

Again, both the χ and ψ coordinates vary between zero and infinity, 0 ≤ χ, ψ < ∞. The
transformation (x̂, ŷ)→ (χ, ψ) and its inverse can be written in a compact, complex form,

x̂+ iŷ = −1

2
(χ+ iψ)2, (6.79)

χ+ iψ =
√
−2(x̂+ iŷ). (6.80)

Without much loss of generality we can identify the parabola χ = 1 with the boundary
between the dissolved and the undissolved domains. Now the dissolved domain (the root) is
located in the interior of the parabola, 0 ≤ χ < 1.

Pressure field

Similarly as in in the finger problem (Sec. 6.1), we apply the Ivantsov’s ansatz and conclude
that in the dissolved domain (χ > 1) the pressure field is separable into a sum of two functions
dependent on, respectively, χ and ψ. The general solution of the Laplace equation for the
pressure is then

p̂(χ, ψ) =
1

2
A0(χ2 − ψ2) + A1χ+ A2ψ. (6.81)

Far from the reaction front (χ→∞) the flow velocity should be uniform,

− κ∇̂p̂ ∼ ∇̂x̂, (6.82)

so
A0 =

1

κ
and A2 = 0. (6.83)

Note that now, contrary to the finger case, the condition (6.82) has to be imposed upstream
from the dissolution front, in the dissolved phase (cf. Eq. (6.32)).

Within the undissolved root (0 ≤ χ < 1) pressure also obeys the Laplace equation. The
only admissible solution is similar to the one outside the root,

p̂(χ, ψ) =
1

2
A′0(χ2 − ψ2) + A3χ+ A4ψ + A5. (6.84)

However, in order to avoid singularities in the pressure or velocity field at χ = 0, we have to
demand that A3 = 0. The continuity of the pressure field and of the normal velocity at the
boundary χ = 1 yield

A′0 =
1

κ
, A4 = 0, A1 = −κ− 1

κ2
, and A5 = −κ− 1

κ2
. (6.85)

. Eventually, the pressure field inside and outside the root is equal to

p̂(χ, ψ) =


1

2κ
(χ2 − ψ2)− κ− 1

κ2
, 0 ≤ χ < 1,

1

2κ
(χ2 − ψ2)− κ− 1

κ2
χ, χ > 1,

(6.86)
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Figure 6.9: Pressure field inside and outside of the two-dimensional stationary root (marked
by the thick parabola), for different values of permeability contrasts κ, (a) κ = 2, (b) κ = 10,
and (c) κ = 100. The (dimensionless) pressure drop between the neighbouring isobars is (a) 1,
(b) 0.2, and (c) 0.02.

or, in the Cartesian coordinates,

p̂(x̂, ŷ) =


−1

κ
x̂− κ− 1

κ2
, 0 ≤ r̂ − x̂ < 1,

−1

κ
x̂− κ− 1

κ2

√
r̂ − x̂, r̂ − x̂ > 1.

(6.87)

The pressure field is illustrated in Fig. 6.9. The flow velocity within the root is uniform,
similarly as it was within the dissolution finger. As the permeability contrast κ grows, the
isobars around the root (χ & 1) become more and more perpendicular to the dissolution front.
Consequently, much less flow penetrates the root. In the limit of κ→∞ the dissolution front
becomes a flow line and it is no longer penetrated by the fluid.

Solvent concentration field

In the dissolved phase around the root (χ > 1) the solvent concentration satisfies the advection-
diffusion equation, which posed in the (χ, ψ) coordinates3 reads

Peκ
∂p̂

∂χ
ĉ′(χ) + ĉ′′(χ) = 0. (6.88)

Along with the boundary conditions ĉ(χ = 1) = 0, and ĉ(χ→∞) = 1, this equation yields the
solution

ĉ(χ, ψ) =


0, 0 ≤ χ < 1,

erf
(√

1
2
Pe(χ− 1 + 1

κ
)
)
− erf

(
1
κ

√
1
2
Pe
)

1− erf
(

1
κ

√
1
2
Pe
) , χ > 1,

(6.89)

where the error function erf is defined as erf(z) = 2√
π

∫ z
0
e−t

2
dt. Returning to the Cartesian

coordinates, the solvent concentration field is

ĉ(x̂, ŷ) =


0 0 ≤ r̂ − x̂ < 1,

erf
(√

1
2
Pe(
√
r̂ − x̂− 1 + 1

κ
)
)
− erf

(
1
κ

√
1
2
Pe
)

1− erf
(

1
κ

√
1
2
Pe
) r̂ − x̂ > 1.

(6.90)

3And similarly as in Sec. 6.1 we assume that the isolines of concentration coincide with the curves χ = const.
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Figure 6.10: Reactant concentration field ĉ outside the two-dimensional stationary root (marked
by the thick parabola). Top row: κ = 10 and (a) Pe = 0.1, (b) Pe = 1, (c) Pe = 10. Bottom
row: Pe = 1 and (d) κ = 2, (e) κ = 10, (f) κ = 100. The (dimensionless) concentration drop
between the neighbouring isolines of ĉ (thin parabolas) is set to 0.1. The boundary of the finger
is also an isoline of the concentration (for ĉ = 0).

The solution is illustrated in Fig. 6.10. Obviously, the concentration is zero within the root and
the parabolic dissolution front (the boundary of the root) is an isoline of the concentration,
ĉ(χ = 1) = 0. For small Péclet numbers the concentration gradients are relatively small — the
diffusion is the dominant transport mechanism in the vicinity of the root. For large Pe, however,
the concentration is equal to almost unity everywhere except for a thin boundary layer near the
dissolution front, where high concentration gradients are observed. The characteristic width of
such a layer, ∆χ, can be estimated by comparing the argument of the first error function in
the numerator of Eq. (6.89) with unity,

√
Pe
2

(∆χ+ κ−1) ∼ 1. (6.91)

Consequently,

∆χ ∼
√

2

Pe
− κ−1 κ→∞−−−→

√
2

Pe
, (6.92)

which is in fact valid for both low and high Peclét numbers. Returning to the Cartesian
coordinates, the width of the boundary layer along the root axis of symmetry (ŷ = 0), ∆x̂, is
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of the order of4

∆x̂ =
1

2
(∆χ)2 + ∆χ ∼ 1

2

(√
2

Pe
− 1

κ

)2

+

√
2

Pe
− 1

κ

κ→∞−−−→ 1

Pe
+

√
2

Pe
. (6.94)

Consequently, it scales like Pe−1 for Pe� 1 and like Pe−1/2 for Pe� 1.
As one can notice in Fig. 6.10, panels (d–f), the dependence of the concentration profiles

on the permeability contrast is weak. In the limit of large permeability contrast

lim
κ→∞

ĉ = erf

(√
1

2
Pe(χ− 1)

)
= erf

(√
1

2
Pe(
√
r̂ − x̂− 1)

)
(6.95)

outside the root.

Propagation velocity

Lastly, one can derive the propagation velocity of the root,

Û = − ĉ′(χ)

F (ĉ(χ))∂χx̂

∣∣∣∣
χ=1

=

√
2

πPe
exp

(
− 1

2κ2
Pe
)

1− erf
(

1
κ

√
1
2
Pe
) . (6.96)

The limiting case of small Péclet numbers is

Û ≈
√

2

πPe
. (6.97)

Interestingly, the same result can be obtained in the limit of large permeability contrast,

lim
κ→∞

Û =

√
2

πPe
. (6.98)

The velocity scale in our model is γ u0. Recalling the definition of the Peclét number, we find
that the dimensional propagation velocity is equal to

lim
κ→∞

U = γ

√
2D(ϕ1)u0

πρ
, (6.99)

i.e. it is inversely proportional to the square root of the root tip radius of curvature. As one can
notice, U is also an increasing function of both Darcy velocity magnitude u0 and the dispersion
coefficient D. Increasing the former causes a larger total solvent flux into the system, while the
latter is responsible for the transfer of the reactant to the boundary of the root.

The high-Pe limit is a bit more subtle. If Pe is significantly larger than κ2, then the limit
of high Pe/κ2 can be taken for (6.96), yielding

lim
Pe/κ2→∞

Û =
1

κ
, (6.100)

or, in the dimensional variables,
lim

Pe/κ2→∞
U =

γ u0

κ
, (6.101)

which is in full analogy with the high-Pe limit for the fingers. The Darcy velocity inside the
root is equal to u0/κ, and multiplying this value by the acid capacity number γ, one obtains
the root propagation velocity in the advection-dominant regime.
4The tip of the root in our coordinate system is located at (x̂, ŷ) = (−1/2, 0). Therefore, by denoting the

outer boundary of the boundary layer by x̂c (χc), one can switch from ∆χ = χc− 1 to ∆x̂ in the following way:

∆x̂ = −1

2
− x̂c = −1

2
+

1

2
χ2
c =

1

2
(χ2
c − 1) =

1

2

(
(1 + ∆χ)2 − 1

)
=

1

2
(∆χ)2 + ∆χ. (6.93)
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6.2.2 Three-dimensional stationary roots

Similarly as the dissolution fingers, two-dimensional stationary roots have their three-dimensional
axisymmetric counterparts. In this section we will derive their characteristics. After assuming
the Ivantsov’s ansatz, the dynamics of the system outside the root is given by Eqs. (6.51).
Then switching to the cylindrical coordinate system, (x̂, ŷ, ẑ)→ (r̂, φ, ẑ), results in Eqs. (6.52).
Demanding that ĉ = ĉ(χ) after the conformal transformation (ẑ, r̂) → (χ, ψ) yields the result
that the transformation should be a parabolic one. Selecting the negative curvature of the
boundary of the root and omitting unimportant parameters of the mapping function results in
the following map,

ẑ = −1

2
(χ2 − ψ2) (6.102a)

r̂ = −χψ. (6.102b)

As before, it is assumed that the boundary of the root coincides with the χ = 1 paraboloid.

Pressure field

After the mapping, the advection-diffusion equation reads

κPe
∂p̂

∂χ
ĉ′(χ) + ĉ′′(χ) +

1

χ
ĉ′(χ) = 0. (6.103)

Its form suggests that ∂χp̂ is a function of χ only and thus the pressure field p̂ outside the root
is separable into

p̂(χ, ψ) = X(χ) + Y (ψ). (6.104)

The Laplace equation for the pressure in the dissolved domain transforms into

∂2p̂

∂χ2
+
∂2p̂

∂ψ2
+

1

χ

∂p̂

∂χ
+

1

ψ

∂p̂

∂ψ
= 0, χ > 1. (6.105)

Inserting the form (6.104) into Eq. (6.105) yields the general solution of the Laplace equation
for the pressure outside the root,

p̂(χ, ψ) =
1

2
C0(χ2 − ψ2) + C1 lnχ+ C2 lnψ + C3, χ > 1. (6.106)

The constants C0, C1, C2, C3 are to be determined from the boundary and the continuity con-
ditions. The far-upstream boundary condition,

lim
χ→∞

κ∇̂p̂ = −∇̂ẑ, (6.107)

yields C0 = 1/κ. Next, we note that the solution of the Laplace equation for the pressure field
outside the root should be of the same functional form as the one inside,

p̂(χ, ψ) =
1

2
C ′0(χ2 − ψ2) + C4 lnχ+ C5 lnψ, 0 ≤ χ < 1 (6.108)

(the constant term has been skipped). Setting C4 = C5 = 0 is necessary to avoid singularities
at χ = 0 or ψ = 0. The continuity of the pressure and the normal component of the Darcy
velocity at the boundary of the root yields C ′0 = 1/κ, C1 = (1− κ)/κ2, and C2 = C3 = 0.

Eventually, the pressure field in the whole space (inside and outside the root) is

p̂(χ, ψ) =

{ 1
2κ

(χ2 − ψ2), 0 ≤ χ ≤ 1,

1
2κ

(χ2 − ψ2)− κ− 1

κ2
lnχ, χ ≥ 1,

(6.109)
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Figure 6.11: Pressure field inside and outside of the three-dimensional stationary root (marked
by the thick parabola), for different values of permeability contrasts κ, (a) κ = 2, (b) κ = 10,
and (c) κ = 100. The (dimensionless) pressure drop between the neighbouring isobars is (a) 1,
(b) 0.2, and (c) 0.02.

or, using Cartesian coordinates,

p̂(ẑ, x̂) =

{
−κ−1ẑ, 0 ≤

√
ẑ2 + r̂2 − ẑ ≤ 1,

−κ−1ẑ − κ− 1

2κ2
ln
(√

ẑ2 + r̂2 − ẑ
)
,

√
ẑ2 + r̂2 − ẑ ≥ 1.

(6.110)

The solution is illustrated in Fig. 6.11. Again we note that the flow field inside the root is
uniform (the isobars and parallel to each other). The higher the permeability contrast, the less
fluid penetrates the root (the more orthogonal are the isobars to the outer boundary of the
root).

Solvent concentration field

Based on the pressure field (6.109) one can solve Eq. (6.103) and find the concentration field
outside the root. The solution, satisfying the far-field and the matching conditions,

ĉ(χ→∞) = 1, ĉ(χ = 1) = 0, (6.111)

can be written either in terms of the incomplete Gamma function Γ(a, z) =
∫∞
z
dt e−t ta−1, or

the exponential integral function En(z) =
∫∞

1
dt e−tz t−n,

ĉ(χ) = 1−
Γ
(
Pe(κ−1)

2κ
, Peχ

2

2

)
Γ
(
Pe(κ−1)

2κ
, Pe

2

) = 1−
χ

(κ−1)Pe
κ E

1−Pe(κ−1)
2κ

(
Peχ2

2

)
E

1−Pe(κ−1)
2κ

(
Pe
2

) , χ > 1. (6.112)

The concentration field is shown in Fig. 6.12. For small Pe it is diffusion which dominates
in the vicinity of the root tip, and the concentration gradients are relatively small. In the
opposite case of large Pe, the solvent concentration is almost uniform (ĉ ≈ 1), except for a thin
boundary layer near the boundary of the root, which is characterized by a steep decrease of the
concentration.

Similarly as in the two-dimensional case, the dependence of the concentration profiles on
the permeability contrast is rather weak (see Fig. 6.12, panels (d–f)), and the limit of large
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Figure 6.12: Reactant concentration field ĉ outside the two-dimensional stationary root (marked
by the thick parabola). Top row: κ = 10 and (a) Pe = 0.1, (b) Pe = 1, (c) Pe = 10. Bottom
row: Pe = 1 and (d) κ = 2, (e) κ = 10, (f) κ = 100. The (dimensionless) concentration drop
between the neighbouring isolines of ĉ (thin parabolas) is set to 0.1. The boundary of the finger
is also an isoline of the concentration (for ĉ = 0).
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permeability contrast is finite,

lim
κ→∞

ĉ = 1−
Γ
(
Pe
2
, Peχ

2

2

)
Γ
(
Pe
2
, Pe

2

) = 1−
χPeE1−Pe/2

(
Peχ2

2

)
E1−Pe/2

(
Pe
2

)
= 1−

Γ
(
Pe
2
, Pe

2

(√
ẑ2 + r̂2 − ẑ2

))
Γ
(
Pe
2
, Pe

2

) = 1−
χPeE1−Pe/2

(
Pe
2

(√
ẑ2 + r̂2 − ẑ2

))
E1−Pe/2

(
Pe
2

) (6.113)

outside the root.

Propagation velocity

Finally, the finger propagation velocity, derived analogously to the previous cases, is given by

Û = − ĉ′(χ)

F (ĉ(χ))∂χẑ

∣∣∣∣
χ=1

=

e−Pe/2
(

Pe
2

) (κ−1)Pe
2κ

−1

Γ
(
Pe(κ−1)

2κ
, Pe

2

) =
2e−Pe/2

PeE
1−Pe(κ−1)

2κ

(
Pe
2

) . (6.114)

In the diffusion-dominant regime (Pe� 1), Eq. (6.114) simplifies to5

Û ≈ − 2

Pe(ln Pe + γE − ln 2)
, (6.116)

while the advection-dominant case (Pe� 1) is

lim
Pe→∞

Û = κ−1. (6.117)

The limiting case of finite Pe and large permeability contrast is

lim
κ→∞

Û =

e−Pe/2
(

Pe
2

)Pe
2
−1

Γ
(
Pe
2
, Pe

2

) =
2e−Pe/2

PeE1−Pe/2
(
Pe
2

) . (6.118)

The asymptotic (x→∞) behaviour of the incomplete Gamma function is Γ(x, x) ≈ Γ(x)/2 ≈√
πx/2xx−1e−x. As a result, for κ→∞ and large Pe the propagation velocity follows

lim
κ→∞

Û ≈
√

4

πPe
(6.119)

Equations (6.117) and (6.119) are analogous to their two-dimensional counterparts, but the
asymptotic behaviour in the small-Pe case, Eq. (6.116), is markedly different. A probable
explanation of this discrepancy is the sensitivity of the diffusion (which is a dominant transport
mechanism for Pe� 1) to the dimensionality change.

5 Expansion of the denominator of (6.114) gives

Γ

(
Pe(κ− 1)

2κ
,

Pe
2

)
= −γE + ln 2− ln Pe +O(Pe ln2 Pe). (6.115)
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Chapter 7

Dynamics of dissolution-precipitation
fronts

In the theoretical studies on stability and evolution of reaction fronts, most effort has been put
so far on analyzing the simplest systems, with a single mineral being dissolved. Natural sys-
tems are usually, however, more complicated, and multiple chemical reactions typically occur
simultaneously. In principle, dissolution of one mineral is often accompanied by precipitation of
another. For instance, dolomitization is such a replacement process. Calcite (calcium carbon-
ate), exposed to Mg-rich fluids, transforms into dolomite (calcium magnesium carbonate) [76].
The overall reaction is

CaCO3(s) + xMg2+(aq) −−→ Ca1−xMgxCO3(s) + xCa2+(aq), (7.1)

with 0 < x < 1, but the process itself is more complicated than Eq. (7.1) might suggest. It
consists of (at least) two subprocesses: dissolution of calcite,

CaCO3(s) −−→ Ca2+(aq) + CO3
−(aq), (7.2)

and precipitation of dolomite,

(1−x)Ca2+(aq) + xMg2+ + CO3
−(aq) −−→ Ca1−xMgxCO3(s). (7.3)

A similar alteration process is kaolinization, when alkali feldspar in the presence of a slightly
acidic solution is replaced by kaolinite (a clay mineral),

2KAlSi3O8 + 2H2CO3 + 9H2O −−→ Al2Si2O5(OH)4 + 4H4SiO4 + 2K+ + 2HCO3−. (7.4)

Replacement is observed on the geological scales, but it can be also reproduced in labora-
tory [9]. However, due to the length scale difference between these two cases, the ion transport
mechanisms are different. At large scales (> 1 m) advection dominates, whereas at small scales
(< 1 cm) the transport is mostly diffusive.

In this chapter we will formulate a simple model of an infiltration-driven replacement system
and study its stability.

7.1 Model

In our model system, two reactions occur simultaneously. In course of dissolution of the primary
mineral (MP) by the incoming reactant (X), an aqueous product AS is produced,

nXMP + X −−→ nPAS (7.5)
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(where nX,P denote stoichiometric coefficients). The product ion (AS) reacts with some species
Y, present in the aqueous or mineral phase, and precipitates, forming the secondary mineral
MS,

AS + Y −−→ nSMS, (7.6)

where nS stands for the stoichiometric coefficient. We assume that the amount of Y is suffi-
ciently high, so that its concentration does not change much in the process. Consequently, the
reaction rates do not depend on the concentration of Y, which is thus not tracked.

The reactive transport model has been introduced earlier in this thesis, in Chapter 2. Here,
we will quickly recall it in the context of the dissolution-precipitation system. The rock is
infiltrated by incompressible Darcy flow,

u = −K(ϕ)

µ
∇p, ∇ · u = 0, (7.7a)

which is uniform far downstream,
lim
x→∞

u = u0ex. (7.7b)

Since the Darcy velocity should be finite, pressure should be a continuous field, despite possible
discontinuities in the porosity and permeability fields.

The aqueous species X and AS are transported in the flow by advection and dispersion. Their
concentrations change due to chemical activity as well. Consequently, the spatial variability of
both concentrations is governed by the advection-dispersion-reaction equations,

∇ · (cXu)−∇ · (DH(ϕ)∇cX) = −rdiss, (7.7c)
∇ · (cSu)−∇ · (DS(ϕ)∇cS) = nP rdiss − rprec. (7.7d)

In the above, rdiss and rprec denote rates of reactions (7.5) and (7.6), respectively. Far upstream
the concentration of the solvent X is fixed, while the concentration of the coupling ion AS is
zero. Far downstream, these concentrations do not change — the fluid is in chemical equilibrium
with the infiltrated rock [13],

cX |x→−∞ = cinX , ∂xcX |x→∞ = 0, (7.7e)
cS|x→−∞ = 0, ∂xcS|x→∞ = 0. (7.7f)

For simplicity, we shall assume the equality of the dispersion coefficients and disregard their
variability with porosity, setting

DS(ϕ) = DH(ϕ) = D = const. (7.7g)

This simplification is only a quantitative one and should not change the system dynamics
significantly.

The specific volumes of the primary and secondary minerals evolve due to chemical activ-
ity. The volume fraction of the primary mineral decreases, while the volume fraction of the
secondary mineral increases,

∂tvP = −nXνP rdiss, (7.7h)
∂tvS = nSνSrprec. (7.7i)

In the above, νP,S denote the molar volumes of the primary and the secondary mineral. Initially,
the primary mineral occupies the downstream part of the system, while the secondary mineral
is absent,

vP |t→−∞ = vmaxP Θ(x), (7.7j)
vS|t→−∞ = 0, (7.7k)
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where Θ(x) denotes the Heaviside step function. Since we do not assume presence of any other
mineral phases in the system, the specific molar volumes and porosity should sum up to unity,

vP + vS + ϕ = 1. (7.7l)

Lastly, the reaction kinetics is modeled as first-order,

rdiss = αdisscXΘ(vP ), (7.7m)
rprec = αpreccS, (7.7n)

where αdiss,prec are kinetic constants. In fact, both dissolution and precipitation are surface
reactions and the fact that the reaction rates are proportional to the specific surface area should
be taken into account in (7.7m–7.7n). For simplicity, we assume that the effective reactive
surface is constant, and its value is incorporated into the reaction constants αdiss,prec. As an
obvious exception, the reactive surface for dissolution is set to zero in the case of absence of the
primary mineral, which is modeled as the multiplication of the dissolution rate by the Heaviside
step function Θ. Regardless of this discontinuity in the reaction kinetics, both concentrations
and their derivatives have to be continuous.

7.2 Scaling

Since it is more convenient to deal with dimensionless quantities, we will scale our variables.
The scaled, dimensionless variables will be denoted by hats (e.g. ĉS). As regards the Darcy
velocity and the concentrations, natural scaling comes from the boundary conditions,

û = u/u0, (7.8)
ĉX = cX/c

in
X , (7.9)

ĉS = cS/c
in
X . (7.10)

As the length and time scales we choose

L =
u0

αprec
, T =

vmaxP

nXνP cinXαprec
. (7.11)

The velocity scale is taken to be
L

T
=
nXνP c

in
Xu0

vmaxP

. (7.12)

The specific volumes and the porosity are already dimensionless, but for convenience we scale
them as

v̂S = vS/v
max
P , (7.13)

v̂P = vP/v
max
P , (7.14)

ϕ̂ = 1 + (ϕ− 1)/vmaxP . (7.15)

Now the scaled specific volumes vary between zero and one, and the scaled porosity between
1− 1/vmaxP and one. Lastly, we scale the rock permeability and the pressure,

K̂ =
K(ϕ)

K(1− vmaxP )
, (7.16)

p̂ =
K(1− vmaxP )

u0µL
p. (7.17)
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In the scaled variables, the dynamics of the system (7.7) reads

∇̂ · û = 0 (7.18a)

û = K̂(ϕ̂)∇̂p̂ (7.18b)

∇̂ · (ĉXû)−H∇̂2ĉX = −ΛΘ(v̂P )ĉX (7.18c)

∇̂ · (ĉSû)−H∇̂2ĉS = nPΛΘ(v̂P )ĉX − ĉS (7.18d)
∂t̂v̂P = −ΛΘ(v̂P )ĉX (7.18e)

∂t̂v̂S =
nSνS
nXνP

ĉS (7.18f)

ϕ̂+ v̂S + v̂P = 1, (7.18g)

where the transport parameter

H =
αprecD

u2
0

(7.19)

is the ratio of the Damköhler and the Péclet numbers associated with the precipitation, and

Λ =
αdiss
αprec

(7.20)

is the ratio of the reaction kinetic constants.
The boundary and initial conditions for the rescaled quantities are

ĉS|x̂→−∞ = 0, ĉS|x̂→∞ = 0, (7.21)
ĉX |x̂→−∞ = 1, ĉX |x̂→∞ = 0, (7.22)

û|x̂→∞ = êx, (7.23)

and
v̂P |t̂→−∞ = Θ(x̂), v̂S|t̂→−∞ = 0. (7.24)

7.3 One-dimensional solutions

Numerical simulations of the one-dimensional version of dynamics (7.18) reveals that after
some transient period a dissolution-precipitation front is formed (Fig. 7.1). The front evolves
to an invariant form, propagating with a constant velocity. The velocity of such a stationary
front U , as well as the eventual secondary mineral content, vmaxS , can be deduced from mass
balance between the incoming and outgoing ions. The reasoning will be presented in Sec. 7.3.1.
Next, in Sec. 7.3.2, we will obtain the same results, studying invariants which appear in the
system dynamics. Lastly, in Sec. 7.3.3, we derive complete analytical solutions which describe
the volume fraction and concentration profiles of the stationary replacement fronts. Here, the
values of U and vmaxS arise as a consequence of continuity conditions.

7.3.1 Mass balance

The incoming reactant flux density (in moles of X per unit area and unit time) is u0c
in
X , while

the outgoing reactant flux density vanishes. The rate of the primary mineral consumption (in
moles of MP per unit area and unit time) is vmaxP U/νP , where U is the velocity of the reaction
front. Since the dissolution reaction stoichiometry is nXMP + X −−→ nPAS, from mass balance
we get

u0c
in
X =

vmaxP U

nXνP
, (7.25)

66



-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

-10 0 10 20 30
0.0

0.5

1.0

x

Figure 7.1: Numerical solutions of the one-dimensional version of Eqs. (7.18), for Λ = 5,
nSνS/nXνP = 0.5, H = 1, and nP = 1. The fields (ĉX , blue solid; v̂P , yellow dashed; ĉS, green
dotted; and v̂S, red dot-dashed) are plotted in moments t̂ = 0, 2, 4, 6, 8, 10, and 12 (panels top
to bottom). The dissolution-precipitation front develops and evolves towards a stationary form
while translating. Note that the final porosity of the precipitated phase is 0.5.
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which yields the front velocity equal to

U =
u0c

in
XnXνP
vmaxP

. (7.26)

As illustrated in Fig. 7.1, the replacement front propagates leaving behind a certain amount of
the secondary mineral. Similar mass balance allows us to find the asymptotic (t→∞) specific
volume of the secondary mineral. After combining chemical reactions (7.5–7.6) into a single
one,

nXMP + X + nPY −−→ nPnSMS, (7.27)

it can be noticed that nX moles of the primary mineral are replaced with nPnS moles of the
secondary mineral. Let us then consider an arbitrary point where initially vP = vmaxP (e.g. any
x̂ � 1 in Fig. 7.1). Taking the molar volumes into account, the asymptotic (and maximal)
specific volume of the secondary mineral at this point is

vmaxS = vS(t→∞) =
nPnSνS
nXνP

vmaxP . (7.28)

Note that in the above reasoning we neglect any smoothening effects connected with dispersion.

7.3.2 Spatial invariants

The same results as those presented in Sec. 7.3.1 can be obtained in a more strict way by
studying the one-dimensional version of the system dynamics, either in the dimensional or
dimensionless form. The idea of such an analysis was first introduced by Ortoleva at al. [11].
Considering the dimensionless equations 7.18, one gets in 1D

∂x̂ûx = 0 (7.29a)

ûx = K̂(ϕ̂)∂x̂p̂ (7.29b)
∂x̂(ĉX ûx)−H∂2

x̂ĉX = −ΛΘ(v̂P )ĉX (7.29c)
∂x̂(ĉSûx)−H∂2

x̂ĉS = nPΛΘ(v̂P )ĉX − ĉS (7.29d)
∂t̂v̂P = −ΛΘ(v̂P )ĉX (7.29e)

∂t̂v̂S =
nSνS
nXνP

ĉS (7.29f)

− ϕ̂ = v̂S + v̂P , (7.29g)

with the boundary and initial conditions

ĉS|x̂→−∞ = 0, ∂x̂ĉS|x̂→∞ = 0, (7.30a)
ĉX |x̂→−∞ = 1, ∂x̂ĉX |x̂→∞ = 0, (7.30b)

ûx|x̂→∞ = 1, (7.30c)
v̂P |t̂→−∞ = Θ(x̂), v̂S|t̂→−∞ = 0. (7.30d)

The incompressibility of the Darcy velocity, along with the accompanying far-downstream
boundary condition immediately yields

ûx = 1. (7.31)

The pressure field adapts to the varying permeability to assert (7.31). Now let us switch to the
coordinate system translating with the reaction front, i.e. apply the coordinate transformation
(x̂, t̂)→ (ξ, τ),

ξ = x̂− Û t̂, τ = t̂, (7.32)
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to Eqs. (7.29). Without any loss of generality we can set ξ = 0 at the rightmost place where the
primary mineral is absent. In the above, Û denotes the dimensionless reaction front velocity,
which is yet to be determined. In the moving coordinates, the one-dimensional ion transport
and rock composition evolution equations are

∂ξ ĉX −H∂2
ξ ĉX = −ΛΘ(v̂P )ĉX (7.33a)

∂ξ ĉS −H∂2
ξ ĉS = nPΛΘ(v̂P )ĉX − ĉS (7.33b)

(∂τ − Û∂ξ)v̂P = −ΛΘ(v̂P )ĉX (7.33c)

(∂τ − Û∂ξ)v̂S =
nSνS
nXνP

ĉS. (7.33d)

Now we assume that the stationary state has been achieved, which formally means taking the
long-time limit, τ →∞. In the reference frame moving with the front, its morphology is time
independent. Two equations can be composed from Eqs. (7.33),

∂ξ ĉX −H∂2
ξ ĉX = −Û∂ξv̂P , (7.34a)

∂ξ ĉS −H∂2
ξ ĉS = −nP Û∂ξv̂P +

nXνP
nSνS

Û∂ξv̂S. (7.34b)

Now one can notice that the above identities yield two functions, which are independent of the
ξ variable,

∂ξ

(
ĉX −H∂ξ ĉX + Û v̂P

)
= 0, (7.35a)

∂ξ

(
ĉS −H∂ξ ĉS + nP Û v̂P −

nXνP
nSνS

Û v̂S

)
= 0, (7.35b)

which can be evaluated at ξ → ±∞ and compared,

lim
ξ→−∞

(
ĉX −H∂ξ ĉX + Û v̂P

)
= lim

ξ→∞

(
ĉX −H∂ξ ĉX + Û v̂P

)
, (7.36a)

lim
ξ→−∞

(
ĉS −H∂ξ ĉS + nP Û v̂P −

nXνP
nSνS

Û v̂S

)
= lim

ξ→∞

(
ĉS −H∂ξ ĉS + nP Û v̂P −

nXνP
nSνS

Û v̂S

)
.

(7.36b)

In an infinite system diffusive fluxes should vanish both far upstream and far downstream. The
boundary conditions for the concentrations, Eqs. (7.30a–b), transform in the moving reference
frame into

ĉX |ξ→−∞ = 0, ∂ξ ĉX |ξ→∞ = 0, (7.37a)

ĉS|ξ→−∞ = 1, ∂ξ ĉS|ξ→∞ = 0. (7.37b)

Additionally, the fluid far downstream should be in chemical equilibrium with the infiltrated
rock, which in the case of our chemical kinetics is asserted for

ĉX |ξ→∞ = 0, ĉS|ξ→∞ = 0. (7.37c)

Evaluation of the specific volumes at ξ → ±∞ is a bit more tricky. The initial far-downstream
(x̂ → ∞) value of the primary mineral volume fraction should be equal to the asymptotic
(τ → ∞) far-downstream (ξ → ∞) value, so the initial conditions for the specific volumes,
Eqs. (7.30d), can be transformed into far-downstream boundary conditions in the (ξ, τ) coor-
dinates as follows,

v̂P |ξ→∞ = 1, v̂S|ξ→∞ = 0. (7.37d)
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Upstream of the stationary replacement front all the primary mineral has been replaced by a
certain amount of the secondary mineral, so

v̂P |ξ→−∞ = 0, v̂S|ξ→−∞ = %−1, (7.37e)

where the amount of the precipitate %−1, as not given a priori in our model, is to be determined.
Eventually, evaluation of (7.36) yields the reaction front velocity Û , as well as the value of %,

Û = 1, % =
nXνP
nSnPνS

. (7.38)

Taking into account the scalings, the result is fully analogous to Eqs. (7.26) and (7.28). Note
that neither here, nor in Sec. 7.3.1, we have not assumed any specific form of the reaction
kinetics. Only the concentrations far upstream and far downstream are relevant, the latter
corresponding to chemical equilibrium. Also, a more general dispersion model could have been
assumed here as well. It does not influence the results provided that the diffusive fluxes vanish
far upstream and far downstream, which is in fact inevitable for infinite systems.

7.3.3 One-dimensional profiles

The entire morphology of the asymptotic, stationary front can be found analytically for simple
our model. Let us return to Eqs. (7.33) and assume stationarity (∂τ = 0). The advection-
dispersion-reaction equation for the solvent X has an exponential solution. The integration
constants can be found from the transformed boundary conditions (7.37a) and the requirement
of continuity of both the concentration and its derivative. After short algebra one recovers

ĉX(ξ) =


(

Γ2

Λ
− 1

)
eξ/H + 1, ξ < 0,

Γ2

Λ
e−Γ2ξ, ξ > 0,

(7.39a)

where Γ2 =

√
1 + 4ΛH − 1

2H
. Knowing the functional form of the stationary solvent concentra-

tion profile, it is straightforward to integrate Eq. (7.33c) and recover the stationary profile of
the primary mineral specific volume. In that way one finds

v̂P (ξ) =

{
0, ξ < 0,
1− e−Γ2ξ, ξ > 0,

(7.39b)

where we have used the fact that Û = 1 (Eq. (7.38)) and the integration constant was derived
from the boundary condition (7.37d). In a similar manner it is possible to obtain the stationary
profiles of the coupling ion concentration, and the secondary mineral specific volume,

ĉS(ξ) =


nPΓ2

Λ− 1

Γ2 − Γ1

Γ∗1 + Γ1

eΓ∗1ξ, ξ < 0,

nPΓ2

Λ− 1

(
Γ∗1 + Γ2

Γ1 + Γ∗1
e−Γ1ξ − e−Γ2ξ

)
, ξ > 0,

(7.39c)

v̂S(ξ) =


%−1

(
1− 1

Λ− 1

Γ2

Γ∗1

Γ2 − Γ1

Γ∗1 + Γ1

eΓ∗1ξ

)
, ξ < 0,

%−1 1

Λ− 1

(
Γ2

Γ1

Γ∗1 + Γ2

Γ1 + Γ∗1
e−Γ1ξ − e−Γ2ξ

)
, ξ > 0,

(7.39d)
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Figure 7.2: One-dimensional stationary solutions, Eqs. (7.39), of the infiltation-driven replace-
ment model, Eqs. (7.18), for nP = 1, H = 1, Λ = 5, and % = 2. Left panel: concentrations.
Right panel: specific volumes and porosity.

where Γ1 =

√
1 + 4H − 1

2H
, Γ∗1 =

√
1 + 4H + 1

2H
, and the parameter % is defined in Eq. (7.38).

Consequently, the (rescaled) porosity is equal to

ϕ̂(ξ) = 1− v̂P − v̂S =


1− %−1

(
1− 1

Λ− 1

Γ2

Γ∗1

Γ2 − Γ1

Γ∗1 + Γ1

eΓ∗1ξ

)
, ξ < 0,

e−Γ2ξ − %−1 1

Λ− 1

(
Γ2

Γ1

Γ∗1 + Γ2

Γ1 + Γ∗1
e−Γ1ξ − e−Γ2ξ

)
, ξ > 0.

(7.39e)

The above stationary solutions are illustrated in Fig. 7.2. The position ξ = 0 was set at
the rightmost place free of the primary mineral. The solvent (X) concentration decreases
diffusively upstream of the reaction front (ξ < 0), and the characteristic (dimensional) width
of this diffusive decay is

luX =
D

u0

. (7.40)

Then, at ξ > 0, the solvent penetrates the primary mineral. The characteristic depth of the
penetration,

ldX =
2D√

u2
0 + 4Dαdiss − u0

, (7.41)

arises from the interplay between the solvent transport and dissolution. The concentration
of the secondary ion, AS, is increased only in the vicinity of the replacement front, as it is
produced during dissolution and almost immediately consumed in course of precipitation. The
AS ion diffuses upstream, with the characteristic length

luS =
2D√

u2
0 + 4Dαprec + u0

. (7.42)

Downstream it reaches further,

ldS =
2D√

u2
0 + 4Dαprec − u0

, (7.43)

as the transport downstream is amplified by advection. The relative magnitudes of these four
length scales are functions of two parameters only, H and Λ. As shown in Fig. 7.3, for both
large H and Λ, luX dominates. For H < 2 and Λ > 1, ldS is the largest length. For small Λ,
ldX dominates. However, the latter case is rather unphysical. Dissolution is usually faster than
precipitation, Λ > 1. The expression for the last characteristic length, luS, is similar to the
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Figure 7.3: A “phase diagram” showing the largest characteristic length as a function of the
transport parameter H and the reaction rate constant ratio Λ. The boundaries between the
“phases” are given by relations H = 2, Λ = 1, and HΛ = 2.

expression for ldS, except for a sign difference in the denominator. As a consequence, luS is never
the largest length: luS < ldS for any positive Darcy velocity u0.

The primary mineral is present only downstream (ξ > 0). Its volume fraction increases
exponentially with the characteristic length scale ldX . Far downstream it reaches the value
v̂P = 1 (or, returning to the original variables, vP = vmaxP ). The secondary mineral content
decreases from v̂S = %−1 (or vS = vmaxP /%) far upstream to zero far downstream. A notable
feature of the stationary replacement front is the nonmonotonicity of the porosity field. Far
upstream its value is equal to ϕ̂ = 1 − %−1 (or ϕ = 1 − vmaxP /%). Then, closer to the front, it
gradually increases due to a (diffusive) decrease in the secondary mineral content. Just at the
dissolution front a sharp decrease of porosity is observed, which is due to relative abundance
of both minerals. After reaching a well-defined minimum, porosity increases again as the
secondary mineral content goes to zero far downstream.

It can be deduced from Eq. (7.39e) that the minimal value of porosity in a stationary front
is

min
ξ
ϕ̂(ξ) = −

Γ∗1 + Γ2

Γ1 + Γ∗1

(
Γ2

Γ1

− 1

)((
Γ∗1 + Γ2

Γ1 + Γ∗1

)−1

((Λ− 1)ρ+ 1)

)(1−Γ2/Γ1)−1

(Λ− 1)ρ
, (7.44a)

and
min
ξ
ϕ(ξ) = vmaxP (min

ξ
ϕ̂(ξ)− 1) + 1. (7.44b)

Formally Eqs. (7.44) allow for negative minimal porosity, but obviously in nature porosity can-
not reach negative values. This imposes a constraint on our results, which are valid only for a
part of the parameter space, namely for parameter sets which yield positive values of the poros-
ity minimum, minξ ϕ. A negative value of the expression (7.44b) indicates that a stationary
replacement front does not develop for the selected parameters, and our solutions, (7.39), are
no longer valid. Fig. 7.4 illustrates the allowed region of the parameter space in two limiting
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Figure 7.4: Part of the parameter space which yields stationary solutions, i.e. invariantly
translating planar replacement fronts. Left: limit of H → 0, and κ = 2, 10,∞ (shaded region
above the solid, dashed, and dotted line, respectively). Right: limit of Λ → ∞, and H =
0, 1,∞ (shaded region above solid, dashed, and dotted line, respectively). In general, stationary
solutions are possible if % is sufficiently large and vmaxP — small. Decreasing Λ and increasing
H expands the allowed parameter space.

cases, H → 0 (negligible dispersion), and Λ→∞ (dissolution much faster than precipitation).
Should one wish to study the regime outside this region, a small modification of our model is
necessary: the precipitation rate should be modified by an appropriate function of porosity,
which would account for the reaction slowdown in case of lack of free pore space. In order to
assure that the fluid can percolate through the rock, porosity cannot drop exactly to zero, but
only to some minimal porosity, ϕmin, which can be treated as an additional parameter in the
model. The simplest extension of our model, which would prevent the system from complete
clogging, involves the additional step function in the precipitation rate (7.7n),

rprec = αpreccS Θ(ϕ− ϕmin). (7.45)

In fact, the introduction of such residual porosity, which prevents the flow paths from being
completely clogged, can be justified by the observation that precipitation in small pores is
significantly slower than in large pores. Therefore only a fraction of porosity is eliminated in
course of precipitation [77]. Moreover, reaction-generated stresses can keep a part of the pore
network open and even induce microcracking in the rock matrix.

7.4 Stability of stationary replacement fronts

Here, we pose the problem of stability of the one-dimensional solutions with respect to per-
pendicular perturbations of the front. The method will be similar as presented in Chapter 3,
i.e. linear stability analysis (LSA) of the stationary solutions. Now, however, due to a larger
number of components, the problem is more complicated. Also, now there are more parameters
which might possibly control the behaviour of the system. In order to deal with this issue, in
our study we limit ourselves to two special cases, either of negligible dispersion (Sec. 7.4.2), or
quick dissolution (with respect to precipitation; Sec. 7.4.3). We begin, however, with general
considerations.

7.4.1 Dynamics of the perturbations

The linear stability analysis starts with assuming that the reaction front is perturbed by a small
transverse perturbation. Our analysis will be limited to two dimensions. As already noted in
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Sec. 3.6, a linear stability analysis in 3D can be reduced to a two-dimensional one. Since the
domain which we consider is infinite, an arbitrary perturbation can be decomposed into a sum
of harmonic modes, which in the linear approximation evolve independently. It is thus sufficient
to consider a single harmonic mode, i.e. the dissolution front is taken to be

ζ(η, τ) = ζ0 e
σ̂τ cos(k̂η), (7.46)

where ζ0 � 1 is the initial amplitude of the perturbation, σ̂ is its growth rate, k̂ is the wavenum-
ber characterizing the perturbation, and η = y/L is the rescaled length in the direction trans-
verse to the dominant flow direction.

Up to the linear order, the perturbation of the front results in analogous (spatially harmonic
and temporally exponential) perturbations of all the fields. In the following, perturbations will
be denoted by tildes. For instance, the perturbed solvent concentration field is upstream equal
to

ĉX(ξ) + c̃X(ξ, η, τ) =

(
Γ2

Λ
− 1

)
eξ/H + 1 + fcX (ξ)eσ̂τ cos(k̂η), (7.47)

where the (small) amplitude of the perturbation, fcX (ξ), is yet to be determined. Obviously,
the perturbed fields also have to satisfy the general equations of the dynamics, (7.18), which
in the translating reference frame read

∇̂ · û = 0 (7.48a)

û = K̂(ϕ̂)∇̂p̂ (7.48b)

∇̂ · (ĉXû)−H∇̂2ĉX = −ΛΘ(v̂P )ĉX (7.48c)

∇̂ · (ĉSû)−H∇̂2ĉS = nPΛΘ(v̂P )ĉX − ĉS (7.48d)
(∂τ − ∂ξ)v̂P = −ΛΘ(v̂P )ĉX (7.48e)

(∂τ − ∂ξ)v̂S =
1

nP%
ĉS (7.48f)

ϕ̂+ v̂S + v̂P = 1. (7.48g)

Inserting the perturbed fields to Eqs. (7.48) gives

∇̂ · (û + ũ) = 0 (7.49a)

(û + ũ) = K̂(ϕ̂+ ϕ̃)∇̂(p̂+ p̃) (7.49b)

∇̂ · ((ĉX + c̃X)(û + ũ))−H∇̂2(ĉX + c̃X) = −ΛΘ(ξ − ζ)(ĉX + c̃X) (7.49c)

∇̂ · ((ĉS + c̃S)(û + ũ))−H∇̂2(ĉS + c̃S) = nPΛΘ(ξ − ζ)(ĉX + c̃X)− (ĉS + c̃S) (7.49d)
(∂τ − ∂ξ)(v̂P + ṽP ) = −ΛΘ(ξ − ζ)(ĉX + c̃X) (7.49e)

(∂τ − ∂ξ)(v̂S + ṽS) =
1

nP%
(ĉS + c̃S) (7.49f)

v̂P + ṽP + v̂S + ṽS + ϕ̂+ ϕ̃ = 1. (7.49g)

The boundary conditions, Eqs. (7.37) (plus the far-field condition for the flow field), are also
perturbed,

û + ũ|ξ→∞ = êξ, (7.50a)

ĉX + c̃X |ξ→−∞ = 0, ∂ξ(ĉX + c̃X)|ξ→∞ = 0, (7.50b)

ĉS + c̃S|ξ→−∞ = 1, ∂ξ(ĉS + c̃S)|ξ→∞ = 0, (7.50c)

v̂P + ṽP |ξ→−∞ = 0, v̂P + ṽP |ξ→∞ = 1, (7.50d)

v̂S + ṽS|ξ→−∞ = %−1, v̂S + ṽS|ξ→∞ = 0. (7.50e)
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Now, noting that the unperturbed fields are specific solutions of Eqs. (7.48) which satisfy
boundary conditions (7.37), and neglecting in Eqs. (7.49) terms which are of the second or
higher order in the perturbations, one recovers the system of PDEs for the perturbations,

∂ξũξ + ∂ηũη = 0 (7.51a)

ũξ = K̂(ϕ̂)∂ξp̃+ K̂ ′(ϕ̂)ϕ̃∂ξp̂ (7.51b)

ũη = K̂(ϕ̂)∂ηp̃ (7.51c)
∂ξ c̃X + ũξ∂ξ ĉX −H∂2

ξ c̃X −H∂2
η c̃X = −Λc̃XΘ(ξ − ζ) (7.51d)

∂ξ c̃S + ũξ∂ξ ĉS −H∂2
ξ c̃S −H∂2

η c̃S = nPΛΘ(ξ − ζ)c̃X − c̃S (7.51e)

∂τ ṽP − ∂ξṽP = −ΛΘ(ξ − ζ)c̃X (7.51f)

∂τ ṽS − ∂ξṽS =
1

nP%
c̃S (7.51g)

ṽP + ṽS + ϕ̃ = 0 (7.51h)

accompanied by far-field boundary conditions

ũ|ξ→∞ = 0, (7.52a)

c̃X |ξ→−∞ = 0, ∂ξ c̃X |ξ→∞ = 0, (7.52b)

c̃S|ξ→−∞ = 0, ∂ξ c̃S|ξ→∞ = 0, (7.52c)

ṽP |ξ→−∞ = 0, ṽP |ξ→∞ = 0, (7.52d)

ṽS|ξ→−∞ = 0, ṽS|ξ→∞ = 0. (7.52e)

After defining

W (ϕ̂(ξ)) ≡ K̂ ′(ϕ̂)

K̂(ϕ̂)
, (7.53)

the flow equations (7.51a–7.51c) can be combined to eliminate p̃ and ũη,

∇̂2ũξ = W (∂2
ηϕ̃+ ϕ̂′∂ξũξ). (7.54)

The W = W (ϕ̂(ξ)) function will be referred to as a permeability gain factor. It measures a
relative increase of permeability due to a small porosity increase. As can be deduced just by
looking at Eq. (7.54), it plays a fundamental role in the stability analysis.

From now on, we will focus on two limiting cases: either H → 0, or Λ→∞.

7.4.2 LSA in the limit of negligible dispersion

Base solutions

If the characteristic diffusion length luX , Eq. (7.40), is much smaller than other length scales
characterizing the front profile (Eqs. (7.41–7.43)),

luX � ldX , luX � luS, luX � ldS, (7.55)

then dispersion can be neglected. In our scaling, it is equivalent to taking the limit H → 0.
Since

lim
H→0

Γ1 = 1, lim
H→0

Γ2 = Λ, lim
H→0

HΓ∗1 = 1, (7.56)
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Figure 7.5: One-dimensional stationary solutions, Eqs. (7.57), of the infiltration-driven replace-
ment model, Eqs. (7.18), for nP = 1, H → 0, Λ = 5, and % = 2. Left panel: concentrations.
Right panel: specific volumes and porosity.

the stationary replacement front profile in the zero-dispersion limit is given by

ĉX(ξ) =

{
1, ξ < 0,
e−Λξ, ξ > 0,

(7.57a)

ĉS(ξ) =

 0, ξ < 0,
nPΛ

Λ− 1

(
e−ξ − e−Λξ

)
, ξ > 0,

(7.57b)

v̂P (ξ) =

{
0, ξ < 0,
1− e−Λξ, ξ > 0,

(7.57c)

v̂S(ξ) =

{
%−1, ξ < 0,

%−1 1

Λ− 1

(
Λe−ξ − e−Λξ

)
, ξ > 0.

(7.57d)

The front profile is illustrated in Fig. 7.5. Since the dispersive fluxes vanish, the concentration,
and consequently the volume fraction profiles, are constant upstream (ξ < 0). The expression
for the minimal porosity has a relatively simple form,

min
ξ
ϕ̂ = −%−1((Λ− 1)%+ 1)1/(1−Λ). (7.58)

Dynamics of the perturbations

Taking the limit H → 0 in the equations for the perturbations, (7.51), is trivial. However, due
to the discontinuity in the dissolution term, it is more convenient to consider the upstream
(ξ < ζ) and downstream (ξ > ζ) perturbations separately.

Perturbations upstream

Upstream the primary mineral is by definition absent, so ṽP = 0. The transport and the
secondary mineral volume evolution equations for the perturbations are

∂ξ c̃S = −c̃S (7.59a)
∂ξ c̃X = 0 (7.59b)

∂τ ṽS − ∂ξṽS =
1

nPρ
c̃S (7.59c)

− ϕ̃ = ṽS. (7.59d)
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The only solutions for the concentrations perturbations which satisfy the far-upstream boundary
conditions c̃X |ξ→−∞ = c̃S|ξ→−∞ = 0 are

c̃X = c̃S = 0. (7.60)

Due to the exponential time-dependence of the perturbations (see Eq. (7.47)), Eq. (7.59c) can
be rewritten as an ODE for the ξ-dependent perturbation amplitude,

σ̂fvS − ∂ξfvS = 0. (7.61)

Since the growth rate σ̂ can have any sign and the perturbation should vanish far upstream,
ṽS|ξ→−∞ = 0, the only admissible solution of Eq. (7.61) is

ṽS = 0. (7.62)

As a result, the porosity perturbation also vanishes, ϕ̃ = 0. Since the (unperturbed) porosity
upstream is constant in the regime of H → 0, Eq. (7.54) coupling the perturbations of the Darcy
velocity and the porosity, reduces to the Laplace equation for the Darcy velocity perturbation,

∇̃2ũξ = 0. (7.63)

As the η-dependent part of any perturbation is harmonic (see Eq. (7.47)), Eq. (7.63) can be
written as an ODE for the perturbation amplitude,

(∂2
ξ − k̂2)fuξ = 0, (7.64)

whose only solution which is finite at ξ → −∞ is

fuξ(ξ) = Aek̂ξ, (7.65)

where the constant A will have to be determined from the continuity with the analogous solution
downstream.

Perturbations downstream

Downstream the equations for the perturbations are

∂ξ c̃X + ũξ∂ξ ĉX = −Λc̃X (7.66a)
∂ξ c̃S + ũξ∂ξ ĉS = nPΛc̃X − c̃S (7.66b)
∂τ ṽP − ∂ξṽP = −Λc̃X (7.66c)

∂τ ṽS − ∂ξṽS =
1

nP%
c̃S (7.66d)

− ϕ̃ = ṽS + ṽP , (7.66e)

plus the equation (7.54) for the Darcy velocity perturbation. Using Eqs. (7.54) and (7.66a,c–e)
one can express the perturbation amplitudes in the form of various differential operators acting
on vvP ,

fcX = −Λ−1(σ̂ − ∂ξ)fvP (7.67a)
fuξ = −(ĉ′X)−1 (Λ + ∂ξ) fcX (7.67b)

fϕ = − 1

k̂2

(
1

W
∇̂2 − ϕ̂′∂ξ

)
fuξ (7.67c)

fvS = −fvP − fϕ (7.67d)
fcS = nP%(σ̂ − ∂ξ)fvS . (7.67e)
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The remaining equation (7.66b) allows us to reduce Eqs. (7.54) and (7.66) to a single 6th-order
linear ODE for the fvP (ξ) amplitude,

(1 + ∂ξ)(σ̂ − ∂ξ)
(

1

W
(∂2
ξ − k̂2)− ϕ̂′∂ξ

)
Λ

ĉ′X
(Λ + ∂ξ)(σ̂ − ∂ξ)fvP =

= k̂2

(
Λ2
(
1− %−1 + ∂ξ

)
− Λ

nP%

ĉ′S
ĉ′X

(Λ + ∂ξ)

)
(σ̂ − ∂ξ)fvP , (7.68)

which will be solved for ξ > 0. In the above, ĉH,S denote the stationary downstream solutions,
(7.57a–b).

The far-downstream boundary conditions follow from the perturbed boundary conditions (7.50).
In the limit of H → 0 there are three of them,

lim
ξ→∞

fuξ = lim
ξ→∞

fvP = lim
ξ→∞

fvS = 0. (7.69)

Using the relations (7.67), they can be written as boundary conditions for fvP .

Continuity conditions

Continuity conditions for the perturbations follow from the continuity conditions in the general
model. Continuity of the normal component of the Darcy velocity across the front,

(û + ũ) · (n + ñ)|ξ→ζ− = (û + ũ) · (n + ñ)|ξ→ζ+ (7.70)

(note that the vector normal to the front is also perturbed), after linearization yields

ũξ|ξ→0− = ũξ|ξ→0+ . (7.71)

Additionally, continuity of pressure,

p̂+ p̃|ξ→ζ− = p̂+ p̃|ξ→ζ+ , (7.72)

gives
∂ξũξ|ξ→0− = ∂ξũξ|ξ→0+ , (7.73)

where we have used the fact that the stationary permeability profile is continuous. The up-
stream amplitude of the Darcy velocity perturbation is the exponential function (7.65), known
up to the constant A. Now Eqs. (7.71) and (7.73) can be combined into a single one in order
to eliminate A,

(∂ξ − k̂)fuξ

∣∣∣
ξ→0+

= 0. (7.74)

Both concentration fields have to be continuous across the front,

ĉX + c̃X |ξ→ζ− = ĉX + c̃X |ξ→ζ+ , (7.75)

ĉS + c̃S|ξ→ζ− = ĉS + c̃S|ξ→ζ+ . (7.76)

Since upstream both perturbations vanish, linearization of the above conditions gives

fcX |ξ→0+ = −ζ0ĉ
′
X |ξ→0+ = Λζ0, (7.77)

fcS |ξ→0+ = −ζ0ĉ
′
S|ξ→0+ = −nPΛζ0. (7.78)

Lastly, the primary mineral volume fraction should vanish exactly at the front,

0 = v̂P + ṽP |ξ→ζ+ , (7.79)
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which gives
fvP |ξ→0+ = −ζ0v̂

′
P |ξ→0+ = −Λζ0. (7.80)

Three boundary conditions at ξ →∞, plus three at ξ = 0, allow one to solve Eq. (7.68) up
to the (arbitrary) front perturbation amplitude ζ0. The fourth boundary condition at ξ = 0
can then be used to find the dispersion relation between the perturbation growth rate σ̂ and
the wavenumber k̂. The dispersion relation σ̂ = σ̂(k̂) depends on two parameters: %, and Λ, as
well as on the choice of the permeability model (through the permeability gain function W ).
The value of the stoichiometric number nP is irrelevant here, since it reduces after inserting the
explicit formula for ĉS(ξ) into the ODE and the boundary conditions.

Equation (7.68) in general does not have an analytical solution and has to be solved numer-
ically (see Appendix A for details). However, some approximate analytical treatment of the
problem is possible. In principle, in the limit of small W it is possible to obtain strict analytical
solutions up to an arbitrary order in W . We will apply this procedure in the following section.

Expansion in small W

Defining the following set of differential operators,

K = 1 + ∂ξ = e−ξ∂ξe
ξ (7.81)

S = σ̂ − ∂ξ = −eσ̂ξ∂ξe−σ̂ξ (7.82)

P = ∂ξe
Λξ (7.83)

M = −k̂2

(
Λ2
(
1− %−1 + ∂ξ

)
+

1

nP%
ĉ′S∂ξe

Λξ

)
(7.84)

F = −ϕ̂′∂ξ (7.85)

L = ∂2
ξ − k̂2 (7.86)

J = ∂ξ − k̂ = ek̂ξ∂ξe
−k̂ξ, (7.87)

we can state the problem of finding the dispersion relation as(
KS

(
1

W
L+ F

)
P −M

)
SfvP = 0, ξ > 0 (7.88a)

fvP |ξ=0 = −Λξ0 (7.88b)

(S − Λ)fvP |ξ=0 = 0 (7.88c)((
− 1

W
SJ + F

)
P + k̂2Λ

)
SfvP

∣∣∣∣
ξ=0

= 0 (7.88d)(
S
(

1

W
L+ F

)
P + k̂2Λ

(
Λ + %−1

))
SfvP

∣∣∣∣
ξ=0

= 0 (7.88e)

fvP |ξ→∞ = 0 (7.88f)

SfvP |ξ→∞ = 0 (7.88g)

PSfvP |ξ→∞ = 0 (7.88h)(
1

W
L+ F

)
PSfvP

∣∣∣∣
ξ→∞

= 0 (7.88i)

S
(

1

W
L+ F

)
PSfvP

∣∣∣∣
ξ→∞

= 0 (7.88j)

79



In the case of small (and constant) W , one can expand both the solution of Eq. (7.68), fvP ,
and the growth rate σ̂ in the powers of W ,

fvP = f0 +Wf1 +W 2f2 + . . . (7.89)
σ̂ = σ̂0 +Wσ̂1 +W 2σ̂2 + . . . . (7.90)

Now one needs to insert these forms into (7.88), and expand the ODE, as well as the boundary
conditions, in subsequent powers of W . In zeroth order the procedure yields

KS0LPS0f0 = 0 (7.91a)
f0|ξ=0 = −Λζ0 (7.91b)

(−Λ + S0)f0|ξ=0 = 0 (7.91c)

S0JPS0f0|ξ=0 = 0 (7.91d)

S0LPS0f0|ξ=0 = 0 (7.91e)

f0|ξ→∞ = 0 (7.91f)

S0f0|ξ→∞ = 0 (7.91g)

PS0f0|ξ→∞ = 0 (7.91h)

LPS0f0|ξ→∞ = 0 (7.91i)

S0LPS0f0|ξ→∞ = 0 (7.91j)

where, by analogy to (7.82), S0 = σ̂0− ∂ξ. Solving Eqs. (7.91), one obtains the solution for σ̂0,

σ̂0 = 0 (7.92a)

f0 = −ξ0Λe−Λξ (7.92b)

S0f0 = −ξ0Λ2e−Λξ (7.92c)
PS0f0 = 0 (7.92d)
Pf0 = 0 (7.92e)

MS0f0 = ξ0k̂
2Λ4(1− %−1 − Λ)e−Λξ. (7.92f)

Considering the first order contribution in Eqs. (7.88), one gets

KS0LPS0f1 = −KS0FPS0f0 − σ̂1KLPS0f0 +MS0f0 − σ̂1KS0LPf0 (7.93a)
f1|ξ=0 = 0 (7.93b)

(−Λ + S0)f1 + σ̂1f0|ξ=0 = 0 (7.93c)

−S0JPS0f1 − S0JPσ̂1f0 + (−σ̂1JP + FP + k̂2Λ)S0f0

∣∣∣
ξ=0

= 0 (7.93d)(
S0FP + σ̂1LP + k̂2Λ(Λ + %−1)

)
S0f0 + S0LP(σ̂1f0 + S0f1)

∣∣∣
ξ=0

= 0 (7.93e)

f1|ξ→∞ = 0 (7.93f)

S0f1|ξ→∞ = 0 (7.93g)

PS0f1|ξ→∞ = 0 (7.93h)

LP(S0f1 + σ̂1f0) + FPS0f0|ξ→∞ = 0 (7.93i)

S0FPS0f0 + S0LP(S0f1 + σ̂1f0) + σ̂1LPS0f0|ξ→∞ = 0 (7.93j)

which can be simplified after inserting the zeroth order solutions (7.92). Solving for f1 and σ̂1,
one gets:

σ̂1 =
Λk̂
(
k̂2((Λ + 1)%− 1) + Λ(Λ + 1)(%− 1) + k̂ (Λ2%+ 2Λ(%− 1) + %− 1)

)
2(Λ + 1)%(k̂ + 1)(Λ + k̂)2

. (7.94)
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Since the zeroth term of the expansion is σ̂0 = 0, the two-term expansion of σ̂ is

σ̂(k̂;H → 0,Λ,W, %) ≈ W
Λk̂
(
k̂2((Λ + 1)%− 1) + Λ(Λ + 1)(%− 1) + k̂ (Λ2%+ 2Λ(%− 1) + %− 1)

)
2(Λ + 1)%(k̂ + 1)(Λ + k̂)2

.

(7.95)

Discussion of the results

As mentioned before, except for the small-W case, Eqs. (7.68) do not have in general analytical
solutions and have to be solved numerically. We have applied the boundary-bordering, pseu-
dospectral method [78, 79] (see Appendix A for details) in order to solve them and to find the
dispersion relations.

The length and time scales used for the scaling in Sec. (7.2), although convenient during
the derivations, are not the most reasonable ones when it comes to interpreting the results. In
the illustrating figures we will use different scalings, which should provide a deeper insight into
the studied instability. Spatial coordinates will be scaled by ldS (Eq. (7.43)), which is the largest
characteristic length for Λ > 1 and H < 2. As the time scale we choose the one associated with
the selected length scale: ldS/U , where U is the velocity of the planar front (Eq. (7.26)).

As both the numerical and analytical solutions show, perturbations of zero wavenumber are
marginally stable,

σ(k = 0) = 0. (7.96)

This is not surprising, since an infinite-wavelength perturbation of the front is a mere transla-
tion, a transformation neutral for an infinitely long (−∞ < ξ <∞) system.

Stability of the front with respect to long-wave (k̂ & 0) perturbations should depend on the
far-field permeability contrast.Indeed, Eq. (7.95) yields

U−1dσ

dk

∣∣∣∣
k=0

= W
%− 1

2%
. (7.97)

The sign of (7.97) is governed by the term (%− 1). If % > 1 (i.e. the secondary phase is more
porous than the primary phase), long-wave perturbations are unstable, and vice versa. The
result is analogous to Eq. (3.82) derived for the one-component reactive-infiltration instability.
Indeed, the permeability ratio κ is now equal to

κ =
eWϕ̂(ξ→−∞)

eWϕ̂(ξ→∞)
= eW(1−%−1). (7.98)

Assuming that W � 1, Eq. (3.82) can be rewritten as

σ̂′(k̂)
∣∣∣
k̂=0

=
κ− 1

κ+ 1
=
eW(1−%−1) − 1

eW (1−%−1) + 1
≈ W (1− %−1)

2
= W

%− 1

2%
, (7.99)

which is exactly the same result as the one derived for a more complicated dissolution-pre-
cipitation system, Eq. (7.97). It shows that the details of the model are not important from
the point of view of the long-wavelength stability. What only matters is the permeability ratio
between the primary and the secondary phases.

For equal far-upstream and far-downstream porosities (ρ = 1), we have σ′(k = 0) = 0, and
one needs to study higher derivatives to assess the front stability with respect to long-wave
perturbations. As it can be easily checked,

σ̂′′(k̂; % = 1)
∣∣∣
k̂=0

= W
Λ

Λ + 1
> 0, (7.100)
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Figure 7.6: Dispersion curves for Λ = 10, H → 0, W = 0.1, and % = 2, 1, 0.5 (top to bottom).
The numerical solutions (solid lines) are close to the small-W approximate ones (dashed lines;
Eq. (7.95)), especially in the small-k part of the spectrum.

so in the case of negligible dispersion, long-wave perturbations destabilize the front. Note that
an opposite result was derived in case of the standard reactive-infiltration instability, Eq. (3.83).
The complete dispersion curves for various % are shown in Fig. 7.6. Note that the small-W
analytical approximations are quite close to the numerical solutions which are available for
arbitrary W . The overlap of these curves is especially remarkable for small k. Short-wave
perturbations are unstable even if % = 0.5 < 1. Such a behaviour of the front is fundamentally
different from the one observed for a simple dissolution or precipitation front, where the front
is always unstable for % > 1 (κ > 1) and stable for % < 1 (κ < 1) [19].

In the small-W case the growth rate of short-wavelength perturbations can be found by
studying the asymptotic behaviour of Eq. (7.95),

lim
k̂→∞

σ̂ = W
Λ(Λ%+ %− 1)

2(Λ + 1)ρ
, (7.101)

which is positive whenever % > (Λ + 1)−1. In case of large W in the exponential permeability
model, or in case of the cubic permeability model, the dispersion curves for H → 0 also
have horizontal asymptotes at k̂ → ∞ (see Figs. 7.7–7.8). However, by analogy with the
one-component dissolution, we expect that any finite dispersion (H > 0) would stabilize short-
wavelength perturbations.

Next, we analyze the influence of Λ on the system instability. As shown in Fig. 7.7, in
case of the exponential permeability model, increasing the reaction rate contrast Λ destabilizes
the front. Such an observation can be explained by noting that while the maximal porosity is
constant (for constant vmaxP ), the minimal porosity is a decreasing function of Λ (cf. Eq. (7.58)).
As a consequence, in our model an increase of Λ is associated with an increase of porosity and
permeability contrasts across the front. In case of the cubic permeability model, the system
behaves in a qualitatively similar manner (Fig. 7.8). However, in the latter case the instability
is stronger (maxσ is higher). This observation can be explained by noting that the instability
gets stronger for larger values of the permeability gain factor W (Eq. (7.53)). For the cubic
permeability model, W is given by

W = W (ξ) =
K̂ ′(ϕ̂)

K̂(ϕ̂)
=

3vmaxP

ϕ(ξ)
. (7.102)

If vmaxP = 0.5 (as in Fig. 7.8), maxξW = 3, which is larger than (constant) W = 1 from
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Figure 7.7: Dispersion curves for H → 0, % = 1, W = 1, and Λ = 10, 5, 2 (top to bottom). The
exponential permeability model was assumed. The higher Λ, the stronger is the instability.
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Figure 7.8: Dispersion curves for H → 0, % = 1, vmaxP = 0.5, and Λ = 10, 5, 2 (top to bottom).
The cubic permeability model was assumed. The higher Λ, the stronger is the instability.
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Figure 7.9: One-dimensional stationary solutions, Eqs. (7.103), of the infiltration-driven replace-
ment model, Eqs. (7.18), for nP = 1, H = 1, Λ → ∞, and % = 2. Left panel: concentrations.
Right panel: specific volumes and porosity.

Fig. 7.7. Therefore we expect that the instability is stronger for the cubic permeability model
from Fig. 7.8 than for the exponential one with W = 1 from Fig. 7.7.

7.4.3 LSA in the limit of quick dissolution

Base solutions

In geochemical systems dissolution often occurs more rapidly than precipitation. The difference
between these reaction rates can be even as high as a few orders of magnitude. In our model the
relative rate of the reactions is controlled by the Λ parameter (see Eq. (7.20)). The assumption
that dissolution is much faster than precipitation is thus equivalent to taking the limit Λ→∞.
After noting that Γ2 ∼

√
Λ/H for large Λ, one recovers the stationary profiles in this limit,

ĉX(ξ) =

{
1− eξ/H , ξ < 0,
0, ξ > 0,

(7.103a)

ĉS(ξ) =


nP√

1 + 4H
eΓ∗1ξ, ξ < 0,

nP√
1 + 4H

e−Γ1ξ, ξ > 0,
(7.103b)

v̂P (ξ) =

{
0, ξ < 0,
1, ξ > 0,

(7.103c)

v̂S(ξ) =


%−1

(
1− 1

2 + Γ∗1
eΓ∗1ξ

)
, ξ < 0,

%−1 1

2− Γ1

e−Γ1ξ, ξ > 0.
(7.103d)

The front profile is illustrated in Fig. 7.9. Note that the X ion penetration length has dropped
to zero and the primary mineral volume fraction profile is discontinuous at ξ = 0. Consequently,
the porosity and permeability profiles are discontinuous as well. In the limit of Λ → ∞ one
obtains an analytical solution for the minimal porosity:

min
ξ
ϕ̂ = lim

ξ→0+
ϕ̂ = −%−1 1

2− Γ1

. (7.104)

The (unscaled) minimal porosity in this regime is thus equal to

min
ξ
ϕ = 1− vmaxP

(
1 + %−1 1

2− Γ1

)
= 1− vP (ξ →∞)− vS(ξ → −∞)

2− Γ1

. (7.105)

Also, unlike in the finite-Λ case, the first derivatives of the concentration profiles are discontin-
uous.
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Dynamics of the perturbations

Taking the limit Λ → ∞ effectively reduces the dissolution zone to a curve ξ = ζ(η, τ) in the
(ξ, η) plane. The primary mineral volume fraction is therefore constant on either side of the
front (v̂P = 0 upstream and v̂P = 1 downstream) and its perturbation vanishes, ṽP = 0. As
a result, the equations for the perturbations, Eqs. (7.51), look the same both upstream and
downstream,

∂ξũξ + ∂ηũη = 0 (7.106a)

ũξ = K̂(ϕ̂)∂ξp̃+ K̂ ′(ϕ̂)ϕ̃∂ξp̂ (7.106b)

ũη = K̂(ϕ̂)∂ηp̃ (7.106c)

∂ξ c̃S + ũξ∂ξ ĉS −H∂2
ξ c̃S +Hk̂2c̃S = −c̃S (7.106d)

∂ξ c̃X + ũξ∂ξ ĉX −H∂2
ξ c̃X +Hk̂2c̃X = 0 (7.106e)

∂τ ṽS − ∂ξṽS =
1

nP%
c̃S (7.106f)

− ϕ̃ = ṽS. (7.106g)

All the perturbation amplitudes except for fcX can be expressed as the fvS amplitude under
certain differential operators,

fϕ = −fvS (7.107a)
fcS = nP%(σ̂ − ∂ξ)fvS (7.107b)

fuξ =

(
− 1

ĉ′S

)
(1 + ∂ξ −H(∂2

ξ − k̂2))fcS (7.107c)

fp =
1

k̂2K̂(ϕ̂)
∂ξfuξ . (7.107d)

Eqs. (7.106a–d,f–g) can then be grouped together to yield a single, 5th order ODE for the
secondary mineral volume fraction perturbation amplitude,(

1

W
(∂2
ξ − k̂2)− ϕ̂′∂ξ

)(
−nP
ĉ′S

)
(1 + ∂ξ −H(∂2

ξ − k̂2))(σ̂ − ∂ξ)f±vS =
k̂2

%
f±vS . (7.108)

The ± indexes have been introduced to emphasize that in fact two separate ODEs have to be
solved: the ODE for f−vS (f+

vS
) is valid in the upstream (downstream) region, ξ < 0 (ξ > 0), and

should satisfy vanishing boundary conditions at ξ → −∞ (ξ →∞):

lim
ξ→±∞

f±vS = lim
ξ→±∞

∂ξf
±
cS

= lim
ξ→±∞

f±uξ = 0. (7.109)

They can be written as boundary conditions for f±vS using relations (7.107).

Continuity conditions

The upstream and downstream amplitudes should be matched across the front. The appropriate
continuity conditions can be determined by the linearization procedure analogous to the one
applied in Sec. 7.4.2. Continuity of pressure yields

f−p (0) = f+
p (0) +

(
1

K̂+

− 1

K̂−

)
ζ0, (7.110)
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where K̂± = K̂(limξ→0± ϕ̂) are the permeability values in the vicinity of the dissolution zone.
Note that due to the porosity (and permeability) discontinuity, the right-hand side term in
Eq. (7.110) does not vanish. Next, the normal component of the Darcy velocity should be
continuous across the front, which gives

f−uξ(0) = f+
uξ

(0). (7.111)

Also the secondary ion concentration should be continuous, as well as the secondary mineral
volume fraction, which gives

f−cS(0) = f+
cS

(0)− nP
H
ζ0, f−vS(0) = f+

vS
(0). (7.112)

In order to solve two coupled fifth-order ODEs (7.108) up to the arbitrary front perturbation
amplitude ζ0, one needs to use three boundary conditions at ξ → −∞, three at ξ → ∞, and
four continuity conditions, Eqs. (7.110–7.112). The solution will depend on two parameters,
H and %, as well as on the choice of the permeability model (both through the permeability
gain function W , and the near-front permeability ratio K̂+/K̂−). Similarly as in the H → 0
case (Sec. 7.4.2), the nP parameter reduces after inserting the explicit formula for ĉS(ξ) into
the ODEs and the boundary conditions.

This is however insufficient to get the dispersion relation. In order to relate σ̂ with k̂,
additional information should be utilized. In the derivation of Eqs. (7.108), we did not use
neither the equation for the upstream perturbation of the solvent concentration (7.106e), nor
the primary mineral volume fraction evolution equation, which is nontrivial only exactly at the
front in the quick dissolution limit. Noting that the normal velocity of the (infinitely thin)
dissolution front is proportional to the incoming solvent flux (see Eqs. (3.29) and (3.43), plus
the discussion around these equations),

Ûn = (ĉXû−H∇̂ĉX) · en, (7.113)

and perturbing Û , ĉX , û, and en in the above relation, one obtains 1

Ũ = (1−H∂ξ)c̃X |ξ→0− . (7.119)

1 The same result can be obtained in an alternative, more formal way. Reducing the dissolution reaction
term, the primary mineral volume fraction evolution equation can be combined with the solvent transport
equation,

(∂τ − Û∂ξ)v̂P = ∇̂ · (ĉX û−H∇̂ĉX). (7.114)

Note that Eq. (7.114) is valid in the whole domain. Perturbing v̂P , ĉX , û, and Û in Eq. (7.114) gives

σ̂ṽP − ∂ξ ṽP − Ũ v̂′P = ∂ξ c̃X + ũξ∂ξ ĉX −H∂2ξ c̃X +Hk̂2c̃X . (7.115)

Both sides of Eq. (7.115) are then integrated from ξ = ζ − ε to ξ = ζ + ε,

ζ+ε∫
ζ−ε

dξ
(
σ̂ṽP − ∂ξ ṽP − Ũ v̂′P

)
=

ζ+ε∫
ζ−ε

dξ
(
∂ξ c̃X + ũξ∂ξ ĉX −H∂2ξ c̃X +Hk̂2c̃X

)
. (7.116)

ζ+ε∫
ζ−ε

σ̂ṽP dξ − ṽP |ζ+εζ−ε − Ũ v̂P

∣∣∣ζ+ε
ζ−ε

= c̃X |ζ+εζ−ε + ũξ ĉX |ζ+εζ−ε −
ζ+ε∫
ζ−ε

ĉX∂ξũξ dξ − H∂ξ c̃X |ζ+εζ−ε +Hk̂2
ζ+ε∫
ζ−ε

c̃Xdξ, (7.117)

Since ṽP vanishes both upstream (ξ < ζ) and downstream (ξ > ζ), while c̃X downstream, Eq. (7.117) reduces
to

− Ũ = − c̃X |ξ=ζ−ε − ũξ ĉX |ξ=ζ−ε −
ζ∫

ζ−ε

ĉX∂ξũξ dξ + H∂ξ c̃X |ξ=ζ−ε +Hk̂2
ζ∫

ζ−ε

c̃Xdξ, (7.118)

Lastly, taking the limit ε→ 0+ and neglecting terms which are quadratic in the perturbations yields Eq. (7.119).
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On the other hand, the dissolution front velocity perturbation is the time derivative of the front
perturbation, Eq. (7.46),

Ũ = ∂τζ = σ̂ζ. (7.120)

Additionally, the perturbed solvent concentration should be zero at the front,

ĉX + c̃X |ξ→ζ− = 0, (7.121)

and c̃X should vanish at ξ → −∞. Simplifying Eqs. (7.106e) and (7.119–7.121) and expressing
them in terms of the perturbation amplitudes yields

(∂ξ −H∂2
ξ +Hk̂2)f−cX =

1

H
eξ/Hf−uξ , ξ < 0 (7.122a)

(1−H∂ξ)f−cX (0) = ξ0σ̂ (7.122b)
f−cX (0) = ξ0/H (7.122c)

f−cX
∣∣
ξ→−∞ = 0. (7.122d)

Once Eqs. (7.108) are solved, the Darcy velocity perturbation can be found as

f−uξ(ξ) = −nP%
ĉ′S

(1 + ∂ξ −H(∂2
ξ − k̂2))(σ̂ − ∂ξ)f−vS(ξ). (7.123)

Then, two boundary conditions (7.122c–d) are sufficient to solve Eq. (7.122a) up to the pertur-
bation amplitude ζ0, and the third one, Eq. (7.122b), allows one to find the dispersion relation
σ̂ = σ̂(k̂). In fact, problem (7.122) can be solved analytically: the dispersion relation is given
in the integral form

σ̂ = −Γ3 +
1

H

∫ 0

−∞
dξ exp(Γ∗3ξ)f

−
uξ

(ξ), (7.124)

where Γ3 =

√
1 + 4H2k̂2 − 1

2H
and Γ∗3 =

√
1 + 4H2k̂2 + 1

2H
.

Similarly as in the zero-dispersion case, Eqs. (7.108) have to be solved numerically. The
details of the applied numerical method are given in Appendix A. An approximate solution can
be however derived in the limit of small and constant W .

Expansion in small W

Analogously as in Sec. 7.4.2, we define the following differential operators,

S = σ̂ − ∂ξ (7.125a)

P± = −nP
ĉ′S

(1 + ∂ξ −H∂2
ξ +Hk̂2) (7.125b)

F± = −ϕ̂′∂ξ (7.125c)

L = ∂2
ξ − k̂2 (7.125d)

which allows us to shorten the notation. The ± indexes indicate that different formulas for
ĉS and ϕ̂ should be used for positive and negative ξ. Now Eqs. (7.108) with the appropriate
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boundary and continuity conditions can be written as(
1

W
L+ F±

)
P±Sf±vS = k̂2%−1f±vS , ξ ≷ 0 (7.126a)

f±vS
∣∣
ξ→±∞ = 0 (7.126b)

Sf±vS
∣∣
ξ→±∞ = 0 (7.126c)

P±Sf±vS
∣∣
ξ→±∞ = 0 (7.126d)

∂ξP±Sf±vS
∣∣
ξ→±∞ = 0 (7.126e)

e−W∂ξP−Sf−vS(0)− ∂ξP+Sf+
vS

(0) = ζ0%
−1k̂2

(
e−W − 1

)
(7.126f)

P−Sf−vS(0)− P+Sf+
vS

(0) = 0 (7.126g)
Sf−vS(0)− Sf+

vS
(0) = ζ0%

−1H−1 (7.126h)
f−vS(0)− f+

vS
(0) = 0, (7.126i)

where we have used the fact that in the case of constant W , the near-front permeability ratio
is

K̂+

K̂−
= e−W . (7.127)

Once the problem (7.126) is solved, the dispersion relation can be found via Eq. (7.124),

σ̂ = −Γ3 +
1

H

∫ 0

−∞
dξ exp(Γ∗3ξ)%P−Sf−vS . (7.128)

Expanding the perturbation amplitude and the growth rate in the powers of the small
parameter W ,

fvS = f0 +Wf1 +W 2f2 + . . . (7.129)
σ̂ = σ̂0 +Wσ̂1 +W 2σ̂2 + . . . , (7.130)

allows one to solve Eqs. (7.126) analytically up to an arbitrary precision. In zeroth order the
problem to solve is

LP±Sf±0 = 0, ξ ≷ 0 (7.131a)

f±0
∣∣
ξ→±∞ = 0 (7.131b)

S0f
±
0

∣∣
ξ→±∞ = 0 (7.131c)

P±S0f
±
0

∣∣
ξ→±∞ = 0 (7.131d)

∂ξP±S0f
±
0

∣∣
ξ→±∞ = 0 (7.131e)

∂ξP−S0f
−
0 (0)− ∂ξP+S0f

+
0 (0) = 0 (7.131f)

P−S0f
−
0 (0)− P+S0f

+
0 (0) = 0 (7.131g)

S0f
−
0 (0)− S0f

+
0 (0) = ζ0%

−1H−1 (7.131h)
f−0 (0)− f+

0 (0) = 0, (7.131i)

where S0 = σ̂0 − ∂ξ. The solutions are

f±0 =
ζ0

%
√

4H2k̂2 + 4H + 1
exp

(
∓ξ

√
4H2k̂2 + 4H + 1∓ 1

2H

)
. (7.132)
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Since P−S0f
−
0 = 0, the leading (zeroth order) term in the dispersion relation is

σ̂0 = −Γ3 = −

√
1 + 4H2k̂2 − 1

2H
. (7.133)

At first order, after some simplifications we have

LP±S0f
±
1 = k̂2%−1f±0 , ξ ≷ 0 (7.134a)

f±1
∣∣
ξ→±∞ = 0 (7.134b)

S0f
±
1

∣∣
ξ→±∞ = 0 (7.134c)

P±S0f
±
1

∣∣
ξ→±∞ = 0 (7.134d)

∂ξP±S0f
±
1

∣∣
ξ→±∞ = 0 (7.134e)

∂ξP−S0f
−
1 (0)− ∂ξP+S0f

+
1 (0) = ζ0k̂

2%−1 (7.134f)
P−S0f

−
1 (0)− P+S0f

+
1 (0) = 0 (7.134g)

S0f
−
1 (0)− S0f

+
1 (0) = 0 (7.134h)

f−1 (0)− f+
1 (0) = 0. (7.134i)

In fact, since we are going to evaluate σ̂ only up to the first order, Eqs. (7.134) can be replaced
by a simpler problem for g±1 = %P±S0f

±
1 . In fact, g±1 is the first-order term in the expansion of

the Darcy velocity perturbation amplitude, f±uξ = %P±Sf±vS , in W (the zeroth order is equal to
zero, g±0 = 0). Such a simplification yields

Lg±1 = k̂2f±0 , ξ ≷ 0 (7.135a)

g±1
∣∣
ξ→±∞ = 0 (7.135b)

∂ξg
±
1

∣∣
ξ→±∞ = 0 (7.135c)

∂ξg
−
1 (0)− ∂ξg+

1 (0) = ζ0k̂
2 (7.135d)

g−1 (0)− g+
1 (0) = 0. (7.135e)

The upstream solution is

g−1 =
k̂
(

(k̂ + 1)−1(k̂%+ %− 1)
(

Γ∗4 + 2H
(

Γ∗4 + k̂2
)

+ 1
)
ek̂ξ + 2Hk̂eΓ∗4ξ

)
2%(Γ∗4 + 1)(2Γ∗4H − 1)

, (7.136)

where Γ∗4 =

√
1 + 4H + 4H2k̂2 + 1

2H
, and can be used via Eq. (7.124) to obtain the first-order

term in the growth rate expansion,

σ̂1 =
1

H

∫ 0

−∞
dξ exp(Γ∗3 ξ) g

−
1 (ξ) =

= k̂

k̂%+ %− 1

H
+

2
(

(k̂ + 1)%(Γ∗3 + Γ∗4)
(

Γ∗4 + k̂2
)

+ (k̂ − Γ∗4)
(

Γ∗3 + Γ∗4 + k̂2 + k̂
))

(Γ∗4 + 1)(Γ∗3 + Γ∗4)

2%(k̂ + 1)(2Γ∗4H − 1)(Γ∗3 + k̂)
.

(7.137)
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Combining the two terms of the expansion, we eventually obtain

σ̂(k̂;H,Λ→∞,W, %) ≈ −

√
1 + 4H2k̂2 − 1

2H

+Wk̂

k̂%+ %− 1

H
+

2
(

(k̂ + 1)%(Γ∗3 + Γ∗4)
(

Γ∗4 + k̂2
)

+ (k̂ − Γ∗4)
(

Γ∗3 + Γ∗4 + k̂2 + k̂
))

(Γ∗4 + 1)(Γ∗3 + Γ∗4)

2%(k̂ + 1)(2Γ∗4H − 1)(Γ∗3 + k̂)
.

(7.138)

Not surprisingly, taking the limit H → 0 in Eq. (7.138) is equivalent to taking Λ → ∞ of
Eq. (7.95), and yields

σ̂(k̂;H → 0,Λ→∞,W, %) ≈ W
k̂(k̂%+ %− 1)

2(k̂ + 1)%
. (7.139)

Discussion of the results

Similarly as in the limit of negligible dispersion (Eq. (7.68)), Eq. (7.124) does not have in general
an analytical solution and have to be solved numerically. However, in case of the exponential
permeability model, an approximate solution could be obtained for small W , Eq. (7.138).

To present the results, two different scalings are used. Spatial coordinates will be scaled
either by ldS (Eq. (7.43)), which is the largest characteristic length for Λ > 1 and H < 2, or by
the diffusive length scale luX (Eq. (7.40)). As the time scale we choose the one associated with
the respective length scale, either ldS/U , or luX/U , where U is the velocity of the planar front
(Eq. (7.26)).

Similarly as in the case of H → 0, perturbations of zero wavenumber are marginally stable,

σ(k = 0) = 0. (7.140)

For small W , it can be shown that the stability of the front with respect to long-wave (k̂ & 0)
perturbations depends on the far-field permeability contrast,

U−1dσ

dk

∣∣∣∣
k=0

= W
%− 1

2%
(7.141)

(cf. Eqs. (3.81–3.82) and (7.96–7.97)). For equal far-upstream and far-downstream porosities
(ρ = 1), we obtain σ′(k = 0) = 0, and one needs to study higher derivatives to assess the front
stability. Taking the second derivative of the dispersion curve at k̂ = 0 we obtain

σ̂′′(k̂ = 0) = −2H +W
H
(
2
√

4H + 1− 5
)
− 2

(H − 2)
√

4H + 1
, (7.142)

which reduces to Eq. (7.100) in the limit of H → 0. It can be either positive or negative, depend-
ing on the interplay between the permeability gain factor W and the transport parameter H.
For

W > Wcr =
2(H − 2)H

√
4H + 1

H
(
2
√

4H + 1− 5
)
− 2
≈ 2H (7.143)

long-wave perturbations are unstable. The analytical results are in agreement with numerical
solutions (Figs. 7.10–7.6). Note that even for % < 1 and H > 0, there can be an intermediate
range of wavelengths which are unstable. Again, this is fundamentally different from the one-
component reactive-infiltration instability.
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Figure 7.10: Dispersion curves for Λ → ∞, H = 0.01, W = 0.1, and % = 2, 1, 0.7, 0.5 (top
to bottom). The numerical solutions (solid lines) are practically indistinguishable from the
small-W approximate ones (dashed lines; Eq. (7.138)), especially in the small-k part of the
spectrum.
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Figure 7.11: (Top) Dispersion curves for Λ → ∞, W = 1, % = 1, and H = 0.1, 0.05, 0.02, 0.01
(top to bottom), obtained numerically. The curves collapse for k ldS & 0. (Bottom) The same,
but the upstream diffusive length luX was used for scaling. The maxima of the curves are located
at approximately the same place, k∗ luX ≈ 0.16, or λ∗ ≈ 0.16 luX/(2π).
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Figure 7.12: Dispersion curves for Λ→∞, H = 0.01, and % = 1, and W = 1, 0.5, 0.2, 0.1 (top to
bottom). The numerical solutions (solid lines) are accompanied by the small-W approximate
ones (dashed lines; Eq. (7.138)). Although the approximation was derived for W � 1, the
approximate dispersion curve for W = 1 is relatively close to the exact one.

It is the short-wave part of the spectrum which is mostly influenced by the value of H. As
illustrated in Fig. 7.11 (top), the stronger dispersion (larger H), the more stabilized are short-
wave perturbations, while the long-wave spectrum remains intact while varying H. Also the
maxima of the dispersion curves, which correspond to the fastest-growing modes, are shifted
towards smaller k (longer waves) while increasing H. However, choosing a different length scale,
the upstream diffusive one, luX = D/u0, causes a collapse of the maxima. A rough estimation
of the most unstable mode is

k∗ ≈ 0.16
u0

D
, λ∗ ≈ 0.16

2π

D

u0

. (7.144)

The result, obtained in the quick dissolution limit, is similar to the one for a simple dissolution
front (also in the quick dissolution, or thin front, limit), Eq. (3.91). The upper limit on the
growth rate of short-wave perturbations can be found by studying dispersion curves in the
H → 0 limit.

Despite certain similarities with the reactive-infiltration instability, the current system of
interest has a richer family of parameters and factors which influence the character of the
instability. One of them, which was not present in the analysis conducted in Chapter 3, is
the relationship between the porosity and the permeability. From the point of view of linear
stability, it is the permeability gain factor W (constant for the exponential permeability model),
which characterizes the relative permeability gain for the given porosity increase. As expected,
the instability is stronger for larger W . Both the range of unstable wavelengths and the maximal
growth rate increase with W (Fig. 7.12).

7.5 Analogy to multilayer viscous fingering

In our hydrogeochemical models instability of a planar front is caused by positive feedbacks
between the flow and permeability. Somewhat similar systems have been considered in the
context of viscous fingering [80, 81, 82, 83]: a thin slice of fluid of viscosity µ2 inserted in the
fluid of viscosity µ1 in a Hele-Shaw cell and subject to the pressure gradient. Here, feedbacks
between the fluid flow and viscosity destabilize the front. There is no contrast of mobility in
the far-field, and yet the system turns out to be unstable. Such a case is analogous to ours,
for ρ = 1. This instability is interpreted by noting that out of the two interfaces between
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the injected fluid and the bulk fluid, one is always unstable. When a more viscous solution is
injected into a phase of lower viscosity, the rear interface of the injected slice becomes unstable
while the frontal one is stable. Conversely, when a low viscosity sample plug is injected into
a higher viscosity mobile phase then the viscous fingers develop at the frontal interface of the
sample while the rear interface remains stable [80]. These conclusions have been subsequently
verified experimentally in the studies [84] and [85].

Nevertheless, although the instability in our hydrogeochemical system is conceptually sim-
ilar to the instability in a moving heterogeneous fluid with a nonmonotonic viscosity profile,
caution should be taken while comparing these systems. In our case it is dispersion which
stabilizes short-wave perturbations of the front, while for viscous fluids it is either diffusion (for
miscible fluids) or surface tension (for immiscible fluids). In fact, as shown by [82], the charac-
teristic width of the unstable wavenumber bandwidth, as well as the characteristic instability
growth rate, are rather controlled by surface tension, and not by the width of the middle, more
viscous layer. In our replacement system, the characteristic wavelength of the perturbation is
comparable with the width of the longest length scale characterizing a planar front (ldS or luX).
In the viscous fluid case, the width of the middle slice of fluid, Lm, has weak impact on the
dynamics [82]. Here, the characteristic wavelength is a function of the viscosity jump at the
interface, the fluid displacement velocity and the surface tension, similar to the Saffman-Taylor
instability. In fact, the Saffman-Taylor instability is observed both in the limit Lm → 0 (with
the effective surface tension equal to the sum of the two original ones) and Lm → ∞ (where
the two fluid-fluid interfaces evolve separately)
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Chapter 8

Nonlinear evolution of the replacement
system

8.1 Numerical simulations

In Chapter 7 we have shown that dissolution-precipitation fronts are unstable for a broad range
of control parameters (%, H, Λ). In the presence of noise, a planar replacement front breaks up
and protrusions begin to grow. Subsequent stages of the evolution can be studied by numerical
simulations, similarly as presented in Chapter 5 for a one-component dissolution system. All
the simulations presented in this chapter were performed by solving a discretized version of
Eqs. (7.18) on a 1024 × 1024 rectangular grid, the lattice constant of which corresponds to
0.1L (see Eq. (7.11) for the length scale L), or 0.06 ldS. The direction of the externally imposed
pressure gradient is from the top to the bottom. On the side walls, periodic boundary conditions
were applied. The precipitation reaction of the form (7.45) was used to prevent the system
from complete clogging. The initial state of the simulations was the stationary solution (7.39)
perturbed with an uncorrelated Gaussian noise of zero mean and standard deviation equal to
10−2vmaxP .

In case of ρ > 1 (permeability of the secondary phase higher than permeability of the
primary phase), evolution of the replacement system is similar to the one-component dissolution
(Fig. 5.1). Figs. 8.1–8.2 present the evolution of the dissolution-precipitation system for % = 1.8.
Soon the translational symmetry becomes broken and small protrusions spontaneously develop
in the front. The protrusions grow and transform into small fingers. Due to competition for the
available flow and solvent flux, the dynamics becomes nonlinear, dominated by screening and
merging of the fingers. As a result, the fingers grow and coarsen, and their number decreases.
The overall picture is very similar to the one observed for pure dissolution. Two morphological
distinctions can be, however, noted. Firstly, the continuous region of decreased porosity in the
vicinity of the reaction front persists in the nonlinear regime. Its presence affects the shape
of the fingers, which are rather funnel-like than parabolic. Secondly, the secondary mineral
is not evenly distributed far upstream. Instead, its distribution reflects the history of the
sample. Indeed, paths of decreased vS content (and increased porosity) can be distinguished at
symmetry axes of individual fingers. They are traces of the trajectories of their tips.

In Chapter 7 it was proved that replacement fronts with % < 1 can be also unstable, which
is a fundamentally different behaviour than that observed for one-component systems. The
instability is caused by the nonmonotonicity of the steady-state porosity profile. Figs. 8.3–
8.4 present the evolution of the replacement system for % = 0.9. Indeed, the front breaks
up spontaneously and small protrusions develop. However, the further evolution is markedly
different from the case with % > 1. Long, separate fingers do not develop. Instead, a wavy front
begins to propagate. At the same time, the protrusions which have developed slowly coarsen.
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Figure 8.1: Nonlinear evolution of the replacement system, for nS,X,P = 1, % = 1, H = 1,
Λ = 10, and vmaxP = 0.8. The secondary mineral volume fraction vS is presented. Subsequent
stages of the evolution are shown: t/(T/vmaxP ) = 0, 5, 10, 15, 20, 25 (left to right and top to
bottom).
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Figure 8.2: The same as in Fig. 8.1, but porosity ϕ is plotted.
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Similarly as in the % > 1 case, the replacement zone is characterized by a porosity decrease,
and paths of higher porosity remain in the secondary rock after the front has moved.

Lastly, let us consider the marginal case of ρ = 1. Here, the system dynamics is probably the
most intriguing one. The steady front is unstable and its breakup leads to the development of
an array of small protrusions, which grow into fingers. Soon one of them acquires a significant
part of the total solvent flux and outgrows its neighbours. However, increased dissolution of
the primary mineral is associated with the increased precipitation of the secondary one. The
precipitate forms a weakly permeable wall near the tip of the fastest-growing finger, and its
growth ceases. Then the fluid finds another dominant flow path, where the next fastest-growing
finger develops, and the process continues in a sort of a loop. Consequently, a chaotic network
of fingers is created. The body of each finger is more porous than its sides. The increased
permeability of the finger network is neutralized by a “halo” of low permeability, surrounding
all the fingers.

8.2 Comparison with natural patterns

As noted in the beginning of Chapter 7, dolomitization is a common mineral replacement
process. It occurs when a calcite rock is infiltrated by a magnesium-rich brine. Calcium
carbonate is then replaced by calcium magnesium carbonate, Ca1-xMgxCO3, which crystallizes
as dolomite.

Calcium-to-dolomite replacement was studied by Sharp et al. [86], who where doing field
observations in Zagros Mountains, Iran. Fig. 8.7 presents one of the outcrops. The boundary
between the calcite and the dolomite is wavy and replacement fingers, filled with dolomite,
are clearly seen. The size of the fingers is of the order of 10 m in length and width. It
is much larger than the width of the replacement front, which cannot be deduced from the
figure. The authors do not report any quantitative porosity or permeability measurements,
but they note that some porosity was generated in course of the replacement. It agrees with
our notion that large-scale fingers develop in porosity-generating (% > 1) replacement systems.
Moreover, Sharp et al. observe porosity enhancement near the axes of some dolomite fingers:
“Note visible vuggy porosity development in centre of dolomite body, and lack of porosity in
adjacent limestone country rock” (Fig. 8.8). Obviously, this porosity could have been created
in a number of possible scenarios. However, our results presented in Sec. 8.1 suggest that a
similar porosity redistribution can be achieved solely as a consequence of nonlinear feedbacks
between the chemical reactions, porous matrix evolution, and the fluid flow. Our findings thus
give a simple and elegant explanation to the phenomenon reported in Ref. [86].
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Figure 8.3: Nonlinear evolution of the replacement system, for nS,X,P = 1, % = 0.9, H = 1,
Λ = 2, and vmaxP = 0.7. The secondary mineral volume fraction vS is presented. Subsequent
stages of the evolution are shown: t/(T/vmaxP ) = 0, 5, 10, 15, 30, 50 (left to right and top to
bottom).
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Figure 8.4: The same as in Fig. 8.3, but porosity ϕ is plotted.
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Figure 8.5: Nonlinear evolution of the replacement system, for nS,X,P = 1, % = 1, H = 1, Λ = 2,
and vmaxP = 0.75. The secondary mineral volume fraction vS is presented. Subsequent stages of
the evolution are shown: t/(T/vmaxP ) = 0, 5, 10, 15, 20, 25 (left to right and top to bottom).
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Figure 8.6: The same as in Fig. 8.5, but porosity ϕ is plotted.
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Figure 8.7: An outcrop figure modified from [86]. The width of the outcrop is approximately
100 m. The lengths of the dolomite fingers range from a few meters to about 25 m.

Figure 8.8: A dolomite finger figure adapted from [86]. The finger is marked with the white
dashed line. The axis of the finger is clearly more porous than both the rest of the dolomite
and the surrounding limestone.

103



104



Chapter 9

Summary

Nonlinear couplings between individual processes in nature often lead to spontaneous pattern
formation. Patterns formed in the lithosphere are in many respects exceptional, since, once
created, they can persist for millions of years, even if the original forces which brought them to
existence are no longer active. The analysis of these patterns can provide valuable information
about the environment in which they were formed.

In the present thesis specific pattern formation mechanisms were studied, which arise from
positive feedbacks between the fluid flow through a porous medium, transport of reactive aque-
ous species in the flow, and chemical reactions which modify the rock.

As specified in Chapter 2, we are interested in length scales which are significantly larger
than typical pore sizes in the rock, and time scales which are connected with changes in the
porous matrix, via dissolution or precipitation of minerals. Therefore continuum models are
adapted in our analysis, and Darcy’s law is applied to account for the fluid flow.

In Chapter 3 we rederived some classic results of the reactive-infiltration instability, per-
forming linear stability analysis of a planar dissolution front. We have adopted the thin-front
approximation, in which the reaction is assumed to take place instantaneously with the reac-
tants fully consumed at the dissolution front. In this way the problem becomes Stefan-like with
the undissolved phase downstream and the fully dissolved phase upstream. We have shown
that such a dissolution front is always unstable with respect to long-wavelength perturbations
to the front position. Short-wavelength perturbations can be stabilized by dispersion. The
results are well known, so their rederivation (in our notation) served just as a starting point
for our own results.

Next, in Chapter 4 we analyzed the dissolution system from Chapter 3 in a weakly non-
linear regime. We applied a simplified approach and studied only the coupling between the
harmonic mode which dominates in the linear regime, and its first subharmonic (i.e. twice the
wavelength). Such an approach had proved to be successful in case of a simpler model of Lapla-
cian growth [46]. The analysis allowed us to observe the first nonlinear effects which emerge
during a spontaneous front breakup, namely the competition between individual protrusions,
which results in screening of the shorter ones by the longer. In fact, the overall form of the
equations (4.8), which govern the mode coupling in the weakly nonlinear regime, is analogous
to the models of Laplacian growth.

As it has already became clear in Chapter 4, even for simplest hydrogeochemical systems
only limited results can be obtained using solely analytical methods. Therefore in Chapter 5
a complementary approach was used: the dynamics of the system was studied using numer-
ical simulations. Paying the price of strictness and generality, full evolution of the nonlinear
system could be tracked. Numerical simulations are in agreement with analytical results in
the first stages of the evolution. Next, they allow one to observe two phenomena, which play
the major role during the later stages of the evolution: merging and screening of individual
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dissolution fingers. As a result, an array of fingers develops, which resemble the ones observed
in nature (Fig. 1.4).

In Chapter 6 we have been analyzing the geometry of dissolution forms, which are commonly
found in soluble rocks. These are either convex forms, dubbed dissolution fingers (Sec. 6.1), or
concave ones, roots (Sec. 6.2). We assumed that both forms approach a stationary shape in
course of the evolution. In the thin-front limit we were investigating the problem of the existence
and shape of steadily growing dissolution forms. Two potentially limiting assumptions have
been made. First, we have adopted the Ivantsov ansatz (6.11), which has been successfully
used in other studies of dendritic growth [59, 87, 60], usually leading to the parabolic forms of
advancing dendrites. Moreover, we have assumed that the transformation (x, y)→ (χ, ψ) from
the original Cartesian coordinates to the coordinates spanned by the isolines and gradient lines
of the reactant concentration field c is conformal. Both of these assumptions limit the class of
solutions that can be found with this technique, leading however to significant simplifications in
the analysis, since the Ivantsov equation (6.14) is conformally invariant and takes a particularly
simple form (6.15) in the new coordinate system, where c = c(χ). The analysis of these
equations leads to the conclusion that (χ, ψ) are parabolic coordinates. Consequently, for both
fingers and roots, we obtained a family of infinite forms, which are either parabolic (in two
dimensions) or paraboloidal (in three dimensions). The flow within the finger, as well as within
the root, turns out to be uniform, in agreement with the earlier studies on the refraction of
groundwater flow on parabolic inclusions [69]. The magnitude of the flow is a function of the
permeability ratio between the dissolved and undissolved matrix, κ. The concentration field can
be expressed in terms of special functions (e.g. the imaginary error function for two-dimensional
fingers, Eq. (6.40)). In case of the fingers, the parameter controlling the shape of the field lines
is Pe′, defined as the ratio of convective to diffusive fluxes within the finger on the length scale
of the radius of curvature of its tip. For the roots, the distribution of the solvent concentration
is a function of both the Péclet number and the permeability contrast.

However, these simplifications come at a price, as we can only impose concentration bound-
ary conditions on the lines of constant χ, which limits the usefulness of these solutions. In
regard to the fingers, the most relevant physically seems to be the case of large Péclet numbers,
since in that case the concentration within the finger becomes uniform with an exception of
a thin boundary layer near the reaction front itself. In this case the exact placement of the
Dirichlet boundaries becomes irrelevant. In fact, the solution pipes shown in Fig. 1.4 seem to
have been formed under such a regime. In case of the roots, the limitations on imposing the
boundary conditions for the concentration are less important, since the inlet concentration can
be imposed on a parabola which is infinitely far from the root.

The propagation velocity of both fingers and roots, U , is proportional to the acid capacity
number, and the flow rate. In general, it also depends on the radius of curvature of the tip, ρ,
and the permeability contrast between the dissolved and undissolved domains, κ. However, in
the advection-dominated regime (large Péclet numbers) the propagation velocity of both forms
is independent of the curvature,

U = γ uin, (9.1)

where uin is the Darcy velocity of the fluid either inside the finger or the root. For small Péclet
numbers, the propagation velocity is an increasing function of the tip curvature: U ∝ ρ−1 for
2D and 3D fingers, U ∝ ρ−1/2 for 2D roots, and U ∝ (ρ ln ρ)−1 for 3D roots.

The scale invariance of the problem leads to a dynamical indeterminacy. Any propagation
velocity is permissible provided that the radius of curvature of the finger (root) is appropriately
tuned. There is no selection principle to fix the tip curvature and the finger (root) propagation
velocity independently. Finding such a selection principle is a highly nontrivial task [88] and
involves the introduction of an additional length scale into the system. In the case of viscous
fingering and dendritic growth this is achieved through short-scale regularization mechanisms
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such as surface tension or kinetic undercooling. It is not clear what would be the physical origin
of such a short-scale regularization in the present case. A candidate for the additional length
scale could be the reaction front width, which in our analysis is zero, but remains finite in any
physical case. Another possibility is that the additional length scale sought here is connected
with the presence of other fingers, as it is always the case in natural systems (cf. Fig. 1.4).
The full solution of the problem would then require matching the solution near the parabolic
tip with that in the neighborhood of the root of the finger, where it joins with its companion.

Up to Chapter 6, single-component dissolution systems were studied. In Chapter 7 we
studied more complicated systems, where dissolution of a primary mineral in the rock is ac-
companied by precipitation of a secondary one. After considering one-dimensional profiles of
mineral volume fractions and concentrations, the linear stability of such solutions was analyzed.
We have shown that replacement fronts, whose characteristic feature is a porosity (and perme-
ability) decrease in the replacement zone, can be unstable for a wide range of parameters. The
most striking observation is a possible destabilization of the front in the case when permeability
of the secondary rock far upstream is lower that permeability of the primary rock far down-
stream (% < 1 in our notation). Such a destabilization of the front is caused by the presence
of a zone of lower permeability in the vicinity of the replacement zone. In our analysis we
were assuming very simple, linear chemical kinetics models. Although geological systems are
characterized by a more complex chemical kinetics than that considered here, the qualitative
features of the dispersion curves should remain the same, provided that a low-porosity zone is
present.

Chapter 8 plays a similar role as Chapter 5. Here, we present numerical studies of the
replacement system introduced in Chapter 7. Replacement systems with % > 1 behave similarly
to dissolutions systems. The initial instability causes the front breakup and the emergence of
an array of protrusions. Due to nonlinear feedbacks, in course of the evolution some of the
protrusions coarsen and grow into fingers, while others get screened and absorbed by their larger
neighbours. However, there are some dissimilarities between the replacement and the dissolution
systems. Firstly, in the replacement system the intermediate region between the primary and
the secondary phases is characterized by a porosity decrease. Secondly, the secondary mineral
is not evenly distributed. Instead, its volume fraction distribution reflects the history of the
system. Paths of increased porosity in the secondary phase coincide with the former positions of
finger tips. Interestingly, similar effects can be observed in some natural replacement systems,
in particular during calcite-to-dolomite replacement. The case of % < 1 is also linearly unstable
for a wide rage of other parameters. After the initial breakup period, a wavy replacement
front propagates through the porous rock and simultaneously reorganizes. However, large-scale
fingers do not develop here. The distance between the leading and the trailing point at front
remains approximately constant.

Obviously, the models presented in this thesis are just a few examples of possible scenarios
of interactions and couplings observed in natural hydrogeochemical systems. For instance, the
“driving force” of the replacement might not be dissolution, but precipitation [89]. Contrary to
the replacement systems considered in this thesis, those are characterized by a porosity increase
in the vicinity of the front. Such a class of replacement systems was studied by the author of
this thesis in a similar manner [90]. Interestingly, they are also unstable for a broad range of
control parameters, even if % < 1.

The models which we have presented might seem seriously simplified when compared with
natural phenomena. However, we believe that such a reductionistic approach can be still
fruitful. With just a handful of parameters it is relatively easy to study the impact of each
of them onto the behaviour of the system. On the other hand, as proved in this thesis, even
apparently simple geophysical models might exhibit a broad class of nonintuitive, complex
phenomena. Modeling is in fact a kind of art, since usually it is not straightforward to assess
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which components of a modeled system are of fundamental importance, and which can be (in
the desired approximation) omitted. We hope that our analysis of simple hydrogeochemical
models has provided us with some insight into the Nature.
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Appendix A

Spectral method

In Sec. 7.4.2 we have derived the ordinary differential equation (7.68), which, supplied by appro-
priate boundary conditions allows one to find the dispersion relation between the wavenumber
characterizing the sinusoidal perturbation of the reaction front and its growth rate. Eq. (7.68)
was valid in the ξ > 0 domain, and the boundary conditions were either set at ξ = 0, or at
ξ →∞. Similarly, in Sec. 7.4.3 two coupled ODEs (7.124) were derived, one of them valid for
ξ < 0, and another one for ξ > 0. Those were accompanied by far-field boundary conditions
(at ξ → −∞ and ξ → ∞), as well as by four continuity conditions at ξ = 0. We have men-
tioned that these problems cannot be in general solved analytically, and a numerical solution
is required. Here, we shall give some more details regarding the applied numerical integration
method.

Following Szymczak & Ladd [91], who were studying instabilities in fracture dissolution, we
have applied the pseudospectral, boundary-bordering method [78, 79]. In the case of a single
ODE valid in the R+ = (0,∞) domain,

Hf(ξ) = 0, ξ > 0, (A.1)

where H represents a linear differential operator, its solution f(ξ) is expanded as a linear
combination of N basis functions,

f(ξ) =
N−1∑
j=0

fjΨj(ξ), (A.2)

where fj are unknown coefficients. The basis functions are rational Chebyshev polynomials,

Ψn(ξ) = Tn

(
ξ − L
ξ + L

)
, (A.3)

where Tn(t), with n = 0, 1, 2, . . . , is a Chebyshev polynomial of the first kind, and L > 0
is a parameter. By variable change one can show that rational Chebyshev polynomials are

orthogonal with respect to the weight

√
L√

ξ(ξ + L)
, and with the inner product equivalent to

integration over (0,∞),

∞∫
0

Ψi(ξ)Ψj(ξ)

√
Ldξ√

ξ(ξ + L)
=

1∫
−1

Ti(t)Tj(t)
dt√

1− t2
=


0, i 6= j,
π/2, i = j 6= 0,
π, i = j = 0.

(A.4)

The fj coefficients in Eq. (A.2) can be found by solving a linear system

Hf = g, (A.5)
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where f = [f0, . . . , fN−1]T , and H is a real N × N matrix. The first b rows of H are used to
impose b boundary conditions at ξ = 0, which are sufficient to solve the problem (in our case
b = 3). The boundary conditions, which are of the form

Bif |ξ=0 = αi, i = 0, 1, . . . , b− 1, (A.6)

where Bi are linear differential operators, are thus translated into b rows of H and g,

Hij = BiΨj(ξ)|ξ=0 , gi = αi, i = 0, 1, . . . , b− 1. (A.7)

The remaining matrix elements are found by evaluating H acting on the basis functions,

Hi+b,j = HΨj(ξ)|ξ=ξi , gi+b = 0; i = 0, . . . , N − 1− b; j = 0, . . . , N − 1; (A.8)

where ξi are preselected collocation points,

ξi = L cot2

(
π(2i+ 1)

4(N − b)

)
, i = 0, 1, . . . , N − 1− b. (A.9)

After solving (A.5) for f , the last boundary condition at ξ = 0,

Bbf(ξ)|ξ=0 = αb, (A.10)

can be used to find the dispersion relation. In practice, one should vary the growth rate σ̂ until
the discretized version of Eq. (A.10),

N−1∑
j=0

fj BbΨj(ξ)|ξ=0 = αb, (A.11)

is satisfied.
Note that boundary conditions at ξ →∞ are not explicitly used in this numerical method.

As one can strictly prove, the general asymptotic solution of f(ξ) is a linear combination
of exponentially growing and exponentially decaying functions, the former to be cut off by
boundary conditions at ξ →∞. Thus, since

lim
ξ→∞

Ψn(ξ) = 1 <∞, (A.12)

the boundary conditions at infinity can be automatically satisfied by the choice of basis func-
tions. However, one has to assure that the solutions which are singular at ξ → ∞ are auto-
matically cut off for all parameters, and it might be necessary to modify the problem a bit,
replacing the f(ξ) function by a product of another unknown function f̄(ξ) and an exponential
factor 1. An asymptotic analysis of Eq. (7.68) reveals that in order to satisfy the latter, one
should rather search for f̄vP (ξ) = eΛξfvP (ξ) instead of the original function fvP (ξ).

1 For instance, consider the following problem,

(∂2ξ − u2)eξf(ξ) = 0, ξ > 0, (A.13a)

f(ξ = 0) = 1, (A.13b)

lim
ξ→∞

eξf(ξ) = 0, (A.13c)

where u is a positive parameter. The general solution of Eq. (A.13a) is

f(ξ) = C1e
−(u+1)ξ + C2e

(u−1)ξ. (A.14)

The boundary condition (A.13c) sets C2 = 0, and then (A.13b) yields C1 = 1. However, for u < 1 both parts
of solution (A.14) are exponentially decreasing, and neither of them can be cut off choosing rational Chebyshev
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A similar method can be used to solve Eqs. (7.124). Here, however, the problem is a bit
more complicated, since two coupled differential equations,

H−f−(ξ) = 0, ξ < 0, (A.16)
H+f+(ξ) = 0, ξ > 0, (A.17)

have to be solved simultaneously. The basis functions are rational Chebyshev polynomials (A.3)
as well, but one has to take a positive L to expand f+, and a negative one for f−. In vector f ,
the coefficients of the expansion of both f− and f+ are stacked,

f = [f−0 , . . . , f
−
N−−1, f

+
0 , . . . , f

+
N+−1]T , (A.18)

and the H matrix consists of several submatrices,

H =

 B− B+

H− 0
0 H+

 , (A.19)

where the R±×N± matrices H± are discretizedH± operators, and b×N± matrices B± originate
from b continuity conditions at ξ = 0, which are of the form

B−i f−(ξ) + B+
i f
−(ξ) = αi, i = 0, 1, . . . , b− 1. (A.20)

There is some freedom in choosing the sizes of the submatrices, but one has to make sure that

R− +R+ + b = N− +N+, (A.21)

so that H is a square matrix.
Again, the boundary conditions at ξ → ±∞ are automatically satisfied, if one modifies the

original problem a bit. In both the ODEs (7.124) and the continuity conditions, f−vS should be
replaced by eΓ∗1ξf̄−vS , and f+

vS
by e−Γ1ξf̄+

vS
.

In our case, 40–50 base functions for each ODE were typically sufficient to obtain the desired
accuracy. The parameter L is in principle arbitrary, but the method proved to be least error-
prone for L = 5 or L = 10 (L = −5,−10 for the negative domain). Taking larger N and L was
sometimes necessary to resolve the long-wave (k̂ & 0) part of a dispersion curve.

polynomials as basis functions. A slight modification of problem (A.13) is necessary: the unknown function
f(ξ) has to be replaced by e−ξ f̄(ξ). A problem equivalent to (A.13) is then constructed,

(∂2ξ − u2)f̄(ξ) = 0, ξ > 0, (A.15a)

f̄(ξ = 0) = 1, (A.15b)

lim
ξ→∞

f̄(ξ) = 0, (A.15c)

which can be solved by the presented numerical method.
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