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Aim of this talk

DYNAMICAL MEAN-FIELD THEORY

e What is it?
e Why do we need it?
e How to use it?

e Where does it help?



Correlation

e Correlation [lat.]: con+relatio (“with relation™)

— Two or more objects needed
— Grammar: either ... or, look for, deal with, ...
— Many-body physics:

dp, dx
—— =F F — —
oy 1+ B9, p1 = my 7
dp2 dxo

=Fy+Fo1, Dp2=mo——

dt




Spatial and temporal correlations everywhere

car traffic

air traffic

human traffic

electron traffic

more .....
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Abb. 3: Beispiel eines Metall-Isolator-Ubergangs: Bei Abkiihlung unter eine Tem-
peratur von ca. 150 Kelvin erhéht sich der elektrische Widerstand von metallischem
Vanadiumoxid (V20s) schlagartizg um das Einhundertmillionenfache (Faktor 10%) -
das System wird zum Isolator.



Correlation

e Mathematics, Statistics, Natural Science: " In statistics, dependence refers to any
statistical relationship between two random variables or two sets of data.
Correlation refers to any of a broad class of statistical relationships involving
dependence.” (Wikipedia)

e Formally: Two random variables are not independent (are dependent) if

P(z,y) # p(x)p(y),

and are correlated if

(zy) # (x)(y),
p(z) = [ dyP(z,y).

e In many body physics: correlations are effects beyond factorizing approximations

(p(r,t)p(r',t")) = (p(r, 1)) (p(r', 1)),

as in Weiss or Hartree-Fock mean-field theories.



Spatial and temporal correlations neglected

time/space average insufficient

(p(r,t)p(r', 1)) ~ (p(r, 1)) (p(r',t")) = disaster!




Spatial and temporal correlations neglected

Local density approximation (LDA) disaster in HTC
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LaCuO,4 Mott (correlated) insulator predicted to be a metal

Partially curred by (AF) long-range order ... but correlations are still missed



Correlated electrons
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Narrow d,f-orbitals/bands — strong electronic correlations



Correlated fermions on lattices

H=— Z tijclacja + U Z NG|

fermionic Hubbard model

P.W. Anderson, J. Hubbard, M. Gutzwiller, J. Kanamori, 1960-63
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The Holy Grail for correlated electrons

Fact: Hubbard model is not solved for arbitrary cases

Find the best comprehensive approximation

e valid for all values of parameters t, U, n = N./Np, T

e thermodynamically consistent

e conserving

e possessing a small expansion (control) parameter and exact in some limit

e flexible to be applied to different systems and material specific calculations



What we need for Hubbard model

We need propagator (one-particle Green function)

1
(#) = —ilTee (D)t =
Gijo(t) i(Ticio (t)ch, (0)) ??Ga(k, w) Wt p— ek — By (K, w)

At finite temperatures t — —i7

Gijo(T) = —(Trcin(1)cl ,(0)) = —% / D[c*, cJeiq(T)c}, (0)e =51

with the action (Lagrangian)

B=1/T

S == [ dr Y e (00, - wein(r) - Hlc'

0

Later two-particle Green functions



All what we know about Hubbard model

Solved in U = 0 limit (non-interacting limit)

1
Go(k,w) =
W+ U — €x
Dispersion relation
€k = Z tz'jeik(Ri_Rj) Alk.o) ‘
3 () | |
Spectral function - one-particle excitations / ‘
Kk
1
As(k,w) = ——ImG(k,w) = d(w + 1 — €) NS
T

Density of states (DOS) - thermodynamics /
N, (w) = ZA(k,w) = Z5(w + 1 — €x)
k

k



All what we know about Hubbard model

Solved in t = 0 limit (atomic limit)

G,(k,w) =

l—n_,

W+ W

Real self-energy

Spectral function

Ask,w)=(1—-—n_s)0(w+p)+n_s0(w+p—U) LHB

Green function and self-energy are local,

l.e. k independent

ey



Static mean-field for exchange Hamiltonian

Replace many-body Hamiltonian by one-body Hamiltonian with external (molecular

or Weiss) field
7 — B — TTSie_IBHexch — Tf,asz_e—ﬁHMF

where
Hyp = ZBMF -Si + Eshift

Make mean-field (decoupling) approximation and determine B, g

Byur = Z Jii(S;) Hyp

7 (%)

where (S;) = (5%)H,,, is found self-consistently

(%) Hyyp = tanh (BJ(S?) m,, )



Static mean-field — principal approximation

Spin-spin correlations are neglected

(Si = (Si)l - [S; = (Sj)) = 0= (Si-S;) = (Si) - (Sy)

A @)

2J<S> 0 2J<S> -4J<S>
@ \ ‘
2J<S>

Quality of mean-field approximation improves when z is large



Static mean-field — exact when 2z —

([Si = (Si)] - [Sj = (Sj)]) =200 0 == (Si - 8j) =2s00 (Si) - (Sy)

No spatial correlations in z — oo limit

Rescaling for nearest neighbor (nn) exchange coupling

J*
J — —. J" = const
Z

then
T .
Byr = Z J HMF = <S>HMF =J <S>HMF

Z
71=1

Is bounded when 2z — ¢

Static mean-field theory is exact and nontrivial when z — o0;
there exists a small (expansion) parameter 1/z



Dynamical mean-field theory — heuristic approach

Find a comprehensive mean-field theory for Hubbard model

Exact free energy

1 x 1 1
F=—2n / Dle", eI = ZTeIn G (e, wn) = — T nfiwn-+i—ex— (. wn)

Approximation ¥, (k,w,,) = ¥,(w,) - local approximation keeping full dynamics

1
Frnedl2] = —ETr Infiw, + p — ex — 2o (wp)]




Dynamical mean-field theory — heuristic approach

Need a prescription to determine X, (w.,)

“Remove” a single site in the effective medium and replace it by the actual, bare

Interaction
F = Fpeq[X] — Fi[2] + EPare

Local Green function (7 = j and index omitted)

1

= — Ov/- . Zo_ .
o (twp) ZG (k,wp) ;iwnﬂ-u—ek—za(wn) G (iw + p (wn))
and 1
Fi[Y] = —=TrIn[Go(iw + p — Yo (wn))]

B




Dynamical mean-field theory — heuristic approach

Actual bare interaction
bare 1 * —gbarerex ]
F>" 0] = —=1In | D|c", cle™ Pioc 1€
B
where

Share Z / drdr'c Y —e (7)) +U / drny(T)ny (1)

and the local-Dyson equation defines

_1 wn"‘z( n)

‘ ‘ Y

> () > () 5 (w)



Dynamical mean-field theory — heuristic approach
to close the set of equations use stationary condition

SF[S, 0]

so-1 U

hence
Go(T) = —(Trco(7)C5(0)) ghare

loc

and all three local but dynamical variables G, (, and > are determined

t




Summary — DMFT - full glory

Local Green function
GU(T) — _<TTCO'(T)CZ-(O)>SZJCLT’6

loc

where
Share — Z / drdr'c: (TG 1 — el () + U / drny(T)ny (1)

and self-energy
1(wn) = G;l(wn) + Y5 (wn)

Local Green function and lattice system self-consistency

1
o (1wn) g Go(k,w gk PR RTRT— AP Goliw+ p (Wn))



DMFT — what is neglected, what is kept

Spatial correlations are neglected (LRO is OK)

([0 (7) = (io (P[0 (7") = (mjor(7 ]} s, = O

Local temporal correlations are kept exactly

(10 () — (i (M]3 (7") = (Mg (7)) 5, = “xcact”

Local dynamical Hubbard physics described well

t




DMFT - conserving theory

any reliable approximation should be conserving, i.e. all microscopic conservation
laws should be preserved by an approximate theory

®-derivable theory (Baym, Kadanoff - 1962)

Q] = @[¥] — Tr(XG) — Tr(Gy ' — %)

here
" . 00
)Y
IS conserving because vertices
52 P
A =
020

are approximated in the same way

dynamical mean-field theory is a conserving approximation due to construction



DMFT - consistent and comprehensive

DMFT is thermodynamically consistent, e.g.

10F 1
"= Gop = oGl

no

DMFT is valid for any value of the microscopic parameters,
no expansion wrt U, t, 8, nor 1/n

DMFT is comprehensive theory for correlated electrons



DMFT - flexibility; LDA+DMFT

Multi-band systems (Anisimov et al. 97; ... Nekrasov et al. 00, ...)
H=Hripa+ Hint — HgDA = H?;DA + Hint

direct and exchange interaction

1 T T
_5 Z Z Jmm/ cilmacilm’_gcilm’acilm—a

1=14,l=lg mo,m/’

kinetic part, determined from DFT-LDA calculation (material specific)

0 _ 2: ol
HLDA — tzlm,jl’m CitmoCil'm/o

ilm,jl'm/ o

LDA+DMFT - state of the art for realistic approach to correlated electron systems



DMFT scheme

Sioc - local interactions U or J from a model TB or a microscopic LDA Hamiltonian

A A A A

G = Ylw+ i - 10—

HO is a model TB or a microscopic LDA Hamiltonian



DMFT - flexibility; disordered systems

Correlated electrons with local disorder

H=— Z ijczacjg +U Z nitniy + Z Cilio
) 10

1j]0

where ¢; is random (on-site) local energy with fixed probability distribution function
(PDF) P(e;)

In self-averaged systems, physical quantities are given by arithmetic average

C(@)aw = — / desP(e3) (@) () s, = {(e(@)e* (@) sy cen) i

In non-self-averaged systems, physical quantities are given by typical ones - geometric
average Ogeom = exp[(In O)]

_ImG(w)typ = 6<1n[_1m<6(w>c*(w)>5l0c(€z‘)]>di8



DMFT — d — oo limit, small parameter O(1/z)

|dea: spatial correlations are absent when number of neighbors is large (infinite)

Crystal lattices in d = 3: P
simple cubic (sc) - z =6 »  xe o
body center cubic (bcc) - 2 =8

face centered cubic (fcc) - z =12 "0

Hypercubic lattice in d-dimension - z = 2d

-

Bethe (Caley) tree - z = K + 1




Simple d — oo limit

Kinetic energy

NN hopping:

Bare dispersion

Density of states

ij:t(Ri_Rj):{ 0

Hy = Ztijczacja = Z ekcltacka

)0 ko

—t if R,L — Rj = :I:en

otherwise

d
ex = —2t Z cos k;
i=1

arbitrary broad and featureless in d — oo limit



Non-trivial d — oo limit

Non-trivial DOS is obtained when hopping is rescaled

t*
t > ——, t¥ = const
Vv2d
1 e \2
Noo(e) = e~ (3%)

(Metzner, Vollhardt, 1989)

In general
k.
tij — -/
V dlIRi—R;l|
o

Niw)

Niw) F

N e

Fig. 1.2 Tight-binding density of states in d = 1,2,3,4,5 as compared with t]
o0

for d = oc.

* ||R; — R,|| - taxi cab (Manhattan, New York) distance



Non-trivial d — oo limit

Non-trivial (asymptotic) theory is well defined such that the energy density is
generically finite and non-zero

1 1
N—LEk'Ln — N—L Z tij<czacja Z Z ’LJ / Vi 7']0 ™~ O(l)

1j0 10 ]( ) 50
O(an Ryl
Fact, since G;; is probability amplitude for hopping,

IR; R||
Gij ~O(d™
with rescaling
t*
bij
\/dIIR —R;|

sum Zj(z.) is compensated and energy is finite (Metzner, Vollhardt, 1989)



d — oo limit — Feynman diagrams simplification

One proves, term by term, that skeleton expansion for
the self-energy 3;;|G| has only local contributions

Yijo (Wn) —d—oo Liio(Wn)0ij
Fourier transform is k-independent
Ea(kawn) —7d—o00 Ea(wn)

DMFT is an exact theory in infinite dimension (coordination number) and small
control parameter is 1/d (1/z)

(Metzner, Vollhardt, 1989)

ansatz in heuristic derivation is then exact (Janis, Vollhrdt, 1992)

1
F = FpeqlX] = —ETr Infiwy, + p — ex — Yo (wy)]



DMFT in practice

The hardest part of DMFT is to solve local, many-body problem

Go (1) = —(Trco (1) (0)) goare

loc

where

Share — Z / drdr'c Y=o (T + U / drny(T)ny (1)
it is usually mapped onto the Single Impurity Anderson Model
(Kotliar, Georges, 1992; Jarrell, 1992)

Hsram = €q Z Nao + Ungynagy + Z Vied! cxo + H.c. + Z Eﬁuxclacka
ko ko



DMFT solvers in practice

e Analytical approaches (approximate, but fast)

— (IPT) Iterative perturbation expansion
— (NCA) Non-crossing approximation

— (LMA) Local moment approach

— (LDMFT) Linear DMFT

— (Hubbard I or Ill) Strong coupling approach

e Numerical approaches (formally exact, but expensive)

— (HF-QMC) Quantum Monte Carlo - Trotter decomposition, large T', limited U
— (CT-QMC) Quantum Monte Carlo - continuum time, perturbative character

— (PQMC) Projected quantum Monte Carlo - only ground state

— (ED) Exact diagonalization - small system, discrete spectrum

— (NRG) Numerical renormalization group - logarithmic broadening

— (DMRG) Dynamical matrix renormalization group

Find the best solver to you physical problem



DMFT - long-range orders and susceptibilities

Broken symmetry phases (infinite-long range orders) are described by generalized
local problem and self-consistency condition

e.g., for AF we need to sites (A or B) which are coupled be opposite spins

Susceptibilities (two-particle correlation functions) are determined by the
corresponding local quantities and non-interacting lattice parts

el =1 oa—1 a1
Xq — Xloc + XO,q o XO,lOC



Eg. 1 - MIT at half-filling
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Antiferromagnetic Mott insulator

typical intermediate coupling problem U, = |t;;]



Eg. 1 - MIT at half-filling

atomic levels

|t|=0 |t|>0 E+U >
- —— S —
U
| :
E |[—— >  LHB —

m ﬁ at U = U, resonance disapears
. aped insulator
| & BN &ap

v v

spin flip on central sit¢

dynamical processes with spin-flips inject states into correlation gap giving a



Eg. 1 - MIT at half-filling at 1" = 0 according to
DMFT

Kotliar et al. 92-96, Bulla, 99
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G(k,w) ~ 2t Gipe
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Muller-Hartmann 1989




Eg. 1 - MIT at half-filling at 7' > 0 according to

DMFT

Kotliar et al. 92-96, Bulla et al. 01, also Spalek 87
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Eg. 2 - Mott-Anderson MIT
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Eg. 2 - Phase diagram for disordered Hubbard model

2 D?
No(e) = D D? — e n(w) = TG(W)

T=0 n=1 W =2D =1, NRG solver, KB, W. Hofstetter, D. Vollhardt (2005)
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Summary — DMFT - flexibility

e Local temporal correlations exact

e Spatial correlations neglected

e Conserving and thermodynamically consistent
e Comprehensive mean-field theory

e LDA+DMFT

e DMFT for disordered electrons



