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H. Bondi with P. Bergman H. Bondi with L. Infeld
(Warsaw 1962) (Warsaw 1962)
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People: lvor Robinson

H. Bondi with |. Robinson |. Robinson with A. Trautman
(Warsaw 1962) (Trieste 1985)
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Gravitational radiation theory: summary

People: Andrzej Trautman

A. Trautman with S.
Chandrasekhar (Warsaw 1973)
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Gravitational radiation theory: summary

People: Roger Penrose

R Penrose (second from the right) with E T Newman (in the
center); J. A. Wheeler on the left and C. Mgller on the right
(Warsaw 1973)
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Gravitational waves: Einstein
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Néherungsweise Infegration der Feldgleichungey
der Gravitation.

Von A. ENstrry.

Bei der Behandlung der meisten speziellen (nicht prinzipicllen) Probleme
auf dem Gebiete der Gravitationstheorie kann man sich damit begniigen,
die g,, in erster Niherung zu berechnen. Dabei bedient man sich mif
Vorteil der imaginiiren Zeitvariable , = it aus denselben Griinden wig
in der speziellen Relativititstheorie. Unter »erster Niherung« ist dabei
verstanden, daB die durch die Gleichung 1
=ik Y ®
definierten Grofen vy,,, welche linearen orthogonalen Transformationen
gegeniiber Tensorcharakter besitzen, gegen 1 als kleine GroBen bes
handelt werden kénnen, deren Quadrate und Produkte gegen die ersten
Potenzen vernachlissigt werden diirfen. Dabei
Jje nachdem p=v oder p 4 v.

&, =1baw. 5, =08 1

Einstein, Albert,
Naherungsweise Integration der
Feldgleichungen der
Gravitation, 22.6.1916

§ 2. Ebene Gravitationswellen.

Aus den Gleichungen (6) und (g) folgt, dab sich Gravitations
felder stets mit der Geschwindigheit 1, d. h. mit Lichtgeschwindigkel
fortpflanzen. Ebene, nach der posiiven a-Achse fortsehretende (e 5
vitationswellen sind daher dorch den Ansatz zu finden

%= flo+it) =4, fe=1). (13
Dabei sind die «,, Konstante; f ist eine Funktion des Arguments
a—1. It der betrachtete Raum frei von Materie, d. h. verschwinden
die I, so sind die Gleichungen (6) durch diesen Ansatz exfllt Die
Gleichungen () liefern zwischen den 4,, die Besiehungen
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Prehistory: 1916-1956

Gravitational waves: Einstein 1916

@ Einstein linearized his
field equations | G, = T, |for the metric g, assuming that

1
/
guv = Nuv + Yuws Vv = Tpv — 777uutrace(7n<8) )

2
i.e. that the metric g, is a slightly perturbed Minkowski

metric 7),,,, with the relevant part of the perturbation given by

//
Vs
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Gravitational waves: Einstein 1916 - the wave equation
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o this, outside the sources, is the relativistic wave equation

Oy, =0

I v

for the perturbation, which justifies the claim that in the
linearized Einstein's theory gravitational waves -
perturbations of the spacetime metric traveling with speed of
light - do exist.
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o Einstein has also shown
that in the linearized theory
his waves carry energy,
and that the power of the
gravitational radiation A
is proportional to the
square of the third time
derivative of the
quadrupole moment J of
the sources

FETTTYY) WA VT vy VT v T v V) e ey) wu

Ndm eahlt aus ihm also ie Ausstrablung A des Systems pro
bnleit durch Muldiplikation mit 47 R":

RGN
'242( B ) )

e min die Zeit in Sekunden, die Enengie in Erg messen, so

; I
6 20 diesem Ausdruck der Zahlenfaktor; hinzutreten, - Beriick-

8t man aulerdem, dab # = 1.87+107", 50 sieht man, dab A in
I nur denkbaren Fillen einen prakisch verschwindenden Wert
0 mf,
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ON GRAVITATIONAL WAVES,

By
A. EINSTEIN and N. ROSEN.

ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the
convenience of the reader the theory of gravitational waves and their production,
already known in principle, is given in the first part of this paper.  After encoun-
tering relationshipa which cast doubt on the evistence of rigerons solutions for
undulatary gravitational fields, we investigate rigorously the case of cylindrical
gravitational waves. [t turns out that rigorous solutions exist and that the
problem reduces to the usual cylindrical waves in euclidean space.

Einstein A, Rosen N, On
gravitational waves, Journ. of
Franklin Institute, 223, (1937).

has the same sign. Progressive waves therefore produce a
secular change in the metric.

This is related to the fact that the waves transport energy,
which is bound up with a systematic change in time of a
gravitating mass localized in the axis x = 0.

Note.~The second part of this paper was considerably altered by me after
the departure of Mr. Rosen for Russia since we had originally interpreted our
formula results erronously. [ wish to thank my colleague Professor Robertson
for his friendly assistance in the clarification of the original error. | thank also

Mr. Hoffmann for kind assistance in translation,
A, Emvsrais,
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Gravitational waves: Einstein and Rosen 1937

@ Rosen's metric

g =e*?(dr? — de?) — v° (62’3(17/2 + 672“3(1C2>

with u =7 ¢, = 06(u), ¢ = ¢(u), ¢ = uf3'? is a metric
representing empty spacetime Ric(g) = 0 iff

uB” +26 — 28" = 0.

@ Rosen wrongly concluded that this metric can not exist in
reality as a spacetime because it contains certain physical
singularities

o He confused coordinate singularity with a true singularity

@ after suitable coordinate change this can be interpreted as a
cylindrical wave
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o the red terms give a perturbation of the Minkowski
metric, they are oscilatory, riples of the perturbation move
with speed of light

@ not only the perturbation coefficients satisfy the wave

equation, but also | Ric(g) = 0.
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History: 1957-1962

Plane Gravitational Waves in General
Relativity

Porarizep plane gravitetional waves were firat
discovered by N. Rosen!, who, however, came to the
conclusion that such wavea could not exist because
the metric would have to contain certain physical
singularities,  More recent work by Taub® and
McVittie® showed that there were no unpolarized
plane waves, and this result has tended to confirm
the view that true plane gravitational waves do not
exist in empty space in gensral relativity. FPartly
owing to this, Scheideggert and I* have both ex-
pressed the opinion that there might be no energy-
carrving gravitational wawves at all in the theory.
Tt ie tharafora of intarect £a mednt oot s awae firet

Bondi H, Plane gravitational
waves in General relativity,
Nature, 179, (25.5.1957)

It is thereforo of interest to point out, s wes first
shown by Robinson® and has now been independently
proved by me, that Fosen's argument is invalid and
that true gravitational waves do in fact exiat. More.
over, it is shown here that these waves caITY energy,
BIL}mug}l it has not yet been possible to relate the
intensity of the wave to the amount of energy carried.

ELGVIUGUIVILAL WOV O WEL W LI TS AL T
H. Bosopr
King's College, Strand,
London, W.C.2. March 24.
' Rosen, N,, Phys, Z. Sovjel Union, 12, 368 (1957). Bao nlsn Elnstain,
A., and Rosen, N., J. Franklin s, 928, 43 (1987))
? Taub, A, H., dnna, Math,, 53, 472 (1051}
* MoVitkle, G. C., J. Imﬁomi Mech. and dnalysis, 4. 201 (19556).
‘Schaidm.ﬁ E Jiew, Mod, P) 8!,451 ﬂﬂﬁﬂ:l Beoe also Brdlfks,
. Irish Acad., 54, 187 (1961).
* Bondl, H., varlous contributions to discmaions at thc Inl.crna.titmn.t
Confertnce on Gravitation, Chapel HIll, X0
* Robinson, I. (to be pablished shortly).
* Plranl, . A. B, P.iyu Hew., 108, 1080 (1057).
'lelncrcl\ﬂu. A,, “Théories Nintl\lnl?—u de la gravitatlon et de
Félectromagnéttame™ (Parls, 1955).
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Bondi, Pirani, Robinson 1958
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Gravitational waves in general relativity
ITI. Exact plane waves

By H. Bowor* axp F. A E. Prant}
King's College, London
a¥p I. Rommvson
Lately of University College of Wales, Aberystuwyth
(Communicated by W. H. McCrea, F.R.S.—Received 18 October 1958)

Plano gravitational waves are hero dofined to be non-flat solutions of Einstein’s empty space-
time field equations which admit as much symmetry as do plane electromagnetie waves,
namely, s 5-paramster group of motions. A general plane-wavo metric is written down and
the proporties of plane wavo space-times ore studiod in dsteil. Tn partieular, their charaetari-
zation ns *plane’ is justified further by the construction of sandwich waves' boundad on both
sides by (null) hyperplanes in flat space-time, Tt is shown that the passing of a sandwich wave
produces a relative acceleration in free tost particles, and inferred from this that such waves
transport energy.

Bondi H, Pirani F A E,
Robinson | Gravitational waves
in General relativity Ill. Exact
plane waves, Proc. R. Soc.
London, ser. A, 251,
(18.10.1958)
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@ motivated by the analogy with electromagnetism, where

plane waves have a 5-dimensional group of symmetries they
defined a plane wave in the full GR theory as a solution
to the equations Ric(g) = 0, which has precisely
5-dimensional group of symmetries

inspecting Petrov’s list of solutions to Ric(g) = 0 with high
symmetries they found a unique class of solutions that have 5
symmetries; the class is given in terms of one free complex
function 7 = (v, (), holomorphic in variable ¢, and has
remarkable property which enables to superpose solutions
from the class

this enables to produce waves of a sandwich type; they have
shown that a sandwich wave falling on a system of test
particles affects their motion, concluding that plane waves
carry energy.
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Frovre 1. Arrangement of co-ordinate systems around sandwich wave,
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History: 1957-1962

Brinkmann 1924

It was a mathematician H. W. Brinkman who first had a general
solution to Einstein's equations which now is called plane wave.

Einstein spaces which are mapped conformally
on each other.
Von

H. W. Brinkmann in Cambridge (Mass., U.8. A).

(47) ds®= 2dzdy 4+ 2d@d -+ mdep*.
To this we apply the final equation (41b) which gives us ;’"";
m =X (z, @)+ ¥(y. ¢).
The only surviving components of the Riemann tensor are here
18°x 1 2°Y
Bapex =3 Gzz» Byowy =5 Gyv

= 0 so that

so that the V, is Euclidean if and only if
X—=a,z+ b, Y—a,y+b,
where a,, b,, a,, b, are functions of @.
Thus we can go on constructing Einstein spaces that can be mapped
upon Einstein spaces in more and more ways.

(Eingegangen am 20, 7. 1924.)
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It was a mathematician H. W. Brinkman who first had a general
solution to Einstein’s equations which now is called plane wave. It
was in Einstein spaces which are mapped conformally on each
other, Mathem. Annalen, 94, (1925). Totally overlooked by the
physicists!

Einstein spaces which are mapped conformally
on each other.

Von

H. W. Brinkmann in Cambridge (Mass., U.8. A).

(47) ds*— 2dzdy + 2dpdf 4+ mdp®.
'm

sy = 0 so that

To this we apply the final equation (41b) which gives us
m =X (z, @)+ ¥(y. ¢).
The only surviving components of the Riemann tensor are here

18X 12°F
Bapex =3 Gzz» Bypoy =13 Gyv
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History: 1957-1962

Pirani 1957
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Pirani F A E, Invariant Formulation of Gravitational Radiation
Theory, Phys. Rev. 105, (18.10.1956)

PHYSICAL REVIEW VOLUME 105,

NUMBER 3 FEBRUARY 1, 1957

Invariant Formulation of Gravitational Radiation Theory

F. A. E. Pmaxi
Department of Mathematics, King's College, Strand, London, England

(Received October 18, 1

In this paper, gravitational radiation is defined invariantly
within the framework of general relativity theory. The definition
is arrived at by assuming () that gravitational radiation is
characterized by the Riemann tensor, and (B) that it is propagated
with the fundamental velocity. Therefore a gravitational wave
front should appear as a discontinuity in the Riemann tensor
across a null 3-surface; the possi form of this discontinuity is
here calculated from Lichnerowicz's continuity conditions.

The concept of an observer who follows the gravitational field is

Petrov's three canonical :qwq of kmnm-.n tensor, but
the other

with the absen
constitutes the

» types. The first type is ide nmu
jon, the other two with its presence.

definition. It is shown that the difference between the u-rnu\ntmn
type and one of the radiation types can be made to corre
the discontinuity possible across a null 3-surface; this demon
strates the tency of the wave front and following-the-field
concepts

A covariant approximation to th i

using normal coore

pseudo-tensor is define
given a physical interpretation. It is shown that when gravita
tional tion is present, \|‘“'|ll‘ Lnl\\l.ll -'\III C‘!l"'g\‘
flux cannot be removed by a
supparts the defini

It is proved tha

there can be no gravitat mn.n radiation present in a region of
empty space-time where Lthe metric is static
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o motivated by Maxwell's theory, where the radiative solutions
of Maxwell’s equations far from the sources have the curvature
F(A) of the Maxwell's potential A algebraically special, Pirani
had an idea that radiative solutions of the Einstein’s
equations far from the sources should have the curvature
tensor Riemann(g) of the metric g algebraically special

@ Pirani did not know all Petrov types, which were spelled out
in full generality by Penrose, much later; he did not made his
statement precise: it was unclear which Petrov type he
attributes to gravitational radiation far from the sources

@ but the idea that far from the sources garavitational
wave should be of algebraically special Petrov type
turned out to be very important.
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History: 1957-1962

Pirani 1957 - Petrov classification

Table 4.3. The roots of the algebraic equation (4.18) and their multiy

The corresponding

multiplicities of the principal null directions are

symbolically depicted on the right of this table.

Type Roots E Multiplicities
7 WAz H2Ap Ay 220 RERED

A1 — Az T
D 0, oo (2.2) /ﬂ\%
11 0, (2,1,1) || /_’
i 0, oo (3,1) ﬂy
N 0 (4) W
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Pirani 1957 - Petrov classification

Table 4.3. The roots of the algebraic equation (4.18) and their multiplicities

The corresponding multiplicities of the principal null directions are
symbolically depicted on the right of this table.

Type Roots E Multiplicities
7 VvAz + 221 £ A+ 2As (11,1,1)

WAL — Az T
D 0, oo (2.2) ,][2555?
11 0, +i/3x (2,1,1) || /_’
11f 0, oo (3.1) ﬂy
N 0 (4) W

Nowadays, due to our next hero, we know that far from the

sources gravitational wave is of Petrov type /V.
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History: 1957-1962

Usefulness of Pirani's criterion

31/48

Rosen's metric is

det = (oxp 2g) (Aot = dEY) = ut { (exp 28] dy? +
(exp — 28) d’;’} (1}
where 4 = — & B = f(u), g = plu) and o' = ufi*
{dashes denoting differentiation). This metric satisfies
the empty epace condition By, = 0, but iz not flat
unless wfi” + 98 = wf™, Dr. Pirani has kindly
informed me that, according to his criterion’, this
apaco-time containg radiation, but no sources.

Quote from Bondi's Nature paper



History: 1957-1962

Trautman 1958

BULLETIN DE 1/ACADEMIE

roLoxAisE DES SCIENCES BULLETIN DE L'ACADEMIE
Série des sci. math. astr POLONAISE DES SCIENCES
et phys. Vol. VE, No. 6 1658 D e o mall At

et phys. — Vol. V1, No. 6 1658

Boundary Conditions at Infinity for Physical Theories
_THBORSTICAL PRYSICS

by
A TRAUTMAN

Presented by L. INFEED on dpeil 12, 1058 Radiation and Boundary Conditions in the Theory
I. The Cauchy problem is the most natural for hyperbolic partial of Gravitation
differential equations. When dealing with physical problems, we are,
however, often interested in solutions of field aquations with given sonrees by
when nothing is known about initial conditions. A wholo sct of ficlda

A, TRAUTMAN

corresponds, iu general, W given sources and, in order to arrive at a unique
solution of the problem, we must specify some additional condition. . "
For lincar field equations this condition may consist in prescribing the Presented by Ly INFETD on April 12, 1038
form of Green's function (e. g. retarded, advanced, ete.). If we investigate
the field in the whole (unboundod) space £ime wo can cnsure uniquoness
by specifying some appropriate bowndary conditions al spalisl infioity. The aim of this paper is to discuss the connection betwoen the pro-
The latter approach has the advantage of being applicable to non-linear Fat oy it nfinity.
theories, such as the theory of gemeral relativity. These boundary con- blem of gravitational radiation and the boundary condmnm’ at .mhm‘tv)
ditions, first formulated for a periodic scalar field hy Sommerfeld [1], We shall deal with the concept of energy and momentum in Einstein’s
O G e e S e AL T genersl relativity and propose a prescription for computing the fofal
of Sommerfeld e © system o its energy in 2 D Tiag 7
radinted energy. A connection between our radiation conditions and the
definitions of gravitational radiation by Pirani and Lichnerowicz s shown

the form

meaning and is proper to a generalization for the gravitational case. in geetion 5.
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o [1] Trautman A, Boundary conditions at infinity for physical
theories Bull. Acad. Polon. Sci., 6, (12.04.1958)
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BULLETIN DE 1ACADEMIE

Boundary Conditions at Infinity for Physical Theories

by
A TRAUTMAN

Presented by T. INFELD on Apwil 12, 1958

1. The Cauchy problem is the most natural for hyperbolic partial
differential equations. When dealing with physical problems, we are,
however, often interested in solutions of field aqnations with given sonrees
when nothing is known about initial conditions. A wholo sct of ficlds
corses ponds, i general, (o given sources and, in order to arrive at a unique
solution of the problem, we must specify some additional condition.
For linear field equations this condition may consist in prescribing the
form of Green’s function (e. g. retarded, advanced, efe.). If we investigate
the field in the whole (unbounded) space time Wo can cnsuro uniquencss
by specifying some appropriate bowndary conditions b spatisl infinity.
The Iatter approach has the advantage of being applicable to non-lmear
theories, such as the theory of gemeral relativity. These boundary con-
ditions, first formulated for a periodic scalar field hy Sommerfeld [1],
have a definite physical meaning. E. g, the “Ausstrahlungsbodingung’
of Sommerfeld means that the system can lose its energy in the form
of radiation and that ne waves are falling on the system from the exterior.
The purpose of this paper is to formulate boundary conditions for
scalar and Maxwell theories in a form which exhibits their physical
meaning and is proper to a generalization for tho gravitational case.

BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
série des sci. math, astr
et phys. — Vol. V1, No. 6 1658

THBORETICAL PHYSICS

Radiation and Boundary Conditions in the Theory
of Gravitation

by
A, TRAUTMAN

Prosonted by L. INFEED on April 13, 1038

Tho aim of this paper is to discuss the connection between the rO-
blem of gravitational radiation and the boundary condiﬁl.\nx‘ at mhmcv)
Wo shall deal with the concept of energy and mnmentnm_m Rinstein’s
general Telativify and propose a prescription for nnm;alngxlfg the total
radiated energy. A connection between our radiation mudm?ns _unﬂ the
ons of gravitational radiation by Pirani and Lichnerowicz s shown

in gection 5.

o [1] Trautman A, Boundary conditions at infinity for physical
theories Bull. Acad. Polon. Sci., 6, (12.04.1958)

o [2] Trautman A, Radiation and boundary conditions in the
theory of gravitation, Bull. Acad. Polon. Sci., 6, (12.04.1958).
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Trautman 1958 - gravitational waves via boundary conditions

o Trautman'’s idea: from all solutions of vacuum Einstein
equations select those that satisfy suitable boundary
conditions at infinity

@ apropriately reformulate boundary conditions for radiative
solutions of a scalar field known as Sommerfeld’s
radiation conditions (Courant, Hilbert, Methods of
Mathematical Physics, vol.2, p. 315)

o if this is done properly, then such conditions can be
straightforwardly defined in nonlinear theories, in particular
in GR.

34/48
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the first of the two quoted papers is a preparation for the
masterpiece, which is the next paper

In the first one Trautman reformulates Sommerfeld’s
RADIATION boundary conditions for the scalar relativistic
Poisson’s equation to be easily generalized to any filed
theory

as an example he shows how to do it in Maxwell's theory

The second paper does it for Einstein’s General Relativity



History: 1957-1962

Trautman 1958: gravitational waves - DEFINITION

@ In it Trautman defines the boundary conditions for a
radiative spacetime in full GR theory. This is a definition
of gravitational radiation. This is in [2], on p. 409,
equations (9) and (10).

We generalize the conditions of Fock along the lines presented in
the preceding paper. First, introduce a null vector field &, defined as
follows. Let »* be a unit space-like veetor lying in o, perpendienlar to
the “sphere” »= const., and pointing outside it. We put &= w'+2,
where ¢ denotes a unit time-like vector normal to o, such that > 0.

Now, we formulate the following boundary conditions to be imposed
on gravitational fields due to isolated systems of matter: there emist
co-ordinate systems and funclions b, = 0(r7) such that

9) O = T +00)y | e = Baky +0 (),
(10) (o — e i = O (r79).

These conditions correspond fo Sommierfeld’s “Aunsstrahlungshedin-
oung®’; we obtain the “Hinstrahlungshedingung” assuming » to be
a normal pointing inward the sphere r = const. Relations (9), (10) are

- oa
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History: 1957-1962

n 1958 - reformulation of Einstein's equations

@ QuarTLy Ve e e - . i
not depend on o, As is known, in general relativity the energy-momen-
tum tensor of matter T, does not by itself lead to an infegral conserva-
tion law. However, if we introduce an energy-momentum pseudotensor
of the gravitational field 1= (80 +gw,80/8ge,)/2% then t_he sum
%41, is divergenceless by virtue of Einstein’s equations *). Einstein’s
tensor density 6, = )'—g(B.— 16, R) can namely be written in the form
m 6, = x(t + U5,
where the “superpotentials” U are given in [1]
@) B, =y g 8 Y = — 26U,

If the Einstein equations
3) = —uT
are satisfied, then Bgs. (1) and (2) imply
) T+ =U,,  thus  (TS+1),=0.

) EFhB functions t,” are not components of a tensor density (equivalence
pmmp{a).&nlil_ many physigjﬁta Ea.' - 730]]lr‘€rﬁliinglll‘ [2]) have raised doubts
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History: 1957-1962

Trautman 1958 - energy-momentum of pure gravity

@ uses von Freud potential 2-form 7, to split the Einstein
tensor £ = Ric(g) — %Rg into £ = dF — 87t so that the
Einstein equations £ = 87 T take the form

[dF =8n(T +1)|

Here T is the energy-momentum 3-form.

@ Since ¢ is a 3-form totally determined by the geometry, he
interprets it as an energy-momentum 3-form of a PURE
GRAVITY. This is in [2], on p. 407, equations (1) and (2).
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History: 1957-1962

Trautman 1958 - 4-momentum of a gravitational system

@ uses the closed 3-form T + t to define a 4-momentum
P.(c) of GRAVITATIONAL FIELD attributed to each
space-like hypersurface o of a space-time satisfying his
radiative boundary conditions, [2], p. 408, equation (5).

The functions t,* are not components of a tensor density (equivalence
principle) and many physicists (e, g., Schrodinger [2]) have raised doubts
a8 to their physical meaning. Einstein [3] and P, Klein [4] formulated
some conditions which enable us to consider the integrals

(5) Pulo}= [(T+1)d8, = 1[ 38,

as representing the total energy and momentum of the system: maiter
and gravitational field. These condifions can be summarized as follows.
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Trautman 1958 - 4-momentum of a gravitational system

@ uses the closed 3-form T + t to define a 4-momentum
P.(c) of GRAVITATIONAL FIELD attributed to each
space-like hypersurface o of a space-time satisfying his
radiative boundary conditions, [2], p. 408, equation (5).

The functions t,* are not components of a tensor density (equivalence
principle) and many physicists (e. g., Schrodinger [2]) have raised doubts
a8 to their physical meaning. Einstein [3] and P, Klein [4] formulated
some conditions which enable us to consider the integrals
@) Pulal = [ 478, = { U a5,

as representing the total energy and momentum of the system: maiter
and gravitational field. These condifions can be summarized as follows.

@ shows that
o P,(o) is finite and
o well defined, i.e. that it does NOT depend on the
coordinate systems adapted to the chosen boundary
conditions, [2], pp. 409-410.

39/48



History: 1957-1962

Trautman 1958: PROOF that gravitational wave CARRY ENERGY

40/48

@ calculates precisely how much of the gravitational energy
pu = Pu(o1) — P.(02) contained between the spacelike
hypersurfaces o1 (initial one) and o5 (final one) escapes to
infinity

4. The total energy and momentum p, radiated between two hyper-
surfaces o and o' is given by (7), or by

P = Pla]l—Pla'] = _{ tras,

(T, vanishes on X). The boundary conditions enable the estimation
of p,; we have, indeed,

(16) ) = kK + O(r ),
where
(am 4ot = B (P — & M 72 Biga) «

T i8 invariant with respect to transformation (16) and is won-negative
by virtue of (10); therefore p,= 0, The existence of radiation is cha-
racterized by p,# 0.
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Trautman 1958: PROOF that gravitational wave CARRY ENERGY

@ calculates precisely how much of the gravitational energy
pu = Pu(o1) — P.(02) contained between the spacelike
hypersurfaces o1 (initial one) and o5 (final one) escapes to
infinity - or, in nowadays Penrose’s terminology - to scri,
[2], p.410-411, equations (16)-(17).

o shows that py is NON-negative, [2], p. 411, remark after
(17).

4. The total energy and momentum p, radiated between two hyper-
surfaces o and o' is given by (7), or by
P = Ploe]—Pifa"] = [1a8,

(T, vanishes on X). The boundary conditions enable the estimation
of p,; we have, indeed,

(16) ) = kK + O(r ),
where
(am 4ot = B (P — & M 72 Biga) «

T i8 invariant with respect to transformation (16) and is won-negative
by virtue of (10); therefore p,= 0, The existence of radiation is cha-
racterized by p,# 0.
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History: 1957-1962

Trautman 1958: PROOF that grav wave TRAVELS WITH SPEED OF LIGHT

o shows that the Ricci tensor of a spacetime satisfying his
radiative conditions, far from the sources, is of the form
Ric,, = pkyk,, with k - null vector, [2], p. 411, eq. (20).
This in particular means that the gravitational radiation in his
radiative spacetimes travel with speed of light.

The uermhs Iprnpurtiuuad to 1fr in B, cancel ont hy virtue of (10).
Conversely, Ry, ~ 0 and Eq, (18) imply Ry, =~ 0 unless k&' =0. I we

take into aceount the electromagnetic field, Binstein's equations can be
written in the form

(20) Bo= b0, 0=007%).
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History: 1957-1962

Trautman 1958: PROOF that grav wave IS OF TYPE N

o shows that the Riemann tensor of his radiative spacetimes,
far from the sources, is of Petrov type /V, [2], p. 411, eq.
(21).

Moreover, it follows from (19) that
(21) k[_,ff-,,,]m- 20, k"R,ngaﬁ 0,
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Trautman 1958: PROOF that grav wave IS OF TYPE N

o shows that the Riemann tensor of his radiative spacetimes,
far from the sources, is of Petrov type /V, [2], p. 411, eq.
(21). Since far from the sources Riemann = Weyl, this shows
that waves satisfying his boundary conditions satisfy the
algebraic speciality criterion of Pirani.

Moreover, it follows from (19) that
(21) k[_, R,,,]U\- = 0, k"R,ngq =0,
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History: 1957-1962

Robinson, Trautman 1960: gravitational waves FROM BOUNDED SOURCES

[3] Robinson |, Trautman A, Spherical gravitational waves, Phys.
Rev. Lett. 4, 431-432 (1960).

o Finally, in a common paper with lvor Robinson, Trautman
finds EXACT SOLUTIONS of the full system of Einstein
equations satisfying his boundary conditions.
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Robinson, Trautman 1960: gravitational waves FROM BOUNDED SOURCES

[3] Robinson |, Trautman A, Spherical gravitational waves, Phys.
Rev. Lett. 4, 431-432 (1960).

o Finally, in a common paper with lvor Robinson, Trautman
finds EXACT SOLUTIONS of the full system of Einstein
equations satisfying his boundary conditions. The
solutions describe waves with closed fronts so can be
interpreted as coming from bounded sources.

@ Robinson-Trautman waves:

2r2d¢dC
g = Lg(c_f2dudr—(A|ngf2r(|0gp)u7

P?(u, ¢, Q)

ANA(log P)+12m(log P), — 4m, =0, A= 2P2(9<(95.
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History: 1957-1962

Trautman 1958-1960: Importance

Importance of Trautman’s papers [2]-[3]:
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Trautman 1958-1960: Importance

Importance of Trautman’s papers [2]-[3]:

o first ever precise definition of gravitational radiation in
the full GR theory

o first ever general prove that gravitational radiation
carries energy

o first explicit examples of metrics describing gravitational
radiation from bounded sources
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History: 1957-1962

Trautman 1958 - King's College London Lectures

LECTURES ON GENERAL RELATIVITY
by
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1958 - King's College London Lectures
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