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1. Introduction

Mixtures of cold Fermi gases have received enormous interest 
over the last years both from the experimental [1–7] and 
theor etical [8–17] points of view. This is on one hand trig-
gered by the developments in controlled cooling of trapped 
atomic gases, and, on the other, by the theoretically predicted 
possibilities of realizing unconventional superfluid phases in 
such systems. The latter include, for example, the interior-gap 
(Sarma–Liu–Wilczek) superfluids [18, 19] or the nonuniform 
Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states [20–22]. 
The physics explored in this context is not specific to cold 
atomic gases, but finds close analogies in fields as distinct as 
the traditional solid-state physics [23–25], nuclear physics 
[25, 26] or astrophysics of neutron star cores [26, 27].

An interesting question concerns the character of the super-
fluid transition at T → 0+. Such a transition can be tuned, for 
example, by manipulating the concentration of the different 
atomic species. As was recognized in a number of mean-field 
(MF) [28–36] studies, it is rather generically of first order and 

becomes continuous only above a tricritical temperature Ttri 
(see figure  1 for illustration). However, [37] identified also 
a possibility of realizing a quantum critical point (QCP) as 
well as a quantum tricritical point at the mean-field level. The 
question concerning the actual order of the quantum phase 
trans ition is interesting since the occurrence of a QCP and 
the related enhanced fluctuation effects feedback to the fermi-
onic degrees of freedom (see e.g. [38, 40]). This leads to self-
energy effects which may, for example, result in a breakdown 
of the quasiparticle concept and the occurrence of anomalous 
regions of the phase diagram both within the normal and the 
superfluid phases. The emergent physics has not as yet been 
fully explored.

It is therefore interesting to understand the conditions 
under which the system in question may host a QCP. Most 
of the important earlier studies relied on numerical extrac-
tion of the MF free energy profiles leading to the phase 
diagrams. The present work contributes an analytical under-
standing of the structure of the effective action in the limit 
of low temper atures and gives criteria for the occurrence 
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of the QCP for the spin and mass imbalanced systems. We 
precisely characterize the parameter region leading to the 
appearance of a QCP in d  =  3 at MF level and a phase dia-
gram as illustrated in figure 2. We demonstrate that a QCP 
is (at MF level) excluded in d  =  2. Our study indicates that 
the Landau expansion of the effective potential remains 
well-defined down to T  =  0 except for a set of model param-
eters including the balanced (BCS) case, where the loop int-
egrals defining the Landau coefficients diverge upon taking 
the limit T → 0+. Using a Sommerfeld-type expansion the 
shape of the transition line can be also calculated at T  >  0. 
For the mass-balanced case in d  =  3 the MF phase diagram 
was systematically analyzed in [13]. In particular it was 
shown that a QCP may be realized on the BEC side. The 
mass-balanced case in d  =  2 was adressed analytically in 
[39] pointing at a generically first-order trans ition between 
the normal and superfluid phases. In addition, that work dis-
cussed the Landau expansion within the FFLO phase finding 
nonanalytical contributions.

In several condensed-matter contexts [38, 40], for example 
the quantum phase transitions in ferromagnets [41] or super-
conductors [42–44], one encounters the situation where the 
quantum phase transition is driven first-order by fluctuation 
effects. Using the functional renormalization-group (RG) 
framework, we investigate such a possibility in the presently 
considered context. The analysis performed in d  =  3 points 
at the robustness of the QCP with respect to fluctuations. No 
indication of an instability towards a first-order transition is 
observed.

The structure of the manuscript is as follows: in section 2 we 
introduce the considered model and its mean-field treatment 

leading to the expression for the free energy. In section 3 we 
analyze the Landau expansion and discuss its regularity in the 
limit T → 0+. The Landau coefficients are explicitly evalu-
ated and analyzed in detail in the limit T → 0+ in section 4. 
In section 5 we employ the Sommerfeld expansion to address 
the asymptotic shape of the Tc-line. In section 6 we discuss the 
effects expected beyond MF theory. In particular, we perform 
a functional RG calculation demonstrating the stability of the 
QCP obtained at the MF level with respect to fluctuations. In 
section 7 we summarize the paper.

2. Model and mean-field theory

We consider a two-component fermionic mixture character-
ized by distinct particle masses and concentrations which may 
act as tuning-parameters. The inter-species attractive contact 
interaction triggers s-wave pairing. The Hamiltonian reads

Ĥ −
∑

σ

µσ n̂σ =
∑

k,σ

ξk,σc†k,σck,σ

+
g
V

∑

k,k′,q

c†k+q/2,↑c†−k+q/2,↓ck′+q/2,↓c−k′+q/2,↑,
 

(1)

where σ ∈ {↑, ↓} labels the particle species, 
ξk,σ = k2/2mσ − µσ are the dispersion relations, g  <  0 is 
the interaction coupling and V  denotes the volume of the 
system. In general, the masses mσ and chemical potentials 
µσ corresponding to the distinct species can be different. 
Shifting the imbalance parameter h = (µ↑ − µ↓)/2 away 
from zero mismatches the Fermi surfaces and suppresses 
superfluidity. The quantity h therefore constitutes a natural 
non-thermal control parameter to tune the system across the 
superfluid quantum phase transition. The mean-field phase 
diagram of the system defined by equation (1) was addressed 
in a sequence of studies spread over the last years. In addition 

Figure 1. A typical mean-field phase diagram in d  =  3. The low-
temperature superfluid phase is separated from the normal phase 
with a first-order phase transition (bold line) at T sufficiently low, 
and with a second-order phase transition (dashed line) at T higher. 
The blue dots indicate the tricritical points. The colors refer to 
the value of the order parameter (∆). The plot parameters are 
r = m↓/m↑ = 2, µ = 0.1, g  =  −1.7, and Λ = 10.

Figure 2. A mean-field phase diagram in d  =  3 displaying a QCP. 
The colors refer to the value of the order parameter (∆). The plot 
parameters are r = m↓/m↑ = 5, µ = 0.1, g  =  −1.4, and Λ = 10.
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to the normal and uniform superfluid phases (as shown in 
figure  1) it displays a tiny region hosting the FFLO state. 
This phase is fragile to fluctuation effects and it remains 
open under what conditions such a superfluid may be real-
ized. In the present study the FFLO state will be disregarded. 
For discussions concerning its stability in the context of cold 
atoms see [45–50].

Assuming s-wave pairing at ordering wavevector 
q = 0, the mean-field grand-canonical potential ω(T ,µ, h) 
may be derived along the standard track. It reads:

ω(T ,µ, h) =min [ωL(∆)] = min
∆

{
− |∆|2

g

− 1
β

∫

k

∑

i∈{+,−}

ln
(

1 + e−βE(i)
k

)}
,

 

(2)

where ∆ is the superfluid order parameter field and 
∫

k(·) =
∫ ddk

(2π)d (·). The elementary excitations’ energies are 
given by:

E(±)
k =

ξk,↑ − ξk,↓
2

±
√
ξ2

k + |∆|2, (3)

where ξk = (ξk,↑ + ξk,↓)/2. We use µ = (µ↑ + µ↓)/2 as the 
average chemical potential, while the average ‘Zeeman’ 
field, which describes spin imbalance is denoted as 
h = (µ↑ − µ↓)/2. By minimizing equation  (2) one deter-
mines the grand-canonical potential together with the super-
fluid order parameter expectation value. We show illustrative 
profiles of ωL(∆) in figure 3. The normal phase (N) corre-
sponds to ∆ = 0 and is separated from the superfluid phase 
characterized by |∆| > 0 with a phase transition. The latter 
is typically of first order for T sufficiently low and becomes 
continuous above the tricritical temper ature Ttri. Numerical 
minimization of equation  (2) (or equivalent expressions) 
constituted the basis of the earlier studies. Such analysis 
typically lead to phase diagrams as exemplified in figure 1. 
We show however that equation  (2) is also susceptible to 
an analytical treatment which gives additional insights and 
allows for making some exact and general statements at the 
mean-field level.

3. Landau expansion

The Landau theory of phase transitions postulates an analyt-
ical expansion of ωL(∆):

ωL(∆) = ω0 + a2|∆|2 + a4|∆|4 + a6|∆|6 + . . . , (4)

where we take only even powers of the order parameter, pre-
serving the U(1) symmetry. The Landau coefficients ai are 
functions of the system parameters and the thermodynamic 
fields. For the present case they may be extracted by taking 
consecutive derivatives of ωL(∆) given by equation  (2) and 
evaluating at ∆ = 0. The coefficient a2 follows from:

a2 =

(
∂ωL

∂|∆|2

)

|∆|2=0

= −1
g
− 1

4

∫

k

1
ξk

∑

σ

tanh

(
βξk,σ

2

)
,

 

(5)

while for the quartic coefficient we obtain

a4 =
1
2

(
∂2ωL

∂ (|∆|2)2

)

|∆|2=0

=
1

16

∫

k

1
ξ3

k

∑

σ

[
tanh

(
βξk,σ

2

)
− βξk

2
cosh−2

(
βξk,σ

2

)]
.

 (6)

The higher-order coefficients may be derived by differenti-
ating equation (2) further. The Landau coefficient ai may also 
be understood as a Fermi loop with i external (bosonic) legs 
evaluated at the (external) momenta zero. The Fermi propa-
gators are gapped by the lowest Matsubara frequency which 
vanishes for T → 0+. It is therefore not immediately obvious, 
under which circumstances the loop integrals converge for 
T → 0+ (i.e. the expressions given by equations (5) and (6) 
remain finite for T → 0+). Potential problems of this nature 
occur at any dimensionality and are rather clearly visible in 
equations (5) and (6). For example, by specifying to the bal-
anced case ξk,↑ = ξk,↓ = ξk we easily realize that the coef-
ficient a2 (as given by equation  (5)) contains a contribution 
which diverges for β → ∞. This signals the breakdown of the 
Landau expansion of equation (4) for T → 0+ in the balanced 
case. On the other hand, one may evaluate the T → 0+ limit 
of equation  (5) (see section  4) and obtain generically finite 
expressions for the imbalanced case.

The analysis of the quartic coupling (equation (6)) is 
slightly more complex. Since potential divergencies in equa-
tion (6) come from the vicinity of ξk = 0, we restrict the inte-
gration region in equation  (6) to a shell of width 2ϵ around 
ξk = 0. Upon expanding the integrands, performing the inte-
grations, and, at the end, considering T → 0+, we find that the 
limit is finite provided

µ ̸= h
r + 1
r − 1

, (7)

where we introduced r = m↓
m↑

 and assumed m↓ > m↑. The 
analysis can be extended to higher Landau coefficients. As 
a result we obtain that equation  (7) gives a (necessary and 

Figure 3. Schematic illustration of the effective potential ωL(∆) 
for positive a4. In such a case a2  >  0 correspond to normal phase, 
a2  <  0 to the superfluid phase and a2  =  0 to the 2nd order phase 
transition.

J. Phys.: Condens. Matter 30 (2018) 305604



P Zdybel and P Jakubczyk 

4

sufficient) condition for the regularity of the Landau expan-
sion equation (4) in the limit T → 0+. The above result does 
not depend on the system dimensionality. For fixed r equa-
tion  (7) describes a straight line in the (h,µ) plane, whose 
slope diverges for equal particle masses (r → 1+). We also 
observe that the standard balanced case corresponds to the 
limit h → 0 and r → 1+, which, from the point of view of 
equation (7) is not defined. In this case, the way of taking the 
limits selects the point on the half-line (µ > 0, h  =  0). The 
condition in equation (7) corresponds to a situation where the 
two Fermi surfaces coincide.

Here we also point out that, provided the expansion of equa-
tion (4) exists, the condition for a continuous transition reads

a2 = 0, a4 > 0, (8)

while a tricritical point occurs if

a2 = 0, a4 = 0, a6 > 0. (9)

4. Zero temperature

We now consider the limiting form of the expres-
sions given by equations  (5) and (6) for T → 0+. Using 

tanh
(

βξk,σ
2

)
= 1 − 2f (ξk,σ), where f (·) is the Fermi func-

tion, we find

a(0)
2 = lim

T→0+
a2 = −1

g
− 1

2

∫

k

1
ξk

[
1 −

∑

σ

θ (−ξk,σ)

]
, (10)

where θ(·) is the Heaviside step function. Similarly, taking  

advantage of the fact that d
dξk,σ

tanh
(

βξk,σ
2

)
= β

2 cosh−2
(

βξk,σ
2

)
 

we obtain the corresponding expression for the quartic 

coupling

a(0)
4 =

1
8

∫

k

1
ξ3

k

[
1 −

∑

σ

{θ (−ξk,σ) + ξkδ (ξk,σ)}
]

, (11)

where δ(·) is the Dirac delta. The integrations may be per-
formed analytically, however, their form depends on the 
dimensionality d. We discuss the two physically most relevant 
cases of d  =  2 and d  =  3 separately. The analysis requires 
dividing the (h,µ) plane into several subsets as illustrated 
in figure  4. This complication arises because zeros of the 
Heaviside and Dirac distributions in equations (10) and (11) 
may lie either inside or outside the integration domains. In 
consequence, we are led to considering six distinct regions 
shown in the figure 4. Their physical significance is discussed 
in detail in section 4.3. We note however already at this point 
that physically interesting parameter regions occur also for 
negative values of µσ—see section 4.3.

4.1. d  =  2

We now analyze the expressions given by equations (10) and 
(11) for d  =  2.

4.1.1. Coefficient a(0)
2 . As already explained, the analysis 

requires considering the distinct regions described in figure 4 

separately. By doing the integral in equation (10) in regime A, 
we obtain the following expression:

a(A)
2 = −1

g
− mr

4π
ln

[
|Λ2 − 2µmr| · 2µmr∏

σ |λ2
σ − 2µmr|

]
, (12)

where λ2
σ = 2µσmσ, mr =

2m↑m↓
m↑+m↓

 and Λ denotes the upper 
momentum cutoff. Similarly, for the regions B, C, D, and E, 
we have:

a(B−E)
2 = −1

g
− mr

4π
ln

[
|Λ2 − 2µmr|
|λ2

σ − 2µmr|

]
, (13)

with σ =↑ in regimes B, D, and σ =↓ in regimes C and E.
Finally, for the region F the Landau coefficient a(0)

2  is given 
by:

a(F)
2 = −1

g
− mr

4π
ln

[
|Λ2 − 2µmr|

|2µmr|

]
. (14)

The coefficient a(0)
2  must vanish at the QCP according to equa-

tion (8). In equations (12)–(14), the contribution involving the 
logarithm is negative (provided Λ is sufficiently large). The 
attractive interaction coupling g  <  0 can therefore be tuned 
so that a(0)

2  is zero. In an experimental situation this is achiev-
able via Feshbach resonances [51]. Nevertheless, as we show 
below, the coefficient a(0)

4  is generically negative in d  =  2 
which renders the transition necessarily first order.

4.1.2. Coefficient a(0)
4 . In analogy to the above analysis 

of the coefficient a(0)
2 , we consider the different parameter 

space regions illustrated in figure 4 and evaluate the Landau 

Figure 4. Distinct regions of the phase diagram at T  =  0. (A) 
µ↑ > 0, µ↓ > 0; (B) µ > 0, µ↑ > 0, µ↓ < 0; (C) µ > 0, µ↑ < 0, 
µ↓ > 0; (D) µ < 0, µ↑ > 0, µ↓ < 0; (E) µ < 0, µ↑ < 0, µ↓ > 0 
and (F) µ↑ < 0, µ↓ < 0.
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coefficient a(0)
4  from equation (11) in d  =  2. Within the region 

A (µ↑ > 0, µ↓ > 0) we obtain:

a(A)
4 = −m3

r

8π

[
1

(Λ2 − 2µmr)
2 +

1
(2µmr)

2

+
∑

σ

(mσ/mσ̄)

(λ2
σ − 2µmr)

2

]
.

 

(15)

We introduced the index σ̄ denoting the species opposite to σ 
(i.e for σ =↑ we have σ̄ =↓ and vice versa). For the subsets 
B, C, D, and E we find:

a(B−E)
4 = −m3

r

8π

[
1

(Λ2 − 2µmr)
2 +

(mσ/mσ̄)

(λ2
σ − 2µmr)

2

]
, (16)

with σ =↑ in regimes B, D, and σ =↓ in regimes C and E.
Finally, for the region F (µ↑ < 0, µ↓ < 0) we have:

a(F)
4 = −m3

r

8π

[
1

(Λ2 − 2µmr)
2 − 1

(2µmr)
2

]
. (17)

With the exception of a(F)
4  the above expressions are mani-

festly negative. Within regime (F) we observe that the expres-
sions for a(F)

2  and a(F)
4  involve no dependence on h and 

therefore ∆ remains constant if h is varied (at constant µ). 
This implies that no phase transition (first or second order) 
is possible within the parameter regime (F). Therefore, equa-
tion (8) is never fulfilled.

We conclude that the occurrence of a QCP is generally 
ruled out for d  =  2 at the MF level. Similar results for the 
mass-balanced case were obtained by Sheely [39], where it 
was pointed out that the phase transition at T  =  0 between the 
normal and superfluid phases is first-order.

4.2. d  =  3

The study in d  =  3 parallels the above analysis in d  =  2. The 
parameter space is again split into the distinct regions depicted 
in figure 4. Evaluating the integrals in equations (10) and (11) 
yields the Landau coefficients a(0)

2  and a(0)
4 . Subsequently we 

check if the condition for the occurrence of the QCP (equa-
tion (8)) can be fulfilled. We relegate the obtained expressions 
for a(0)

2  and a(0)
4  to the appendix and discuss the conclusions 

below.

4.2.1. Coefficient a(0)
2 . Similarly, as for the d  =  2 case, the 

coefficient a(0)
2  contains a positive contribution related to the 

coupling constant g and a negative part dominated by a term 
proportional to Λ (equations (A.1)–(A.4)). As a result, the 
interaction strength can be tuned such that a(0)

2  equal zero. The 
coefficient a(0)

4  carries no dependence on g.

4.2.2. Coefficient a(0)
4 . The expressions for a(0)

4  are given in 
equations (B.1)–(B.4). The analysis shows that the sign of a(0)

4  
is negative in regime (A) and positive in regime (F). Alike 

for d  =  2 the dependence of both a(0)
2  and a(0)

4  on h drops out 
within regime (F), which excludes a phase transition for h fall-
ing therein. For small mass imbalance (r ≈ 1) the region corre-
sponding to positive a(0)

4  occupies the set (F) and tiny regions 
of regimes (D) and (E). Upon increasing r, the a(0)

4 > 0 region 
covers increasingly large portions of the region (D), and, for 
r  >  3.01 it intrudes into regime (B). In the limit r → ∞, the 
region with a(0)

4 > 0 fully covers the regimes (F), (D), and (B). 
The evolution of the subset of the µ− h plane characterized 
by a(0)

4 > 0 upon varying r is depicted in figure 5. The emer-
gent picture is very different as compared to that obtained for 
d  =  2, where we showed that a QCP is completely excluded 
(at MF level). In d  =  3 the possibility of realizing a second-
order transition at T  =  0 turns out to be restricted to situations, 
where one of the chemical potentials µσ is negative. In the 
next section we reinterpret the problem using the densities nσ 
instead of µσ as the control parameters. We show that (due to 
interaction effects) positive densities may well correspond to 
negative chemical potentials (also at T  =  0).

Above we restricted to r ! 1. For r ∈]0, 1[ the emergent 
picture is analogous but h ↔ −h .

4.3. Particle densities

In this section  we discuss the physical significance of the 
regions considered in figure  4. This requires resolving the 
relation between the particle densities nσ and the chemical 
potentials µσ.

We begin by considering a reference situation where 
∆ = 0 for all possible values of µ and h, which corresponds 
to the non-interacting two-component Fermi mixture (g  =  0). 
The relation between nσ and µσ is then given (at T  =  0) by

nσ =
(mσµσ)d/2θ(µσ)

(2π)d/2Γ
( d

2 + 1
) . (18)

A graph showing this dependence is presented in figure 6 for 
µ > 0 and µ < 0. Obviously, the species σ is expelled from 
the system if µσ < 0.

Now consider g  <  0. Identifying σ =↑ with  +1 and σ =↓ 
with  −1, the density of the species σ is given by:

nσ(∆) =
1
V

∑

k

[
|uk|2f

(
σE(σ)

k

)

+ |vk|2
(

1 − f
(
σ̄E(σ̄)

k

)) ]
,

 

(19)

where σ̄ = −σ , |uk|2 + |vk|2 = 1 and |uk|2 =  
1
2

[
1 +

(
ξk/
√
ξ2

k + |∆|2
)]

. One may now fix µ and h, com-

pute ∆ (see section 2) and use equation (19) to extract nσ. We 
first observe that for ∆ = 0 and T  =  0 equation (19) reduces 
to equation  (18). This implies that any conceivable phase 
trans ition at µ↑ < 0 or µ↓ < 0 occurs between the superfluid 
and a fully polarized gas. In particular, in view of the results of 
section 4.2, we conclude that all possible QCPs in d  =  3 fall 
into this category. Generically, ∆ > 0 implies the presence 
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of particles of both species in the system. In consequence, a 
phase transition at µ↓ < 0 (or µ↑ < 0) requires that the density 
of one of the species raises from zero to a finite value (either 
continuously or discontinuously, depending on the order of 
the transition). This is illustrated in figure 7, where we plot the 
densities n↑ and n↓ as function of h for two values of µ (one 
positive and one negative). The plot param eters are chosen so 
that (for each of the considered values of µ) we encounter a 
first order phase transition at h  <  0 (corre sponding to regimes 
C and E in figure 4) and a second-order transition at h  >  0 
(corresponding to regimes B and D in figure 4).

Summarizing the major conclusions of this section: we 
have shown that at mean-field level and T  =  0 the superfluid 
transition is inevitably first order in d  =  2. For d  =  3 we have 

demonstrated that a second-order quantum phase transition is 
possible only between a fully-polarized gas and the superfluid 
phase. Such a scenario is favorable at large mass imbalance 
(r ≫ 1 or r ≪ 1). Note however that the QCP exists even for 
r  =  1 on the BEC side of the BCS-BEC crossover (see [13]).

5. Finite temperature

The numerical evaluation of the MF phase diagram (see 
figure  2) shows that the ordered phase extends when the 
temper ature is increased from zero to finite values in the 
vicinity of the QCP (i.e. the slope of the Tc-line is positive for 
sufficiently low T). Here we analyze the asymptotic shape of 

Figure 5. Evolution of the subset of the µ− h plane characterized by a(0)
4 > 0 upon varying r. The (light) beige area corresponds to 

negative a(0)
4 , while in the (darker) orange area a(0)

4 > 0. The coefficient a(0)
4  is singular along the red straight lines. The first diagram 

corresponds to r  =  1.5, the second one to r  =  5, the last one to r  =  10. Upon increasing r towards r → ∞ the orange region extends further 
to cover half of the µ− h plane located below the diagonal.

J. Phys.: Condens. Matter 30 (2018) 305604
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the Tc line in the vicinity of the QCP. The behavior observed in 
figure 2 can be understood employing the Sommerfeld (low-
temperature) expansion [52] for the coefficient a2 (equation 
(5)). We focus on regime B (see figure 4), which corresponds 
to the QCP depicted in figure 2. We fix µ and r and perform 
the low-temperature expansion of equation (5). We obtain:

a2(T , h) = a(0)
2 (h)− α(h)T2 + . . . , (20)

where the coefficient α(h) is given by:

α(h) =
mrm2

↑(λ
2
↑ + 2µmr)

12λ↑(λ2
↑ − 2µmr)2 . (21)

The first term in the Sommerfeld expansion corresponds to the 
zero-temperature Landau coefficient given by equation (A.2) 
and the second term is the low-temperature correction. We 
expand a(0)

2  around the (T  =  0) critical value hc of the field h 
and find hc from the condition a(0)

2 (hc) = 0. This yields:

Tc(hc + δh) ≈

√
∂ha(0)

2 |h=hcδh
α(hc)

∝
√

h − hc, (22)

where δh is a small deviation from hc. The MF Tc-line is 
described by a power law with the exponent 1/2, which is a 
generic value for Fermi systems. Notably δh is positive, in 
agreement with the numerical results (for example figure 2).

6. Functional renormalization

The above analysis is restricted to the mean-field level. In the 
present section we employ the functional RG framework to 
discuss fluctuation effects. As we already noted, in a number 
of condensed-matter contexts one encounters the effect of fluc-
tuation driven first-order quantum phase transitions [38, 40]. 
Well-recognized examples include the ferromagnetic quantum 
phase transition [41] or the s-wave [42] as well as p-wave 
[43] superconductors. In the case of itinerant ferromagnets 
the transition is first-order at T  =  0 due to a term  ∼φ4 log φ 
appearing in the effective action upon integrating out the (gap-
less) fermionic degrees of freedom. A different kind of non-
analyticity of the effective action is generated in the case of 
superconductors due to the coupling between the order param-
eter and the electromagnetic vector potential. We argue that no 
such mechanism is active for the presently discussed system 
defined in section 2. By an explicit functional RG calculation 
(retaining terms up to infinite order in ∆) we show that the 
QCP obtained at the MF level in the preceding sections  for 
d  =  3 is stable with respect to the order-parameter fluctua-
tions. We additionally note that the possibility of changing the 
order of quantum phase transitions from first to second due to 
order parameter fluctuations was demonstrated for effective 
bosonic field theories [53, 54] as well as specific microscopic 
fermionic models [55–60]. Also (as is indicated by our anal-
ysis) in the present situation one anticipates the fluctuations 
to round the transition rather that drive it first order. Note that 
functional RG was previously employed to obtain the phase 
diagram in the mass balanced case ([59]) and to study the 
imbalanced unitary Fermi mixtures ([35]).

Our present analysis is restricted to d  =  3 and proceeds 
along the line analogous to [61], where the possibility of 
driving the quantum phase transition second-order by fluctua-
tions was discussed for d  =  2. We also observe, that a similar 
framework was employed in [58] for the presently discussed 
model in d  =  3 strictly at the unitary point with the conclu-
sion that the transition is first order both at MF level and after 
accounting for fluctuations.

Following [61] we integrate the order-parameter fluctua-
tions by the flow equation for the effective potential:

Figure 6. Particle densities nσ for the non-interacting two-
component Fermi mixture (g  =  0) as a function of h for d  =  3, 
where we fixed T  =  0 and r  =  5. Here the black curves n+

σ  
correspond to µ = 0.5, while the red lines n−

σ  correspond to 
µ = −0.5. In the shaded area both species are present for µ = 0.5, 
but none at µ = −0.5.

Figure 7. Particle densities nσ plotted as functions of h for d  =  3, 
where we fixed T  =  0, r  =  5 and g  =  −1.5. The black curves 
n+
σ  correspond to µ = 0.1 while the red lines n−

σ  correspond to 
µ = −0.1. For each of the values of µ one observes a first-order 
transition around h ≈ −1, where n↑ increases from zero to a finite 
value, and a second-order transition around h ≈ 2, where n↓ 
continuously decreases to zero. In the normal phase the densities 
nσ follow the power law given by equation (18) and illustrated in 
figure 6. The illustrated phase transitions are located in regimes C 
and E (h ≈ −1) and B and D (h ≈ 2) (compare figure 4). Inspection 
of figure 5 (the plot in the middle) shows that the transitions at 

h ≈ −1 correspond to a(0)
4 < 0, while the transitions at h ≈ 2 are 

characterized by a(0)
4 > 0.
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∂κUκ(ρ) =
1
2

T
∑

ωn

∫
d3q
(2π)3 ∂κRκ(ωn, q)(GR

L + GR
T), (23)

where ωn are the (bosonic) Matsubara frequencies, ρ = 1
2∆

2, 
while GR

L  and GR
T  denote the longitudinal and transverse ρ-

dependent propagators:

GR
L =

1
D
[
Zωω

2
n + Zq2 + MR

L
]

GR
T =

1
D
[
Zωω

2
n + Zq2 + MR

T
]

,
 

(24)

with MR
L = U′(ρ) + 2ρU′′(ρ) + Rκ(ωn, q), MR

T = U′(ρ)+
Rκ(ωn, q) and

D =
[
Zωω

2
n + Zq2 + MR

L
] [

Zωω
2
n + Zq2 + MR

T
]
+ X2ω2

n .
 (25)

Finally, Rκ(ωn, q) is a regulator function added to the inverse 
propagator. Its particular form is specified as

Rκ(ωn, q) = Z
(
κ2 − q2 − Zω

Z
ω2

n

)
θ

(
κ2 − q2 − Zω

Z
ω2

n

)
.

 (26)
The quantity Uκ(ρ) may be understood as a free energy 

including fluctuation modes between the momentum scale κ 
and Λ. For κ = Λ the fluctuations are frozen and Uκ=Λ(ρ) 
is given by the MF effective potential ωL(∆) (equation (2)). 
On the other hand, for κ → 0  all the fluctuations are inte-
grated and Uκ→0(ρ) is the full free energy. Equation  (23) 
therefore interpolates between the bare and full effective 
potential upon varying the momentum cutoff scale κ. It may 
be derived from an exact functional RG flow equation  [62] 
(the Wetterich equation) by neglecting renormalization of the 

momentum and frequency dependencies of the propagators 
(i.e. keeping the Z and X factors fixed). This constitutes the 
essence of the approximation. For details of the derivation 
see e.g. [63]. Observe, that equation (23) retains the full field 
dependence (i.e. it does not invoke any polynomial expansion 
of the scale-dependent free energy Uκ(ρ)). It is therefore par-
ticularly suitable for investigating the impact of fluctuations 
on the order of the phase transitions. On the other hand, it 
presents a nonlinear partial differential equation which may 
be studied only numerically. We also note that simpler trun-
cations of the Wetterich equations were applied in a similar 
context in [64, 65].

Discretizing the ρ-space, we have integrated equation (23) 
at T  =  0 with the initial condition given by equation (2). The 
obtained results indicate no signature of an instability of the 
QCP obtained at the MF level towards a first-order transition. 
We demonstrate this in figure 8 by plotting the MF and renor-
malized effective potentials for the set of parameters consid-
ered in figure 2, strictly at the transition point at T  =  0 (which 
at MF level lies within the superfluid phase). The calcul ation 
demonstrates stability of the QCP with respect to order-
parameter fluctuations in d  =  3.

7. Conclusion and outlook

We have studied the analytical structure of the effective poten-
tial for imbalanced Fermi mixtures with particular focus on 
the properties of the Landau expansion at T → 0+ and the 
possibility of realizing a system hosting a quantum critical 
point. We have shown the Landau expansion to be well-
defined at T → 0+ except for a subset of parameters described 
by equation (7). We have demonstrated that at mean-field level 
the occurrence of a QCP is generally excluded in d  =  2. In 
d  =  3 we have found and characterized a parameter regime 
admitting a QCP. This is restricted to situations where one 
of the chemical potentials is negative so that the quantum 
phase transition occurs between the superfluid phase and the 
fully polarized gas. The second-order transition turns out to 
be favorable at large mass imbalance r. We have performed a 
functional RG calculation showing stability of our conclusion 
with respect to fluctuation effects.

Resolution of such quantum critical phenomena may 
perhaps soon appear within the range of experimental tech-
nologies bearing in mind the dynamical progress in realizing 
uniform Fermi gases trapped in box potentials [66, 67].

On the theory side, superfluid quantum criticality con-
stitutes a largely unexplored field involving the interplay of 
fermionic and collective bosonic degrees of freedom. This 
applies to both, the uniform case considered here, as well 
as the hypothetical quantum critical points in nonuniform 
(FFLO) superfluids [68, 69]. A complete understanding of 
these systems seems to pose an interesting challenge consid-
ering the interplay of a rich spectrum of fluctuations including 
fermions and Goldstone modes as well as topological aspects 
related to the Kosterlitz–Thouless physics in d  =  2.

Figure 8. The mean-field [UΛ(∆)] and renormalized [U0(∆)] 
effective potentials for the set of parameters considered in figure 2 
with T  =  0 and h = hc ≈ 1.346. The propagator parameters are 
set as Z = Zω = 10X = 1. The plot demonstrates a shift of the 
QCP from hMFT

c ≈ 1.362 to hc ≈ 1.346 due to order-parameter 
fluctuations. The transition remains second-order after including 
fluctuation effects via the functional RG flow. The order parameter 
expectation value vanishes continuously as h is varied across the 
critical value hc.
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Appendix A. Coefficient a(0)
2  for d  =  3

Below we present the expressions for a(0)
2  in d  =  3 for the six 

regimes illustrated in figure 4.
For regime A, where µ↑ > 0 and µ↓ > 0 we find:

a(A)
2 =− 1

g
− mr

2π2

[
Λ+

√
2µmr

2
ln

(
|Λ−

√
2µmr|

|Λ+
√

2µmr|

)

−
∑

σ

{
λσ +

√
2µmr

2
ln

(
|λσ −

√
2µmr|

|λσ +
√

2µmr|

)}]
.

 (A.1)
For the regions B and C (where µ > 0, µσ > 0 and µσ̄ < 0) 
we obtain:

a(B,C)
2 = − 1

g
− mr

2π2

[
Λ+

√
2µmr

2
ln

(
|Λ−

√
2µmr|

|Λ+
√

2µmr|

)
− λσ

−
√

2µmr

2
ln

(
|λσ −

√
2µmr|

|λσ +
√

2µmr|

)]
.

 

(A.2)

For the regions D and E (µ < 0, µσ > 0,µσ̄ < 0) we have:

a(D,E)
2 =− 1

g
− mr

2π2

[
Λ−

√
2µ̄mr arctan

(
Λ√

2µ̄mr

)

− λσ +
√

2µ̄mr arctan

(
λσ√
2µ̄mr

)]
,

 

(A.3)

where µ̄ = −µ.
Finally, for the subset F (µσ ,µσ̄ < 0) we obtain the fol-

lowing expression:

a(F)
2 = −1

g
− mr

2π2

[
Λ−

√
2µ̄mr arctan

(
Λ√

2µ̄mr

)]
. (A.4)

Appendix B. Coefficient a(0)
4  for d  =  3

Here we present the expressions for a(0)
4  in d  =  3 for the six 

regimes illustrated in figure 4.
For the region A (µ↑ > 0 and µ↓ > 0) we obtain:

a(A)
4 =− m2

r

32π2

[
Λ
(
Λ2 + 2µmr

)

µ (Λ2 − 2µmr)
2 +

mr

(2µmr)3/2 ln

(
|Λ−

√
2µmr|

|Λ+
√

2µmr|

)

−
∑

σ

(
λσ

(
λ2
σ + 2µmr

)

µ (λ2
σ − 2µmr)

2 +
mr

(2µmr)3/2

× ln

(
|λσ −

√
2µmr|

|λσ +
√

2µmr|

)
− 8mσλσ

(λ2
σ − 2µmr)

2

)]
.

 

(B.1)

For the regions B and C (where µ > 0, µσ > 0 and µσ̄ < 0) 
the expression for a(0)

4  is given by:

a(B−C)
4 =− m2

r

32π2

[
Λ
(
Λ2 + 2µmr

)

µ (Λ2 − 2µmr)
2 +

mr

(2µmr)3/2 ln

(
|Λ−

√
2µmr|

|Λ+
√

2µmr|

)

−
λσ

(
λ2
σ + 2µmr

)

µ (λ2
σ − 2µmr)

2 − mr

(2µmr)3/2

× ln

(
|λσ −

√
2µmr|

|λσ +
√

2µmr|

)
+

8mσλσ

(λ2
σ − 2µmr)

2

]
.

 

(B.2)

For the regions D and E (µ < 0, µσ > 0,µσ̄ < 0) we have:

a(D−E)
4 =

m2
r

32π2

[
Λ
(
Λ2 − 2µ̄mr

)

µ̄ (Λ2 + 2µ̄mr)
2 +

2mr

(2µ̄mr)3/2 arctan

(
Λ√

2µ̄mr

)

−
λσ

(
λ2
σ − 2µ̄mr

)

µ (λ2
σ + 2µ̄mr)

2 − 2mr

(2µ̄mr)3/2

× arctan

(
λσ√
2µ̄mr

)
− 8mσλσ

(λ2
σ + 2µ̄mr)

2

]
.

 

(B.3)

Finally, for region F the Landau coefficient a(0)
4  is given by:

a(F)
4 =

m2
r

32π2

[
Λ
(
Λ2 − 2µ̄mr

)

µ̄ (Λ2 + 2µ̄mr)
2 +

2mr

(2µ̄mr)3/2 arctan

(
Λ√

2µ̄mr

)]
.

 (B.4)
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