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to deliver the course. The 1 semester-hour course described
here required an average of about 5 instructor hours per
week, the time being greater at the beginning and tapering
off to the end. This figure would presumably be reduced as
students and instructor both became more accustomed to
the new mode.

XIV. THE NEED FOR GRAPHICS

All participants in the course felt hampered by the miss-
ing chalkboard. The use of prepared illustrations for dis-
cussion addressed this problem to a small degree, but a
general solution to this problem must be found before the
conference mode can be widely adapted to physics courses.
The use of computer graphics to support a text-based dis-
cussion is an obvious response, but conventional graphics
in this application suffer from two major drawbacks: (1)
The information in a graphics screen requires several min-
utes for transmission over a telephone line, depending on
the complexity and size of the picture; and (2) graphics
information is critically dependent on terminal hardware.
Instructions to paint a graphics image on an Apple screen,
say, mean nothing to an IBM machine. It is unreasonable
to insist that all conference participants, perhaps scattered
over wide distances, have identical computers.

A promising approach to this problem is that offered by
the North American Presentation Level Protocol Syntax
(NAPLPS),!" a software standard for transmitting drawing
instructions rather than the graphic itself. NAPLPS includes
such primitives as circle, arc, and fill, and additionally can
change entire screen attributes (colors, text fouts, etc.)
with the transmission of a single byte. Instructions for re-
creating a quite complicated graphic can be transmitted via
modem in only a few seconds.

Each conference participant seeking to use NAPLPS
graphics must have appropriate encoding and decoding
software, but at least the compatibility issue of point 2
above is converted from a hardware to a software problem.
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XV. CONCLUSIONS

Computer conferencing offers the promise of delivering
physics courses at a distance, and taps and develops verbal
skill within students that is largely undeveloped in tradi-
tional lecture courses. The two principal drawbacks to us-
ing this mode for physics courses are (1) the lack of suit-
able telecommunications graphics, and (2) the severe
drain on instructor time to conduct the conference. We
continue work at The University of West Florida in seeking
solutions to these problems.
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If the lambda transition of, say, helium is regarded as taking place over a temperature region, then
an integrated latent heat and latent volume that satisfy a Clausius~Clapeyron equation can be
defined. The situation is analogous to what happens in ordinary first-order transitions, which
suggests a generalization of the Ehrenfest classification scheme for transitions.

I. INTRODUCTION

In the lambda transition of, say, liquid helium, entropy
and volume are continuous at the transition temperature
T,, but the heat capacity C, and expansivity B, show
peaks there. Integration over the peaks at constant pressure
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P allows the definition of latent heats and volumes spread
over a few degrees of temperature. The ratio of these is just
the slope of the transition curve at P, i.e., the Clausius~
Clapeyron equation holds in this integrated sense. These
results imply that the Ehrenfest classification scheme for
transitions can be generalized.
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In Sec. II, we describe a proof of the Clausius—Clapeyron
equation for first-order transitions that will prove useful
when we come to lambda transitions. Some background on
these is provided in Sec. II1, while the arguments for the
latent heats, etc., in them is contained in Sec. IV. Transition
schemes are discussed in Sec. V.

The derivations of the Clausius—Clapeyron equation in
Secs. Il and IV are rather unusual. We thought it of interest
tosurvey the amazing number of proofs that can be made of
this equation, and those are contained in the Appendix.

I1. THE CLAUSIUS-CLAPEYRON EQUATION AS
A MAXWELL RELATION FOR G

About a half century after Gibbs (1876) emphasized the
importance of the Gibbs free-energy G in analyzing phase
transitions," Ehrenfest® suggested a classification scheme
based on the lowest derivative of G that exhibits discontin-
uities at the transition temperature.® A “first-order” transi-
tion displays discontinuities in the first derivatives of G,
i.e.,intheentropy S ( = — d,G) and volume V ( = d,G).
Our notation assumes that G=G(P,T) so that
3:G = (G /dT) p, etc. In first-order transitions, the Clau-
sius—Clapeyron equation connects the discontinuities AS
and AV of entropy and volume with the slope dP,/dT of
the transitions curve denoted P, (T') or T, (P) at that point:

AS dP
ss_(ar). W
AV \dT/.
A “second-order” transition has discontinuities in the
second derivatives of G such as the heat capacity C, at
constant pressure and the expansivity 5 p,

Cp,=T0d;3;G= —T3a.85, (2)
Br=V719,3,G=V""'3,V, 3
but not in the first derivatives. In this case, Eq. (1) obvious-

ly has no relevance since .S and ¥ are continuous; instead
the “Ehrenfest relation”

G __(ar) @
TVAB, \dT/.

holds. (This was actually first derived by W. H. Keesom.)
There is another Ehrenfest relation for second-order tran-
sitions and third-order transitions are defined in an analo-
gous way.

It should be pointed out that Eq. (4) can be derived from
Eq. (1) if we use L’Hopital’s rule and expand ASand A¥Vin
powers of T — T, (P) = dT along the isobar on both sides
of the transition curve, i.e., if we write

AS =S(T, +dT,P) — S(T, —dT,P)
= (AS), + (0r8) 1, 10 dT — (8781 _o dT+ -+ .

= (ACp), dT+ - (3

The ratio AS /AV then gives AC,/TV AB, in the limit
dT-0.

We now wish to show that Eq. (1) can be derived as a
Maxwell relation for G. We assume that a transition line
T, (P) exists in PT space, that on the low-temperature side
lies phase 2 with Gibbs function G,(P,T), and that on the
high-temperature side lies phase 1 with Gibbs function
G,(P,T) so that at any P,T,

G(PT) =[1-0(1)]G,(P,T) +6()G(PT).  (6)
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Here,
t=T—-T,(P) (N
and 6(z) is the step function
ét)y=1-1t>0
=0-1<0. (8)

If ¢is positive, then T'> T, and point P,Tis in phase 1; if ¢ is
negative, then the point is in phase 2 (where 1 — @ has the
value 1).

The Gibbs energy is continuous at the transition line:

GI(P’TZ(P))zGZ(P’Tz(P))' 9

Further, the derivative of the step function, d@ /dt, is the
delta function 8(¢), whence

a:6(t) =46(1), (10a)
drT,

3p0(t) = — —Z5(1), 10b

p0(1) =P (1) (10b)

t8(t) =0. (10c)

We are now in a position to make the proof. From Eq.
(6), the first derivatives of G are

9,G= —S= — (1 —6)S,—6S,, (11a)
3,G=V=(1—6)V,+ 06V, (11b)

where S; = — 3G, and so on. One might expect that a
delta function §(¢) would occur in these equations, by the
definition in Eq. (10a), but all such terms would appear in
the combination (G, — G,)5(¢), which by Eq. (10c) is
Zero.

The end of the proof comes about by computing the sec-
ond derivatives of G or, in other words, the first derivatives
of Egs. (11):

3y 3,G =[1—01( —35S,) + 6( — 3,8,)

—8()T(S,—S,), (12a)
0p0;G =[1—-01(—3p5,) +6(—3,5,)
—drT,
—8(1) £ (8, —83), (12b)
0r3,G=[1—-010,V,+ 83V, +6@)(V,—V,),
(12¢)
0p 3,G =[1—013,V,+63,V;
—drT,
+6(1) (V- V). (12d)

Consider first-order transitions. Then latent heats and
volumes exist, hence S| — S,#0, and V, — ¥,#0, and the
delta function terms in Egs. (12) do not drop out. The
Maxwell relation for G now consists of the statement

3p 3;G = 37 3,6, (13a)
Eq. (12b) = Eq. (12c), (13b)

which is simply the condition that Pand T are independent
variables in G.

In implementing Eq. (13b), we see that the terms pro-
portional to 1 — & must satisfy it by themselves, since there
can be no compensation from the terms in & or 8. Similarly,
the @ terms must satisfy Eqs. (13) by themselves. These all
give the usual Maxwell relations for G. But the terms pro-
portional to §(¢) must also satisfy Eq. (13), and these give
the Clausius—Clapeyron equation, by inspection. [Com-
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Fig. 1. A diagram of the heat capacity C,

of a substance that undergoes a first-order
C1 transition. The latent heat and volume are

contained in the delta function peak.

Tz T
pare with Eq. (1).] Thus the Clausius—Clapeyron equation
may be regarded as part of the Maxwell relations for G.

If we wish to consider second-order transitions, then the
delta function terms in Egs. (12) drop out, since .S and V
are now continuous at the transition. Third derivatives on
G will produce new nonzero delta function terms, which, in
the following generalized Maxwell relations,

3, 3y 3,.G = 3y 3y 3G, (14a)
aP aT aPG=aT(9P aPG, (14b)

yield the Ehrenfest relations. Equation (14a) gives Eq.
(4).

One final remark: Eq. (12a), if multiplied by — 7, gives
the heat capacity Cp,

Cr=11—61Cp, +0C,, +L8(t)  T=T(S, — S,),
(15)

where L is the latent heat. This expression has the virtue of
containing the heat capacities in the two phases and the
latent heat all together. It is depicted schematically in Fig.
1. Notice that there is a delta function singularity at T,
which says, of course, that at 7, a flow of heat does not
produce a change in temperature.

There are easier ways of proving the Clausius—Cla-
peyron equation than this.® We have used the Maxwell re-
lation approach here because it suggests a link to the lamb-
da transitions to be discussed in the following sections.

ClJ/°Kgl

- ————

Hel

o T 4

Fig. 2. The heat capacity at saturated vapor pressure for liquid helium
near the Hei-Heln transition. The solid line represents the observed val-
ues. The dashed line is a conjectured “normal” heat capacity, joining
smoothly the high- and low-temperature segments. The deviation 5C
from the normal is the anomalous heat capacity that can be correlated
with a Clausius—Clapeyron equation. The data were taken from Table A1
of Ref. 10.
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50,
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Fig. 3. The expansivity for liquid
helium near the Hel-Helil transi-
tion. The solid line represents the
/ observed values, the dashed line

// the conjectured “normal” expan-

/ sivity. The deviation 58 from the

normal is the anomalous expan-

7 sivity that can be correlated with

4__\// SP the Clausius-Clapeyron equa-

o 2l T tion. The data were from Table

Al of Ref. 10.
-10

HI. LAMBDA TRANSITIONS

In the 19th century, the theory of phase transitions was
involved with explaining, in large part, boiling and melting,
with their latent heats and volumes and Clausius—
Clapeyron equation at the transition temperature 7,. In
the 1920s, however, Keesom* and coworkers discovered
that liquid helium experiences what has to be a transition at
about T'=2.19 K = T, but there is no latent heat or vol-
ume. What appear are peaks in the heat capacity C, and
expansivity B, as shown® in Figs. 2 and 3. The A shape of
C, gaverise to the name lambda transition. Initially, it was
thought that C, and B, undergo discontinuities at 7,
which prompted Keesom to find an analogue to the Clau-
sius—Clapeyron equation,® namely, Eq. (4) above, and Eh-
renfest to develop his scheme for classifying phase transi-
tions (see Secs. Il and V).

Lambda transitions occur in a number of guises, but they
all demonstrate the feature that a structural change starts
to occur at T, and is completed at 7 = 0. In helium, the
change is from a normal to a super fluid at 7 = 0. In beta-
brass (CuZn), the change is from a disordered stated to an
ordered one at T'=0. In some magnetic materials, the
change is from a paramagnetic configuration to an antifer-
romagnetic one at 7'= 0. This is in contrast to first-order
transitions, where the structural change takes place all at
once at 7, where the substance is a mixture of two phases
separated in space.

Nevertheless, it is also possible to imagine a ““two-fluid”
situation between T, and T=0inA transitions [e.g., part-
ly normal, partly superfluid in helium (Tisza, Landau);
partly ordered, partly disordered in beta-brass, etc.] But
there is no separation in space of these fluids; a given atom
is not entirely in one phase or the other. In a statistical
sense, there are two types of global excitations. At T, the
system is purely of one type; at 7= 0, it is purely of the
other.

This pattern was picked up by Landau’ in 1937, al-
though the superfluid property in helium had not yet been
established, and he argued that the significant thing that
happened at 7, was a change in symmetry announcing, so
to speak, the beginning of a gradual change in structure. To
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describe the change, Landau introduced an order param-
eter 7 designed to go from 0 at T, to 1 at 7= O, charting
the progress from one fluid to the other, and he expanded
the Gibbs function G in powers of 7 near T, :

G(P,Tyn)=G0+172G2+773G3+... (16)

Here, G, G,, etc., are some functions of T and P, while %
was determined by minimizing G. The functions 7 and G,
were found by his procedure to be functions of the 7 of Eq.
N,

t=T—-T,(P). (17)

By this formalism, Landau was able to produce continuous
G, S, and V¥, discontinuous C, and f3p, and to follow the
system away from 7', . We shall not attempt to fill in any of
the details.

In the 1950s, it became apparent by theoretical conjec-
ture (Tisza) and experimental verification that C, and 3,
do not suffer ordinary discontinuities at T, but seem to
diverge logarithmically there, implying that the A transi-
tions do not fit into the Ehrenfest classification scheme.
Pippard® in 1957 and Buckingham and Fairbank® a few
years later analyzed what happens near the singularity and
developed equations (the PBF equations) that should be
valid asymptotically as 0. The one of interest here is

C, _ dP,
VB, dT

where the function P, (T) denotes the line of A transitions
in PT space. This equation reminds us of Eq. (4). In fact, if
there were a discontinuity, one could take the difference of
Eq. (18) across the transition and obtain Eq. (4), as Buck-
ingham and Fairbank showed. We shall not derive Eq.
(18) in the original way but a derivation of another type
will be given in Sec. IV.

(2-0), (18)

IV. LAMBDA TRANSITIONS REVISITED

In a certain sense, the Clausius—Clapeyron equations
surviveevenintheA transition ofliquid helium. To see this,
we notice that in comparing Fig. 2 with Fig. 1, the A transi-
tion does not exhibit a delta function singularity in C but
does exhibit a peak, and similarly with 5. This suggests that
if we integrate C and S over the range of the peaks (sub-
tracting off the “normal” C and ), we can define a quasi-
latent entropy 68 and volume 67 by

6—S=JT“6ch, (19)
M

oV 1
Y _ [ pregar, (20)
where M is the mass of the specimen, c¢ is the heat capacity
per mass, and p is the mass density. The quantities 5c and
& B are the differences of the true values from hypothetical
“normal” values obtained by the free-hand extrapolations
shown as the dashed lines in Figs. 2 and 3. These dashed
lines are to some extent arbitrary, but it is significant that
the numbers obtained for S and 6§V give aratio 6S /6V that
equals approximately (dP/dT),, i.e., that satisfies the
Clausius—Clapeyron equation. (We used C,; yap press =C,
implicitly.)

The crudeness of the graphical approach just described
cries out for a more analytic argument. This can be made as
follows. Suppose that the Gibbs free-energy G is composed
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of a normal term Gy(P,T) and an anomalous term G, (¢).
The latter is associated in some way with the transition
temperature, and we assume that it depends primarily on
the variable # of Eq. (17) that was used extensively by Lan-
dau and by Buckingham and Fairbank, as described in Sec.
II1. Thus

G=G0(P,T)+G}.(t)- (21)

A separation of this type is quite close to what Landau used
in Eq. (16) above, and to a form inferred by Buckingham
and Fairbank.® It is understood that for temperatures suffi-
ciently below T, , G must approach zero to satisfy the Third
Law.

The plan is now to proceed just as we did in Sec. II,
starting from Eq. (6). There the z-dependent factor was the
step function 8(¢), which eventually led to a delta function
singularity. Here, we have not specified what the ¢ depen-
dence is, and we shall not rieed to know it, but, if we wish to
be led to a logarithmic singularity, we could choose

G, (t) = At*In|t | + Bt?6(1), (22)

where A and B are constants. The first term is the limiting
form of the known solution to a two-dimensional prob-
lem,'! but here it is just a useful function near T, .

Following the argument of Sec. II, we take derivatives of
G tofind

dG
S=8,+8, = —0;G,——=, (23)
dt
dG, dT, (24)
V=Vo+V, =3pGy— —2 —2,
OT AR T dP
Cp=Cpy+Cp; =T3S, + TAS; A1), (25)
where
t
A(t) _dS./dr. (26)
AS;

Here, AS; is a normalizing factor that we take to be the
total change in S; across the transition.

The A(#) has the units of 1/ and plays the role in 4
transitions that §(¢) does in first-order transitions. [Com-
pare the last terms of Egs. (25) and (15).] It is a peaked
function resembling Fig. 2 and spread out over several de-
grees. Further, AS; plays the role here that S; — S, played
there. The last terms in Eqgs. (25) and (15) differ primarily
in that the anomalous peaking occurs right at # = O in first-
order transitions, but is spread out over a few degrees here.

To get the Clausius—Clapeyron equation in Sec. II, we
took further derivatives on S and V [see Egs. (12)]. We
cannot proceed that way here, since the latent heats and
volumes do not occur at one given temperature. We can,
however, take differences 6S; and 6V, at constant pres-
sure, of the anomalous terms, between two temperatures
apart a finite amount. From Eqgs. (23) and (24), we get

—d
58, =6 iZ: , (27)
dt
T, . —dG
6V,1=—d‘5 4. (28)
dP dt

In taking 6V, we used the fact that dT, /dP is defined at
the transition line and does not change along an isobar. It
comes out from under the & operation. The ratio gives
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65, _ dP, ' (29)
oV, ar

This is a Clausius—Clapeyron equation for the anomalous
terms over a temperature spread. '

Such an equation implies that A transitions have many of
the characteristics of first-order Ehrenfest transitions (e.g.,
quasilatent heat, quasilatent volume, and the Clausius—
Clapeyron equation itself).

Although we could not obtain a Clausius-Clapeyron
equation by taking derivatives of S and ¥, as in Sec. I, we
can take derivatives nevertheless. What we shall discover
are the PBF equations themselves. From Egs. (23) and
(24), one finds

d*G,

dt?’
dT, d*G,
dP dt*’
for the anomalous terms. The ratio gives Eq. (18). We see
that the PBF equations are valid for any term of the form
G, (t). They characterize the material altogether when
such a term dominates as, for example, in the asymptotic
region £ —0. Finally, it is easy to see that integrating the
PBF equation over temperature will lead to Eq. (29).

CP,/l =T8TSA = —T

(30)

Bea=V7'0V,=—-V"! 31

V. A GENERALIZATION OF THE EHRENFEST
SCHEME

The Ehrenfest classification scheme labels a transition
nth order if the first appearance of a discontinuity in de-
rivatives of G occurs in 3 "G /9T ". We saw at the end of the
last section that A transitions resemble first-order transi-
tions in many respects, even to the point of having a kind of
Clausius—Clapeyron equation. Nevertheless, they do not fit
the Ehrenfest scheme because they cannot be characterized
by a discontinuity in some derivative of G. It is plausible,
therefore, to look for another feature by which to classify
transitions, in the hope of absorbing all of them into a gen-
eral scheme.

Now a discontinuity in 8 "G /T " implies that 3" * 'G /
AT "* ' has a delta function singularity, as we saw in Sec. II.
Thus all the transitions that fit the Ehrenfest scheme will
exhibit singularities, and all the A transitions do also. Thus
the existence of singularities could be the desired feature.
We would have to specify the type of singularity, of course,
as well as the order. A transition is then “of singularity type
X and order n,” meaning that singularities of type X appear
for the first time in the n 4 1th derivatives of G.

For example, an Ehrenfest second-order transition
would be described as of delta function type and of order 2.

The Hei-Herr transition is of logarithmic type'* and of or-
der 1 (which recognizes indirectly the fact mentioned
above that A transitions have many of the properties of
first-order transitions). If G, contains a term ¢°In|?|, a
logarithmic transition of second order might exist. If G
contains a factor ¢ %, where « is positive and lies between the
integer n and n + 1, we could have a “power transition” of
order n. From the phenomenological view, all these differ-
ent types fit the scheme.

Clausius—Clapeyron style equations occur in all these
transitions (if we include Ehrenfest equations also), but
they do not necessarily refer to discontinuities in S and V.
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More generally, they refer to differences § in S and V (or
Cp and B, etc.) across a transition region.

VL. SUMMARY

We have shown how the Clausius—Clapeyron and Eh-
renfest equations can be regarded as Maxwell relations for
G. In the case of lambda transitions, an analogous argu-
ment could be made, implying that latent heats and vol-
umes exist in these situations also. We called them quasila-
tent heats and volumes. Such a result was suggested by the
fact that there are peaks in the heat capacity and compress-
ibility curves, even though these peaks are not delta func-
tions. Thus the lambda transitions seem to have many of
the features of first-order transitions. They can, in fact, be
absorbed in a generalized Ehrenfest classification scheme
for transitions, if attention is turned to singularities rather
than discontinuities.

The modern theory of critical phenomena has not been
touched on in this article, as it lies outside the immediate
topic. It should be mentioned, however, that this theory
has made numerous predictions that relate to the lambda
transitions. For the case of helium it predicts'>'* that the
heat capacity goes as |¢ | ~ ¢, and recent experiments'® have
found a = 0.0127. A logarithmic dependence In ¢ can be
written lim(a—0) (¢ ~* — 1)/( — a), so that a small ¢,
such as 0.0127, implies a dependence close to logarithmic.
Nevertheless, these precise measurements indicate that the
transition here is actually of the “power” type (and of first
order) in the language of Sec. V.

APPENDIX: A SURVEY OF PROOFS OF THE
CLAUSIUS-CLAPEYRON EQUATION

The proofs of the Clausius—Clapeyron equation in Secs.
IT and IV are somewhat unusual. There are a large number
of ways of improving this equation, and we list below an
historical sequence of them. Figures 4 and 5 show the stan-
dard phase diagrams in PV and PT spaces for the liquid—
vapor transition.

(1) The first glimmer of the equation came from Joseph
Black, who argued'® that a small amount of heat cannot
take a large body of water to just under to just above 100 °C,
despite the infinitesimal temperature change, since there
would be an explosion, i.e., a large change in volume. There
must be a proportionality of some sort, although with
Black it was explicitly with the quantity of water boiled.

(2) Sadi Carnot gave the first proof.'” His formula dW /
Q =dF(T) for the maximum efficiency of a heat engine
undergoing an infinitesimal cycle, where F(T) is an un-
known but universal function independent of materials,

Fig. 4. A liquid-vapor phase diagram in PV space.
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Fig. 5. A liquid-vapor phase diagram of PT space. A point on the transi-
tion curve corresponds to a horizontal /ine in the “dome” of Fig. 4. The
points @, @', . . . here are not the same as in Fig. 4.

was applied to the loop aa’'b 'ba of Fig. 4, although he did
not use such diagrams (1 kg of water is boiled at 100 °C and
P,, cooled to and condensed at 99 °C and Py, reheated to
100 °Cand P,, and soon). The work doneisd W = 8P AV,
where 5P = P, — Py and AV = ¥, — V,.Carnot estimat-
ed AV as the vapor volume only. Heat Q, enters during aa’,
Qg leaves during bb ', and steps a’b ' and ab are neglected.
On the caloric theory, @, = Qp = Q. Thus

8P AV /Q =dF(T). (A1)

Not knowing F(T), the most Carnot could do in verifying
his theory was to show that it is the same for the water—
steam cycle as for an air cycle.

(3) Clapeyron'® used the cycle cc'd 'dc of alternating iso-
therms and adiabats of Fig. 4, wrote dF =dT /C(T),
where C is now unknown, and clearly labeled AV as the
difference in volume in the two phases. Thus Eq. (A1)
became

AV _c-1dl

o dpP
Here, dT and dP are the differences between the lines cc’
and dd’ of Fig. 4. But line cc’ corresponds to a point on the
transition curve on Fig. 5, and line dd’ corresponds to a
neighboring point on that curve. Thus dP /dT'is the slope of
the transition curve, i.e., dP,(T)/dT. This identification
will be needed in many of the proofs. We might call Eq.
(A2) Clapeyron’s equation.

(4) Clausius!® in 1850 abandoned the caloric theory,
and had to distinguish the input heat @, during cc’ of Fig. 4
from the output heat Q, during dd’'. He was able to pre-
serve Carnot’s maximum efficiency expression in the form
dW /Qy =dT /C, using Clapeyron’s C. He also argued
that, for an infinitesimal cycle;, Qp =@, even on the me-
chanical theory, whence Eq. (A2) is found again. In addi-
tion, from Kelvin’s work, he identified C as T (for a discus-
sion, see the next paragraph), and the equation has arrived
at its final form,

AV _ 14T

Q dP

(5) In 1854, Kelvin?® analyzed the thermoelectric prob-
lem by writing the first and second laws of thermodynam-
ics as $ dU =10 and ¢ dQ,.,/T =0 (where “rev means
“reversible””). He did not apply these to the phase transi-
tion cycle cc'd 'dc of alternating isotherms and adiabats in
Fig. 4, but, if we do, we get,

$av—0, -0, - W=0,

(A2)

(A3)

(A4)
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where W is the work done by the system in the cycle. Now,
use Clapeyron’s P AV for W, substitute Qp from Eq.
(AS5) into (A4), and let T, — T, = dT. We regain Eq.
(A3).

The maximum efficiency expression used by Carnot and
Clausius is contained in Eq. (A5). In fact, if Egs. (A4) and
(AS) are decoupled, we find W/Q, =1 — T,/T,, which
is the general expression for maximum efficiency. For an
infinitesimal cycle, this reduces to W /Q = dT /T, whence
Clapeyron’s C is T, and Carnot’s F is In T. If we write
dQ..,/T = dS, where S'is entropy, then Eq. (A5) is conser-
vation of entropy.

(6) Gibbs*! generalized the equation to heterogeneous
systems in 1875. In the one-component limit, his argument
is seen to rest on the Gibbs—Duhem relation,

du = (S/NYdT — (V/N)dP, (A6)

which relates situations in which the intensive variables u,
T, and P differ only slightly. Here u is the chemical poten-
tial and N is the number of particles in the system. Gibbs
applied Eq. (A6) to the liquid portions (“L *’) at states m
and » of Fig. 4,

d
§ Qrev — QA QB =0, (AS)

du, =(S/N), dT — (V/N), dP (A7)
and to the vapor portions (“v”’) at m and n,
dy, = (S/N),dT— (V/N), dP, (AB)

and equated them, since i, =y, in equilibrium. Alterna-
tively, one could just take ¢ du =0 around the cycle
aa'bec’da of Fig. 5. In either case, one gets

AS _dP. (A9)
AV 4T
which is the Clausius-Clapeyron equation, since

Q=TAS.

Notice that the integral § dZ around a loop in state
space of any state variable Z is zero. This feature is used
frequently, as, for example, in Eqgs. (A4) and (AS).

(7) The Helmholtz free-energy F= U — TS satisfies
dF = —S§dT — PdV if we ignore changes in particle
numbers. A Maxwell equation is

(30), = (G2).

Applied to state m of Fig. 4, this is immediately the Clau-
sius—Clapeyron equation. It corresponds to the equation
¢ dF = 0 taken around the loop mnn'm’'m in Fig. 4.

(8) The enthalpy H = U + PV satisfies dH = TdS
+ V dP. A Maxwell equation is

(5), = ().

Applied to point d of Fig. 4, this is immediately the Clau-
sius—Clapeyron equation. It corresponds to the equation
¢ dH = 0 around the loop dcc'd 'de of Fig. 4.

(9) Finally, Buckingham and Fairbank® gave an inter-
esting derivation by integrating

s = (ﬁ) dpP + (ﬁ) dT
ap): " T\aT)s

(A10)

(All)

v as

= —(57), #+ (57), 47 (Al

M. Bailyn 152



where the second form used the Maxwell relation from
dG(P,T). Let the free differentials in this equation refer to
a segment of path along the transition curve of Fig. 5, and
denote them as dS,,dP,, and dT,. Multiply by dT and inte-
grate at constant pressure from one phase to the other
across the transition curve in Fig. 5 to get

de,dT:O: —dP,J(ﬂ) dT
P p\OT /p

+dT, J (‘9—5) drT.
p\dT/p

The left side is zero since 4, is finite and the integration
region is infinitesimal. Equation (Al13) gives O
= —dP, AV +dT, AS, which is the desired equation.

This derivation is actually the same as Gibbs’ The left
side of Eq. (A13) is

- Ll Lem ==L LG, ),

=d(G,—G,), =0, (Al4)

which is the same as Gibbs’ relation du, =du,
(“L” =1, and “v” = “2”). See Egs. (A6) and (A7),
and remember G = uN. Buckingham and Fairbank in ef-
fect used an integral of a derivative of G to get the same
relation obtained by Gibbs from a direct use of G.

This completes our survey. Notice from Sec. II, Nos. 7
and 8 in the Appendix that the Clausius—Clapeyron equa-
tion can be derived as a Maxwell equation for all three
potentials F, G, and H. Notice also that there is a derivation
possible in which each one of U, u, F, H, G, and S plays the
principal role. (And it also appears in the way shown in
Sec. IV.)
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