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On the Principle of Carathéodory

H. A. BucupanL
University of Tasmania, Hobart, Tasmania

I

N most treatments of thermodynamics the
Second Law is stated in one or other of the
original forms resulting from Clausius and
Thomson. However, Carathéodory, in his axio-
matic development of thermodynamics, replaced
the traditional statements of the Second Law by
what has become known as the Principle of
Carathéodory. A more widespread knowledge of
the methods of Carathéodory' seems desirable,
not least because of their great didactic value.
Experience shows that they can be understood by
undergraduates in the second or third year of a
course in physics. These methods involve, how-
ever, one mathematical theorem (the Theorem of
Carathéodory), the usual proofs® of which are
often so unpalatable to the physicist, that the
theorem itself may form a serious obstacle to a
proper understanding of the whole treatment.
We shall therefore give in a subsequent paper an
alternative proof of this theorem for the case of
three variables, which may be found more at-
tractive than the proof usually offered in text
books. It is desirable in the development of any
physical theory that there should be a clear-cut
division between empirical content and mathe-
matical method. In the case we are considering,
once Carthéodory’s Theorem is understood as a
theorem in pure mathematics, the existence of a
certain single-valued function of the variables of
state is at once seen to be an immediate conse-
quence of the generalized empirical knowledge
which is contained in the Second Law (in the
form of Carathéodory’s Principle). In the usual
treatments, the existence of this function is
generally proved with the aid of abstract engines
and cycles—a method which may leave some
students without much appreciation of what has
been proved, and without too clear an under-
standing of the phenomenological meaning of
entropy.
! Carathéodory, Math. Annalen. 67, 355 (1909) and Sitz.
d. Preu. Akad. d. Wiss., p. 39 (1925).
% Born, Physikalische Ztschr. 22, 251 (1921) and Chandra-

sekhar, Stellar Structure (Univ. Chicago Press, 1939),
Ch. 1, p. 21 and Carathéodory, (1909), loc. cii., p. 369.

41

II. The Principle of Carathéodory

Keeping the preceding remarks in mind, and in
order to emphasize the close analogy which
exists between the ‘physical argument’ and the
‘mathematical argument’ of this treatment we
propose to deal in this paper with some gen-
eral considerations concerning the Principle of
Carathéodory. The latter may be stated as
follows:

In the neighborhood of any arbitrary initial
state J, of a physical system there exist neigh-
boring states J which are not accessible from J,
along adiabatic paths.

This principle thus takes as a starting point the
empirical recognition that if two states, Jo and J,
of a given adiabatically enclosed® thermodynamic
system be prescribed, and granted (i) that the
transition from Jg to J is mechanically possible,
and (ii) that such a transition would not violate
the demands which the First Law of Thermo-
dynamics already imposes upon it; then the
transition from J, to J may nevertheless be im-
possible, while at the same time the reverse
transition is possible. We then say that the
thermodynamic weight of Jo exceeds that of J.

Let us consider an elementary example. If
Jo—J stands for the phrase ‘the transition of the
system from the state J, to the state J, let
Jo(ho, to) be the state of the Joule paddle-wheel
apparatus, the contents of the calorimeter being
at temperature fo, and the mass m at height 7.
Let J(k, t) be a second state of the system, where
t<to and h>hs, in such a way that the energy
difference of the contents of the calorimeter, to
which corresponds the temperature difference
fo—t, is just accounted for by the potential
energy difference of the mass (=mg(h—he)) in
the two states of the system respectively. Then
we know empirically that Jo(ho, t0)—J(k, t) is
impossible, notwithstanding the fact that neither
the First Law, nor the laws of mechanics would

# A system is said to be adiabatically enclosed if a state
of equilibrium of the system can be disturbed only by
mechanical means, as by shaking, stirring, or the passage of
electric currents.
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be violated in this transition; J(%, £)—Jo(ko, to)
is, however, possible.

III. Properties of Systems and
Single-Valued Functions

In order to simplify the following considera-
tions, which are of a fairly general kind, let a
system K consist of a gas within an envelope,* the
volume occupied by the gas being v, at a pressure
p. We regard the mechanical variables p and v as
the independent variables of state, i.e., the quanti-
ties p and v define the state of the system, and are
within certain limits variable at will. In a manner
which we need not consider here, the conditions
for thermal equilibrium lead us to associate with
given values of p and v a number £, such that two
such systems K and K’ can be in thermal equi-
librium if, and only if, the corresponding numbers
¢t and ¢ are equal.’ That is, empirical knowledge
concerning the thermal equilibrium of physical
systems leads to the definition of a single-valued
function ¢(p, ») of the variables of state, which
expresses a new property of the system, viz., the
property of being, or of not being in thermal
equilibrium with another system when the two
are brought into non-adiabatic contact. Any
other such definitive property,® often expressed in
the form of a natural law, may similarly be ex-
pected to lead to the attachment of a certain
number to every given state, i.e., to the definition
of a new single-valued function of the variables of
state associated with the system, which expresses
this property. The First Law of Thermodynamics
is an excellent example; it generalizes the result
of a very great number of experiments in the
statement that the mechanical work W done by a
system in any adiabatic lransition between two
given states depends upon these states alone, not on
the manner of transition. The definition of a new
single-valued function of the variables of state,
the energy U of the system, is an immediate
consequence of thisstatement. The term ‘quantity
of heat’ (Q) then appears merely as an abbrevia-
tion for the difference between the actual work

4 The envelope is not to be regarded as forming a part of
the system.

5 The apparent existence of more than one value of ¢ for
given p and v, e.g., water near 4°C, would show the incor-
rectness of the assumption that p, v constituted a sufficient
set of independent variables of state.

s A property of this type evidently cannot depend on the
previous history of the system.
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done in a given non-adiabatic transition and the
change in the value of the energy function which
occurs in it. Thus if Uy, U are the values of the
energy in the initial and final states respectively,
then

Q=({U-Uy+W. 1

IV. The Existence of the Entropy Function

After the preliminary observations of the
preceding section we return to the consideration
of Carathéodory’s Principle. As we have seen, the
latter expresses a definitive property of the sys-
tem, viz., the property that, when adiabatically
isolated, the possibility or impossibility of Je—J
depends upon Jy and J alone, subject to certain
other well-defined conditions being already satis-
fied. Accordingly we may expect the principle to
lead to a new single-valued function of the
variables of state .S,7 such that .S is a measure of
the thermodynamic weight of the state J. We call
S the entropy of the system. It follows at once,
the sign of S being suitably chosen, that Jo—J is
possible if S2 S, and impossible if S <.Sy; for the
condition of accessibility cannot be expressed in
any essentially different way in terms of a pair of
numbers which must enter into the relations
quasi-symmetrically. Moreover, let S>.S,; then
Jo—J is possible. But having effected Jo—J,
J—Jy is now impossible, for now S{(final) <.S(ini-
tial). That is, Jo—J is irreversible. Clearly Jo—J
is reversible only if So=.S. The last results may
be summed up as follows:

A transition of an adiabatically enclosed sys-
tem is impossible, possible reversibly, or possible
irreversibly according as the entropy of the initial
state is greater than, equal to, or less than that
of the final state.

This at once gives rise to the corollary that in
any adiabatic transition of a system the entropy
can never decrease. This is the so-called Principle
of Increase of Entropy, which shows that unlike
mass, energy, charge etc. entropy obeys a one-
sided conservation law.

We shall not pursue the physical consequences

7 It is conceivable that it could define more than one new
function determining the mutual accessibility of different
states, but it is difficult to see how this could come about on
the basis of a law of the type under consideration. However,
it appears that ultimately we must rely upon the confirma-
tion obtained from a mathematical treatment of the
problem.
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of the Principle of Carathéodory beyond this
point; for the elucidation of the phenomenological
meaning of entropy as ‘transition potential’ has
been dealt with at sufficient length for our
purpose.

V. Plausibility Arguments Based on
Carathéodory’s Principle

Finally we examine briefly how the considera-
tions above indicate to us how to begin the
mathematical formulation of the consequences of
Carathéodory’s Principle. To do this it is suffi-
cient to consider a system L with three inde-
pendent variables of state (such as the two
aforementioned systems K and K’ in thermal
equilibrium), which we take to be z, v’ and the
common temperature ¢ Now Carathéodory’s
Principle speaks of arbitrary adiabatic transitions.
It applies therefore @ fortiori to quasi-static?
adiabatic transitions. During an infinitesimal
part of it the work done by L is pdv+p'dy’ ; and
since the transition is adiabatic this work must,
in virtue of the definition of energy, be equal to
the change dU in the energy Uy, ¢', t) of L, i.e.,

BU/ov+p)dv+ (0 U/dv
+p)d'+(QU/at)dt=0. (2)

Thus the quasi-static adiabatic transitions of L
are subject to a condition of the form

dQ="P(x, y, 2)dzx+Q(x, v, 2)dy
+R(x, 3, 8)dz=0, (3)

where P, Q, R are certain functions® of the inde-

® A tansition of a system L is said to be quasi-static if, in
the course of it, L passes through a continuous series of
states of equilibrium. This is equivalent to a reversible
transition, which necessarily proceeds at an infinitesimal
rate.

® Equation (3) preserves its form under any substitution
of independent variables. Thus, if the set x, ¥, z be given as
functions of the new set x, 3", 2/, then the eguation becomes
Pldx'+-Q'dy'+R'de’ =0, where P'(x', ¥, ') =Pdx/dx’
+Qdy/dx'+ Raz/ax’, etc. Note that the Q here has nothing
to do with the symbol for quantity of heat.

pendent variables x, v, z. Interpreting the latter
as right angled Cartesian coordinates of a ‘picture
space’ A, every state of equilibrium of L is
represented by a point in 4. By definition a
quasi-static transition must therefore be repre-
sented by a continuous curve C in 4. If the
transition is also adiabatic, C is restricted by
Eq. (3). In other words: The ‘quasi-static adia-
batics' of L are the solution curves of the
differential Eq. (3).

But in Sec. IV we tentatively accepted the ex-
istence of a certain function .S, and we saw that
it remains constant in a quasi-static adiabatic
transition. That is, as a consequence of the
Second Law there exists a function .S such that
the equation

Pdx+Qdy-+Rdz=0 4)

dS=0, (5)

implies

and which has the properties described in Sec. IV.
Hence if we are on the right track we may expect
that there exists another function w(x, y, %), such
that!®

Pdx+Qdy-+Rdz=wdS. (6)

We have arrived at the tentative Eqgs. (5) and
(6) by means of a direct physical ‘plausibility
argument’ based on Carathéodory’s Principle.
These equations may now be put on a rigorous
basis through an application of the Theorem of
Carathéodory, the statement, and a new proof of
which will form the substance of another paper,*
in accordance with our original intention of
delimiting the mathematical core of the conse-
quences of the Second Law.

o For quite unrestricted P, Q, R this is, in general,
impossible; in fact, the ‘condition of integrability,’
P(8Q/0z—~0R/8y)+Q(0R/8x — 3P /95)+ R(OP /dy —8Q/dx)
=0, must be satisfied. See Forsyth, Differential equations
(Macmillan, 3rd ed. 1903), pp. 282-284,

1t Buchdahl, see article in this issue.

I shouid like o mention one case where the artist—quite unknowingly—has been able to provide
valuable data for science. The cloy from which the Greek potter made his beautiful vases more than
2000 years ago always contained some magnetic oxide of iron. At a certain stage of the cooling,
after firing, the iron particles are very susceptible to the action of magnetic forces, and orient them-
selves in the dirvection of the earth’s magnetic field. The direction of this magnetization was fixed
permanently when the vase cooled and since we know the vase must have been always in a vertical
position during the firing, the scientific man can find the direction of this magnetization and thus
S the inclination or ‘dip’ of the earth’s magnetic field af the time and for the place where the vase
was made. By this curious observation we have been able to extend our knowledge of the secular
variations in the earth’s magnetic field to a remote epoch more than 2000 years before the importance
of such measuremenis was recognized.—E. RUTHERFORD (1932).



