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Quantum statistics of an ideal molecular gas

F. Hynne

Chemistry Laboratory III, H. C. Obsted Institute, Universitetsparken 5, DK-2100 Copenhagen G, Denmark

(Received 3 December 1979; accepted 23 July 1980)

For an ideal gas of molecules with internal degrees of freedom, we express the

canonical and grand canonical partition functions in terms of the molecular partition
function. The derivation is simple and the result is exact. The many-body ground state
is included naturally and Bose-Einstein condensation appears without the need of
special measures. The canonical partition funtion has a form which generalizes its
classical approximation, and we use if for a discussion of multiply occupied molecular

states.

In this paper we give a very simple derivation of a formula
for the grand canonical partition function = of an ideal
molecular gas, which apparently has escaped the text-
books!~12 although it has been used in a different context
in the research literature.!3

We start from the usual expression for InZ at tempera-
ture T, chemical potential u, and volume ¥V (e.g., Ref. 9, p.
160)

InE =% 2 In[1 £ X exp(—B¢))]. m
J

The sum is taken over a complete set of orthogonal energy
eigenstates of a single molecule with corresponding energies
¢;. The upper (lower) sign applies to fermions (bosons) and
A = exp(Bp) is the absolute activity, whilst 8 = (kT)~!.

We obtain the formula immediately by expanding the
logarithm and interchanging the order of the two summa-
tions:

InZ = BpV = il (F1)n+! %ﬁ) AR, ()
Here

q(8) = 2}: exp(—B¢;) (3)

is the molecular partition function.

The interchange of the order of summations is permis-
sible and the resulting series (2) is convergent providing
A <1 (u <0). (We take the zero of energy in the molecular
ground state.) Thus the result always applies to bosons but
not to strongly degenerate fermions.

From Eq. (2) we may find other thermodynamical
functions as, for example,

N = MolnE/oNay = ¥ (7)™ qnB)N, (4a)

E=—-(dnE/aB)\y = ~ ; (F1)"+1g’(nB)N",  (4b)

for the average number of molecules NV and the average
energy E. In Eq. (4b) ¢’(nf) is the derivative of the function
g(nf3) with respect to its argument #3. We may also obtain
the contribution of any selected molecular state j by re-
placing g(nf8) by exp(—nB¢;). From Eq. (4a) we find, for
example,

1
, 5
Pl — WI £ 1 ©)
which represents the Fermi-Dirac and Bose-Einstein dis-

jvj=
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tributions. This result may of course be obtained directly
from Eq. (1), but its relation to the expansion (4a) is
brought out clearly here.

The results (2) and (4) are exact. In particular, the
many-body ground state of a boson gas is included, and Egs.
(2) and (4) describe Bose-Einstein condensation. To see this
explicitly we split g into the contribution of the (possibly
degenerate) molecular ground state go and that of the ex-
cited states g,

q(B) = go + q.(B). (6)

We then find

BpV = £goln(1 £ N\) + i‘, (F1)n+! M Ar (Ta)

N=gorys+ £ GOmia @ (b)

For bosons the first term of Eq. (7b) is the average number
of particles in the many-body ground state,

No=goM(1=]), ()

and this may be macroscopically large (Bose-Einstein
condensation). The first term of Eq. (7a) can be written in
terms of No,

goln Mo -: g0 9
It is always negligible, as is the corresponding term for
fermions.

A monatomic gas is a special case for which the (very
good) approximation ¢.(0) « 3~3/2 immediately leads to
the usual expansions (e.g., Ref. 4, p. 200)

BoV = 4.(B) i (FLy ™+ \yns2, (102)
N=goris+a® £ w2 aow
=(3/2)pV. (10c)

The first term of Eq. (10b) may be ignored for fermions.
We obtain the canonical partition function Qn for N
molecules by substituting the series (2) into the relation

exp(Bp¥) = 3 QwAN an
N=0

and identifying the coefficients of A. For bosons the result
is

On =2 Qs), (12a)
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0(s) = H1 [q(nﬁ)/n]

The sum is taken over all sets of non-negative integers s
= (81, 82, 53, . . . , Sv) satisfying the condition

N
Z:l ns, = N. (13)

The set s i$ related to the population of the molecular
states. The population structure of an N-body state may be
characterized by a set of non-negative integers p = (py, p2,
D3, . .., pn) such that p, is the number of molecular states
occupied by precisely #n molecules; and the set s is then a
lower bound for sets p of the states contributing to Q(s), in
the sense that the set of inequalities

N N
2 Mpn 2 2 NSy
n=I n=l

must be satisfied, with strict equality for / = 1.

To see this we note that a factor g(nf3) gives rise to mo-
lecular states occupied by n molecules. But a product g(n3)
q(mf) produces states occupied by (n + m) molecules, in
addition to distinct states with n and m molecules. Similar
remarks apply to products of several factors (including
powers).

The first term of the sum (12),

O(N, 0,0, ...,0) = gV/N! (15)

is the classical approximation to Q. [We write ¢(8) as ¢
for short.} In the classical regime where g >> N it is a good
approximation in the sense that

IanN -

The term (15) contains the full contribution of all N-body
states with but singly occupied molecular states. It also
contains contributions with multiply occupied states, but
these do not appear with their full weight in gV/N!.

The higher terms of Eq. (12) provide the remaining
contributions with multiply occupied states, and it is in-
teresting to assess the importance of these corrections to Eq.
(15). To this end we find the largest term in the sum (12)
by use of Lagrange’s method of undetermined multipliers:
it occurs for s = s* with

= [q(nB)/n]\". (17)

[The activity enters through the restraint (13) by com-
parison with Eq. (4a) ] The maximum term is

0 = ff L, (18)

and we note in passing that this is a good approx1mat10n to
O as an implicit function of T, ¥, and V. Thus it is easily
checked that differentiation with respect to N yields an
identity for the chemical potential.

The magnitude of Q(s*) is conveniently approximated

(12b)

1=1,2,3,...,N (14)

as
* qN N ox
O(s*) ~ mexp n§2 Sy (19a)
providing
N
S nsy & N. (19b)
n=2

To obtain Eq. (19a) we have approximated N!/s}! by NN=si
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In(g¥/NY)| « InQp. (16)

and eliminated s] by use of Eq. (13), then introduced A
= 51/q ~ N/q and used Stirling’s approximation.

As an example we consider one mole of argon gas at room
temperature and atmospheric pressure. In this case the
maximum term is

Q(s%) == 1010 gV/N! (20a)
with
521016, §3~ 4 X108, s55~20, si=0
for n=5, (20b)

and with s given by Eq. (13). This example and the general
result (17) show that under most circumstances of practical
interest the vast majority of terms contributing significantly
to Qn have several molecules in multiply occupied states,
even when the classical approximation to Q, applies. The
opposite proposition is sometimes (e.g., Ref. 9, p. 71) as-
sumed in a facile derivation of the classical approximation
to Q in which the molecules are first treated as indepen-
dent subsystems, and the result is subsequently corrected
for the fact that molecules are indistinguishable.

For fermions the canonical partition function is given by
Eq. (12) with g(n@) replaced by (—1)"+1g(nB). It can be
written

Ov=2(= DNV*1s1g(s), (21a)

with
s s| = Z Sn.

The first term is again the classical approximation (15), and
this is corrected for the erroneously included multiply oc-
cupied states by the higher terms. Unfortunately, these
corrections are large in magnitude compared to Eq. (15)
and have alternating signs, yet the sum must be positive and
smaller than Eq. (15); so an accurate summation is difficult.
However, when the condition (19b) applies we may ap-
proximate the combined Eqgs. (12) and (21) by the expres-
sion

(21b)

): ﬁ [(=1)"*'q(nB)N"/(ng™)]*"

n=2 Sa!

On

and extend the summation to all non-negative values of s,
§3, 54, .. ., Sy as an additional approximation. The result

is
o ~Lexp £ ryrr 405 #a) (“)

It agrees within a maximum term approximation with Eq.
(19a) for a boson gas since A can be identified with its
classical value A =~ N/gq when Eq. (19b) applies.

For a fermion counterpart of the numerical example
given above for bosons Eq. (23) provides the estimate

On =~ 107109 gNV/N1, (24)

This example shows that for a typically classical gas the
contribution to g¥ of terms with but singly occupied mo-
lecular states is negligibly small compared to g%, a con-
clusion which may be contrasted with the argument of Ref.
3,p. 63.

Some of our findings for the classical approximation may
of course be inferred from results of the grand canonical
ensemble or by even simpler means. However, we believe

(22)

?I“

(23)
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that the present more direct and detailed treatment may be
of interest.

The results here described may be used to advantage even
for monatomic gases. In our view the new forms in terms
of the molecular partition function are valuable because
they are exact, fairly general, physically transparent, and
very easily derived. Their main limitation is that they cannot
in practice describe a strongly degenerate fermion gas al-
though Eq. (21) applies.

IR. Becker, Theory of Heat (Springer, Berlin, 1967).
2R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA,
1972).

127 Am. J. Phys., Vol. 49, No. 2, February 1981

3T. L. Hill, Statistical Thermodynamics (Addison-Wesley, Reading,
MA, 1960).

4K. Huang, Statistical Mechanics (Wiley, New York, 1963).

5A. Isihara, Statistical Physics (Academic, New York, 1971).

6C. Kittel, Thermal Physics (Wiley, New York, 1969).

7R. Kubo, Statistical Mechanics (North-Holland, Amsterdam, 1967).

8], E. Mayer and M. G. Mayer, Statistical Mechanics (Harper and Row,
New York, 1976).

9D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York,
1976).

10A . Miinster, Statistical Thermodyhamics (Springer, Berlin, 1969), Vol.
1.

1L, D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,
London, 1959).

12G. H. Wannier, Statistical Physics (Wiley, New York, 1966).

137, Widom, Phys. Rev. 168, 150 (1968); 176, 254 (1968).

F.Hynne 127



