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Department of Physics and Astronomy, University of Maine, Orono, Maine 04469

(Received 5 March 1979; accepted 4 May 1979)

In this article the virial theorem, which is useful in classical, quantum, and
statistical mechanics, is considered. Most derivations of this result are of one of
two types. Either one starts with the function r-p [or operator 1/2 (r-p + p)l,

or else takes a derivative with respect to the parameter of a scale transformation.
It is pointed out that these two methods are closely related, since r-p [or 1/2
(r-p + pr)] is the generator of scale transformations. This is demonstrated
explicitly for classical and quantum-mechanical systems. The pedagogical
advantages in pointing out this connection are also examined.

I. INTRODUCTION

The virial theorem is an important result that may be
found in textbooks and research papers on classical, quan-
tum, and statistical mechanics. It appears in slightly dif-
ferent guises in these different fields. This might be thought
to be the reason why there is apparently no single derivation
for it. Almost all of the derivations fall into one of two
classes: Either one considers the function r-p [or operator
15, (r-p + p-r)] and an associated time derivative; or else one
differentiates with respect to the parameter characterizing
a scale transformation. We point out here that there is a
fundamental connection between these two methods of
derivation. This follows from the fact that r-p {or 1/, (r-p +
p-r)] is itself the generator of a scale transformation. This
connection can be found, at least implicitly, in the research
literature (see Ref. 1, for example). However it seems to
have escaped the notice of textbook writers.2 It may be
exploited to good pedagogical advantage in presenting the
virial theorem, as we point out below.

In Sec. I1, we review the r-p derivation in classical me-
chanics and show how it is connected to an infinitesimal
{Canonical) scale transformation. We then point out some
pedagogical reasons for making this connection, and briefly
mention how it has helped in discovering some new physics.
In Sec. III, we review the corresponding derivation in
quantum mechanics and show that it is connected in a very
similar way to an infinitesimal (unitary) scale transfor-
mation. The extension of these arguments to the case of NV
particles is also mentioned. Section IV summarizes some
other derivations of the virial theorem.

II. r-p DERIVATION

For clarity we begin by considering the r-p derivation
for the case of a single particle when classical mechanics is
valid. The standard derivation of the virial theorem in this
case may be found in Goldstein.? Consider the function

G=r-p. . (1)
Then

dG  p?

=8 _ .9V, 2

=T (2)
where V is the potential energy. Now consider trajectories
for which r? and p? are both bounded. Integrating (2) over
time from O to T we find
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! _ _2 (e, L
71G(N) =GO = ﬁ) =

TVV‘3
7)., TV Q)

Since G is bounded, if we let T — « we find
2K, =r1-VV, 4)

where K, is the particle’s kinetic energy, and the bar denotes
the time average. Equation (4) is the virial theorem in what
is perhaps its simplest manifestation. The right-hand side,
divided by 2, is called the virial. Equation (4) is often ap-
plied to the case of power law potentials

V = Vor®, Vo= const, (5)
with the result
2K, = nP,, (6)

where P, is the potential energy. In particular, for the fa-
miliar case of a harmonic oscillator, one has K, = P,.

The above derivation raises seéveral questions: Where does
the function G come from? To present the theorem as
outlined here it is necessary to “pull it out of a hat” with no
further explanation. Why does the theorem reduce to such
a simple form [Eq. (6)] for power law potentials? {There
is also the related question of why the factor of 2 appears
on the left-hand side of Eq. (4).] These questions may be
answered by pointing out the connection of G with scale
transformations. To do this, we first consider a general in-
finitesimal contact transformation. Any such transforma-
tion is characterized by a generating function F that de-
pends on r and p, and an infinitesimal parameter d that
characterizes the “smallness” of the transformation. If we
regard the transformation as changing the coordinates r and
p to new values r + dr and p + dp (so that we are consid-
ering a new point in phase space), we have

dr = d\{r,F}
and (7

dp = d\p,F},

where the curly brackets denote Poisson brackets. For an
arbitrary function u of r and p, the change induced by this
transformation is then

-
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du = d\u,F}. (8)

The function G defined in Eq. (1) and used to derive the
virial theorem can be used as a particular choice for F. We

find
dr =dr,
dp = —dA\p.

(9a)
(9b)

Thus G generates a scale transformation. The name refers
to one effect of the change. Lengths are multiplied by the
scale factor 1 + d\ as demonstrated by Eq. (9a).*

Now we are ready to return to the virial theorem. Note
that since G does not explicitly depend on time,

dG _ oG .+OG

op P = GH = —IHGL  (10)

dt brr

where H is the Hamiltonjan. But by using Eq. (8) for a scale
transformation we see that

dG _ dH

dt ax’ ()

Equation (11) is our basic result. It shows that the time
derivative of G is equal to minus the derivative of the
Hamiltonian with respect to a scale factor. From this point
one can complete the derivation of the virial theorem [Eqgs.
(2)-(4)] unchanged. In this way the virial theorem arises
on considering the scale derivative of H and using the fact
that it is equal to the time derivative of the function —G. In
addition, it is now clear on comparing Egs. (4) and (9b) that
the factor 2 multiplying K, arises from the way p2 changes
under the scale transformation. Furthermore, the factor n
on Eq. (6) arises because the power law potential of Eq. (5)
scales as r”, and the scale derivative is equivalent to r(8/dr)
for this term, as follows from Eq. (8). Thus the simple form
of Eq. (6) is explained very naturally.

The argumeit just completed is the central point of this
work. In what follows, we show that essentially the same
reasoning holds for the quantum-mechanical derivation of
the virial theorem involving the hermetian operator G = 1/,
(r-p + p-r). We then point out that either of these arguments
can be extended to the case of many particles with no dif-
ficulty. In this way we complete the task of showing that this
type of derivation is closely related to those that proceed
directly by differentiating with respect to a length scale.
Some examples of this latter type are included, for com-
pleteness, in Sec. IV.

There are several pedagogical advantages to connecting
the r-p or ' (r-p + p-r) derivations to scale transformations.
As already pointed out, it provides a motivation for intro-
ducing the function G (or operator G) in the first place. In
addition, the simple form assumed by the theorem for power
law potentials is explained very naturally. Finally one can
make the connection with derivations that proceed by dif-
ferentiating with respect to the length scale from the start.
These points are important for a complete understanding
of the topic. This kind of clarification can help in research
as well, and in fact has led to some interesting and very
general inequalities for the energy of many-body systems
with power law potentials.> One essential step in deriving
them came in realizing that since the virial theorem arises
from a first scale derivative of H [Eq. (11)] one could find
something new by considering the second scale deriva-
tive.
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IIL. % (rp + pr) DERIVATION AND N
PARTICLE CASE

The !4 (r-p + p-r) derivation is very similar to the r-p
case described in Sec. II. For the case of one particle in an
external potential V(r) one considers the operator

A 1

G=E(r-p+p-r). (12)
Let the expectation value of G in any single quantum state
be denoted by

(@)= ¥ e0Guendr (13)
Then, following Wannier,® one has
d - 1 N
E<G>I_E<[GIH]>’ (14)

where the square brackets denote the commatator and H
the hamiltonian operator. For H = p?/2m + V(r), one finds
easily that

d - .

_(G>t=2<Ke)t_ (r-VV),, (15)
where K, is the kinetic-energy operator. Taking time av-
erages as in Eq. (3) one finds, provided that (G), is
bounded, that

UK = (r- V). (16)

Equation (16), in the general case, is analogous to Eq. (4)
and is the statement of the virial theorem for one quan-
tum-mechanical particle. For power law potentials, the
analog of Eq. (6) follows simply from this result. When the
quantum state is an energy eigenstate, (G), = const and
Eq. (16) is true without the bars.

To make the connection with a scale transformation, we
note that for an infinitesimal unitary transformation gen-
erated by the operator F, the change induced in an operator
@ is given by

dii = (1/ik)d\[4,F), (17)

where dA is the infinitesimal parameter of the transfor-
mation. For F' = G, we then have

dr = d\r, (18a)
dp = —d\p. (18b)

In analogy with Eq. (9). Hence G is the generator of in-
finitesimal unitary scale transformations (see Ref. 4 in this
regard). Applying this result to Eq. (14) by setting 4 = H
and F = G we have

dH)

_<G>t <d)\ (]9)

If the expectation value is taken in an eigenstate of energy
E it is not difficult to show that Eq. (19) becomes
dE d -

— = - =0.

dA dt (G
Combining Eq. (19) or (20) with Eq. (15) or (14) then
provides the connection of this derivation of the virial the-
orem with a unitary scale transformation.

The extension of the above results to the case of N par-

ticles is straightforward. All that must be done is to make
the replacements

(20)
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N
r— >,
i=1
P> 2pis
G—=>Xr-p,

N 1
G“’Z— (ri-pit+ pi- 1),

H— Z + Viry---rn),

r-vV V—*Zri-

in Egs. (1)-(20). There is no change in the physics of the
arguments.

IV. OTHER DERIVATIONS OF THE VIRIAL
THEOREM

In this section we review a few derivations of the virial
theorem that proceed by taking a scale derivative from the
start, and one that is unrelated to this or the methods con-
sidered above.

In classical statistical mechanics, the length scale enters
the free energy via the configurational partition function

Q= ) --- ) exp[=BV(ri---ry)ld3ry - d3r.
S f .

Here 8 = 1/kgT and the limits of the integration extend
over a box of volume V. For convenience we take this to be
a cube of side L. To be able to differentiate with respect to
L, which sets the length scale, we make the transformation,
following Ref. 6,

r; = Lx;. (22)

In statistical mechanics it is more meaningful to differen-
tiate with respect to V than L. In particular one has

p=kT d1InQ
oV’
where p is the pressure. Since
dInlL _1
dino 3
L3N f f exp[—BV(Lxy -~ LxN]
X d3x1 d3xN (23)

one finds easily that

NkT
ViV exp(—=BV)d3ry - -d3ry

f fzr, X (3V0)~\.  (24)

If the potential energy V consists of a sum of spherically
symmetric pair potentials ¢ (|r;;|) and the system is in a
fluid state, it is convenient to introduce the pair correlation
function g(r) in Eq. (24) with the result

p=

NkT 2N

P= =373 Cenwird @29)
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This same result can be obtained via the r-p derivation. To
do this it is necessary to introduce some sort of “wall”” po-
tential-energy term to contain the system and give rise to
pressure, use the equipartition theorem to replace K, by
3%, NkT, and define g(r) and p via time averages, which are
equal to the ensemble average values in Eq. (25) by the
ergodic theorem.

In quantum mechanics, we can derive the virial theorem
by using the Schrdodinger representation. Assume, for de-
finiteness, that we have a single particle in a cube of side L
acted on by a potential V(r). Then, if it is in an eigenstate
of energy E,

dE _ [dH
dL dL|

Now
H = —(hY2m)V? + V(r).
If we use the transformation’
r=ALx

we see that (compare Ref. 4)

H = —(h2/2mL?)V: + V(Lx)
and
dE _ < dH>

h2
L= =<—2( 2—V2)+rV’(r)) (26)

For a system in a bound state we can let L — « and Eq. (26)
reduces to Eq. (16) (without the bars, which are unneces-

sary for the expectation value in an energy eigenstate). If
the system is in its ground state,

where p is the pressure, so Eq. (26) becomes
2 1
pV=§(Ke> =3 (V) (27)

which is the zero temperature version of Eq. (25) for one
particle. The extention of Eq. (27) to many particles is
straightforward. One may also extend Eq. (27) to the
many-particle case at finite temperature. This can be done
by using the unitary scale transformation to take the scale
derivative of the average energy at fixed entropy. Details
of this method are given in Refs. 1 and 5.

Finally we mention, for completeness, perhaps the sim-
plest way of obtaining the virial theorem: by integrating
Newton’s second law.® Consider one particle for conve-
nience. Then

mi = =VV(r)
)
mr«f=—r.VV. (28)

Taking a time average of Eq. (28) and integrating the
left-hand side by parts results in

Lo ar LT oy 1
T[mr g Tj:) mr2dt = Tfr-VVa't,

so that

2Ke=r-VV(r) (29)
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natural in quantum mechanics (see Sec. 111) where a scale transfor-
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7Qur argument here is essentially the same as that given by R. P. Feynman,
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