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Table IV. Example of audit of energy loss in collision (with a mass attached to the end of the spring).

Although the linear correlation in Fig. 1 is quite striking, the 
two points to be emphasized here are: (i) the entropy value 
of each solid is dependent on the energy added to and stored 
by it, and (ii) the amount of energy needed for the heating 
process from T = 0 + K to T = 298.15 K differs from solid to 
solid. This strong energy-entropy connection follows from 
the Clausius algorithm, dS = d-Qrev /T.

Key Point 2.1:  Entropy at temperature T can be determined 
numerically by heating from near absolute zero to T, using  
S = !T 0+ d-Q /T. S(T) is strongly correlated with the heating 
energy, ∆H = !T 0+  d-Q. Most of this heating energy is stored as 
internal energy in room temperature solids, and the amount 
stored varies among materials. Notably, entropy is intimately 
related to both the amount of stored internal energy and how 
it is stored. Entropy and energy are inextricably linked.

• How can the energy-spreading concept help us    
   interpret entropy?
A heat process is driven by a temperature gradient. Energy 
moves from higher- to lower-temperature spatial regions, 
reducing that gradient. For example, if the two regions con-
tain equal amounts of the same material, the final thermo-
dynamic state will have half the energy in each region; i.e., 
energy spreads until it is distributed equitably over space, as 
illustrated in Fig. 2.
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Part II of this five-part series is focused on further clarification of entropy and thermodynamics. We emphasize that entropy 
is a state function with a numerical value for any substance in thermodynamic equilibrium with its surroundings. The inter-
pretation of entropy as a “spreading function” is suggested by the Clausius algorithm. The Mayer-Joule principle is shown to be 
helpful in understanding entropy changes for pure work processes. Furthermore, the entropy change when a gas expands or is 
compressed, and when two gases are mixed, can be understood qualitatively in terms of spatial energy spreading. The question-
answer format of Part I1 is continued, enumerating main results in Key Points 2.1-2.6.

• What is the significance of entropy being a state    
   function?
In Part I, we showed that the entropy of a room temperature 
solid can be calculated at standard temperature and pressure 
using heat capacity data from near absolute zero, denoted by T 
= 0+, to room temperature, Tf = 298.15 K. Specifically,

               (1)
 

One can also evaluate the corresponding enthalpy change 
∆H = ∆(U+PV) = ∆U+P∆V because the first law of ther-
modynamics applied to an infinitesimal constant-pressure 
process leads to d-Q = dU+PdV " dH " CP (T) dT. Thus

                                                   (2)
 

Note that ∆H0 is simply the energy needed to heat the 
material from T = 0+ to T = 298.15 K. In the following, we 
take advantage of the fact that for many elements and com-
pounds, S0 and ∆H0 are tabulated, or can be calculated from 
specific heat capacity data. A plot of S0 versus ∆H0 is shown 
in Fig. 1 for dozens of room temperature solids.2 These sys-
tems do not undergo phase changes, enabling direct use of 
Eqs. (1) and (2). Because P∆V<< ∆U for solids, ∆H0 is an 
excellent approximation for the stored internal energy ∆U at 
298.15 K. 

Fig. 1. Entropy of room temperature solids vs energy input from 
T#0 to 298.15 K. Each circle represents a datum for a particular 
solid.
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Fig. 2. When hot and cold objects interact thermally, the result is 
the middle pane, with both objects warm. The process does not 
continue further. For example, the temperatures of the initially 
hot and cold objects do not become reversed.
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Historically, Mayer and Joule showed (independently) that 
such a work process increases a system’s internal energy by 
∆U = W, just as a pure constant-volume heat process with 
Q = W does.4 This increase occurs despite the fact that no ex-
ternal heat process is involved. Such a system does not “know” 
how its equilibrium state was reached; i.e., it has no memory. 
The Mayer-Joule principle is also known as the mechanical 
equivalent of heat.

To calculate the corresponding entropy increase, the Clau-
sius algorithm, dS = d-Qrev/T, cannot be used directly for the 
irreversible process because the algorithm requires a reversible 
process. A vain attempt to apply it incorrectly gives ∆S = 0 be-
cause d-Q = 0 for the pure-work process. However, a fictitious 
reversible heat process connecting the given initial and final 
equilibrium thermodynamic states can be used to calculate 
the entropy change.

Key Point 2.3:  For both pure-work and pure-heat processes, 
spatial energy spreading occurs to reduce energy inequities. 
This spreading parallels entropy increase for the isolated sys-
tem-plus-environment. If the initial and final states for the two 
processes are identical, the system’s entropy change is also the 
same because entropy is a state function. This change can be 
calculated using a fictitious reversible process.

• What does entropy have to do with heat  
   engines?
The fact that entropy is often introduced in connection with 
heat engine cycles is an artifact of history. Rudolf Clausius 
introduced entropy using the concept of a cyclic process, 
and the reversible Carnot cycle was a useful tool of conve-
nience. More generally, entropy is a property of any macro-
scopic matter with variable internal energy. Entropy can be 
introduced and understood without ever mentioning heat 
engines. Indeed, heat engines make up only a small subset 
of the physical systems for which entropy considerations are 
useful.

Prior to his introduction of entropy, Clausius introduced 
a concept he called disgregation, namely the tendency of par-
ticles to spread out in space. Although the term disgregation 
ultimately dropped off the physics radar screen, it is in fact 

The figure indicates that the energy redistribution stops 
when the energy distribution is equitable (middle pane). Were 
it to go further (bottom pane), there would be unspreading of 
energy from an equitable to an inequitable distribution. We 
know from experience that nature does not behave this way. 
If the two objects are not identical—say, one is twice the size 
of the other—an equitable distribution is one where the larger 
system has double the energy of the smaller system. If the 
systems are made of different materials, the condition for an 
equitable distribution is more subtle, and that is discussed in 
Part V. 3

To better understand the concept of spatial spreading for a 
heat process, Fig. 3(a) shows a heater just beginning to radiate 
increased energy toward a solid (only a small part of the solid 
is shown). The left-most atoms begin to jiggle and energy is 
transmitted subsequently to nearby atoms; i.e., energy spreads 
rightward. Once the heater is turned off, equilibration leads to 
a uniform energy distribution and temperature, as shown in 
Fig. 3(b).

Key Point 2.2:  In macroscopic systems, energy tends to 
spread spatially from less equitable to more equitable distribu-
tions. The spreading becomes maximal in the sense that if it pro-
ceeded further, the initially warmer and cooler regions would 
become reversed, which does not happen empirically. Spatial en-
ergy spreading parallels entropy increase and can be used to help 
“understand” when and why entropy increases. For an isolated 
system, maximal energy spreading corresponds to an equitable 
energy distribution and maximum total entropy.

• How can the Mayer-Joule principle and Clausius  
  algorithm help us understand entropy increase for  
  pure-work processes?
Consider a pure-work process, where a stirrer whirls within 
a container of water, “working” the liquid, as depicted in Fig. 
4. The stirrer’s blades continually do work on small amounts 
of the water, increasing molecular kinetic energies near the 
spinning blades. The energized molecules subsequently 
move through the liquid, sharing energy with other mole-
cules, ultimately spreading the added energy throughout the 
liquid’s volume, leading to a uniform higher temperature.
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Fig. 3. As a homogeneous solid is heated from the left, energy moves 
rightward through it. If the heater is turned off shortly after heating 
began, the entire solid becomes uniformly warm. This assumes negli-
gible energy exchange with the surroundings.

Fig. 4. When the switch is closed, an electrically pow-
ered rotating blade energizes water, raising its tem-
perature and entropy via a pure-work process.
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mixing of gases. Notably for a quick, irreversible adiabatic 
expansion, spatial energy spreading through the larger vol-
ume dominates over the effect of internal energy decrease as 
work is done, and the entropy increases. Similarly for a quick 
irreversible, adiabatic compression, the spreading of energy 
added to the system by the external work dominates over the 
effect of reduced spreading because of the volume reduction 
and, again, the entropy increases. In the case of a hypotheti-
cal slow, reversible, adiabatic expansion, the added energy 
spreading from expansion is offset exactly by decreased inter-
nal energy as the expanding gas does work on a piston. This 
results in zero entropy change.

Key Point 2.6:  Increased energy spreading occurs when a 
system or a subsystem (a) gains internal energy at fixed vol-
ume and/or (b) expands, bringing its energy into a new spatial 
region. Both (a) and (b) lead to more accessible states and 
higher entropy. Competing effects, as in a reversible adiabatic 
volume change, can offset one another.

Other aspects of entropy for thermodynamic processes and 
for thermodynamic equilibrium are discussed in Parts III-V.3
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closely connected to thermodynamic entropy and provides a 
clue that entropy is a spreading function.

Key point 2.4:  Entropy is ubiquitous and is relevant to 
diverse physical processes, ranging from heating water to 
supernova explosions. Its relation to heat engines is purely 
historical. After Clausius discarded the disgregation concept, 
the spreading nature of entropy has been largely ignored. Yet 
an appreciation of spatial energy spreading can shed light on 
entropy and its changes.

• Does energy spread when a gas expands?
Yes, it does. Each molecule of a gas possesses kinetic energy 
and that energy spreads into new spatial regions as a gas 
expands. Further, the molecules of gas can interact with one 
another when the gas density is sufficiently high, thereby 
bringing intermolecular potential energies into new spatial 
regions. In Fig. 5, this is illustrated with shading connoting 
regions containing kinetic and potential energies. ∆S can be 
calculated using a reversible path that connects the initial 
and final equilibrium thermodynamic states.

Key Point 2.4:  Expansion of a gas spreads energy from 
one spatial region to another, larger region. The concomitant 
entropy increase can be understood in terms of this energy 
spreading.

• Does energy spread when two gases mix?
Yes, it does. The useful interpretation is that when two spe-
cies of dilute gas mix, each species carries its energy to new 
spatial regions. It is well known that what has come to be 
called “entropy of mixing” is really an entropy of expansion,5 
and this meshes well with the spatial energy spreading inter-
pretation. Typically, ∆S is calculated using a reversible pro-
cess with two semipermeable membranes, each permeable 
exclusively to one of the species.

Figure 6(a) shows the mixing of two species and Fig. 6(b) 
shows the expansion of each species separately. For each spe-
cies, the entropy change and extent of energy spreading in 
Figs. 6(a) and 6(b) is the same. The entropy change for Fig. 
6(a) and the sum of entropy changes for 6(b) are equal as long 
as the interactions between the two gas species in Fig. 6(a) are 
negligible. If the two gas species interact significantly, such 
equality is not expected.6 However, the important point is that 
spatial energy spreading of each species in Fig. 6(a) still cor-
relates with entropy increase.

Key Point 2.5:  When two dilute (ideal) gases mix, each 
species spreads its energy spatially. The link between energy 
spreading and entropy change for each species is consistent 
with the observation that conventional “entropy of mixing” is 
really “entropy of expansion.”

• How do we know energy spreading occurs?
We’ve seen that spatial energy spreading can be associated 
with heat and work processes, free expansions, and the 

Fig. 5. Kinetic and potential energies, denoted by shading, spread 
from the left chamber of the container to the whole container as 
the gas expands.

(b)(a)

Fig. 6. (a) Mixing of two species of dilute (ideal) gas. The total 
system can be isolated or at constant temperature. The energy 
region of one species is crosshatched; that for the other is 
shaded. After expansion of each, the full volume contains energy 
from each species. This is an example of energy spreading. (b) 
Expansion of each species separately. For each species, as long 
as the gases are ideal, the total system’s entropy change is the 
same for (a) and (b). The same is true for energy spreading.
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Female representation by type of class
Last month we saw that females make up about 
47% of all high school physics students in the 
United States. This number has changed little 
since 1997. This month, we take a closer look at 
female representation by type of class. We last col-
lected class-specific data in 1993; that year, 43% 
of all high school physics students were female. 
However, female representation varies by type of 
class. In both 1993 and 2009, conceptual physics 
courses had the highest proportion of female stu-
dents, and AP Physics C had the lowest. The good 
news is that female representation exhibits growth 
in all types of classes. In fact, the jump from 27% 
of the AP Physics C students being female in 1993 
to 32% in 2009 represents an almost 20% growth 
in female representation; this compares favorably 
to the 9.3% growth overall. 
In the March issue, we will begin our examina-
tion of teacher retention and turnover. If you have 
any questions or comments, please contact Susan White at swhite@aip.org. Susan is Research Manager in the Statistical 
Research Center at the American Institute of Physics and directs the high school survey.                  
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