
Reversible and irreversible heat engine and refrigerator cycles
Harvey S. Leff

Citation: American Journal of Physics 86, 344 (2018); doi: 10.1119/1.5020985
View online: https://doi.org/10.1119/1.5020985
View Table of Contents: http://aapt.scitation.org/toc/ajp/86/5
Published by the American Association of Physics Teachers

http://jobs.aapt.org/
http://aapt.scitation.org/author/Leff%2C+Harvey+S
/loi/ajp
https://doi.org/10.1119/1.5020985
http://aapt.scitation.org/toc/ajp/86/5
http://aapt.scitation.org/publisher/


Reversible and irreversible heat engine and refrigerator cycles

Harvey S. Leffa)

California State Polytechnic University, Pomona, Pomona, CA 91768 and Reed College, Portland, OR 97202

(Received 26 June 2017; accepted 26 December 2017)

Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in
textbooks are reversible. This is a review, clarification, and extension of results and concepts for
quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and
students. Distinctions between the latter process types are explained, with emphasis on clockwise
(CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including
Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific
efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional
refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and
irreversible-quasistatic CW cycles both satisfy Carnot’s inequality for thermal efficiency,
g ! gCarnot. Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance
inequality K ! KCarnot. However, an arbitrary reversible cycle satisfies K " KCarnot when
compared with a reversible Carnot cycle operating between its maximum and minimum
temperatures, a potentially counterintuitive result. VC 2018 American Association of Physics Teachers.
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I. INTRODUCTION

Historically, advances in thermodynamics were closely
linked to the study of thermodynamic cycles and the limita-
tions on their efficiency for performing work, cooling or
heating. This was of interest to engineers and physicists ini-
tially for clockwise heat engine cycles in connection with
efficiency limits imposed by the second law of thermody-
namics. Ultimately both clockwise (CW) and counterclock-
wise (CCW) thermodynamic cycles were studied and both
are covered in introductory physics textbooks.

The question of whether all CCW cycles are refrigerators
was addressed by Dickerson and Mottmann.1 That question
can be posed for heat engines as well. The answers depend
critically not only on the definitions of a refrigerator and
heat engine (which are to some extent arbitrary) but also on
the important physics-related issue of whether a cycle is
reversible or irreversible. This article is intended to clarify
these points for physics teachers and students. Additionally
it is a review, clarification and elaboration, with some new
results for reversible and quasistatic-irreversible processes.
Because it is part a review, some standard textbook material
is revisited. To my knowledge, no existing source synthe-
sizes these concepts, which are fundamental in physics
teaching.

Section II is devoted to important distinctions between
reversibility and irreversibility, and Sec. III clarifies charac-
teristics of reversible and irreversible work and heat pro-
cesses. Distinctions between quasistatic and reversible
processes are explained and a pulsed model for quasistatic-
irreversible heat processes is proposed. Section IV is a brief
review of heat engines and refrigerators and their efficiency
measures. Inclusion of temperature vs. entropy graphs is to
show the temperature behavior along each cycle and also to
reveal heat quantities as areas under curves.

Section V is devoted to Kelvin three-legged cycles, Sec.
VI covers the well known Carnot cycles, and Sec. VII
focuses on Stirling cycles. Sections VIII and IX are dedi-
cated to thermal efficiency and coefficient of performance
inequalities for reversible and irreversible cycles. Section X

contains related final remarks. Throughout the manuscript,
main findings are expressed in “Key Points.”

II. DISTINCTION BETWEEN REVERSIBLE AND
IRREVERSIBLE CYCLES

Rudolf Clausius2,3 used the distinction between reversible
and irreversible CW cycles in his tour de force derivation of
the so-called Clausius inequality. Using cycles as a mathe-
matical tool rather than a device for doing work, heating or
cooling, Clausius was led to the concept and definition of
entropy, including the principle of entropy increase.
Specifically, he examined a CW cycle on a pressure vs. vol-
ume diagram such as that in Fig. 1. Define d-Q to be an inex-
act differential that represents the energy added to the
working substance from a reservoir at temperature T; i.e.,
d-Q > 0 when the working substance receives energy and
d-Q < 0 when the working substance sends energy to the res-
ervoir. Clausius showed that for a cyclic process of the work-
ing substance,4

þ
d-Q

T
! 0; the Clausius inequality: (1)

The inequality holds for an irreversible cycle and the
equality holds for a reversible cycle. Clausius assumed that a
(possibly infinite) number of reservoirs guide the system
through the cycle. During the cycle, the working substance
can deviate from thermodynamic equilibrium, but by defini-
tion the reservoir cannot. Figure 1 assumes the cycle can be
split into two segments, one irreversible, the other reversible,
and Eq. (1) can be rewritten

Ð
irrevð1!2Þd

-Q=T þ
Ð

revð2!1Þ
d-Q=T ! 0. Reversing the sense of the integral along the
reversible path, the latter equation becomes

Ð
irrevð1!2Þ

d-Q=T &
Ð

revð1!2Þd
-Q=T ! 0. The second term is defined to

be DS ' Sð2Þ & Sð1Þ and thus,

DS "
ð

irrevð1!2Þ
d-Q=T: (2)
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The equality holds only if the irreversible path is replaced by
a reversible one. Indeed, for a reversible cycle if the inequal-
ity held, then reversing the cycle would lead to the opposite
inequality—thus only the zero value is mathematically possi-
ble. Reversibility and irreversibility are clarified further in
Sec. III.

For an irreversible adiabatic path, d-Q ¼ 0 and Eq. (2)
implies

DS " 0 for adiabatically insulated or isolated systems:

(3)

Note that a pure work process cannot decrease the entropy of
an adiabatically insulated system. The following points are
worth emphasizing:

Key Point 1. Equation (3) is a form of the second law of
thermodynamics, namely, the principle of entropy increase.
For an isolated “universe,” DSuniverse " 0.
Key Point 2. It is essential to carefully distinguish between
reversible and irreversible processes when examining ther-
modynamic cycles. Non-equilibrium states, for which tem-
perature and other variables are not well defined, can
occur for irreversible processes. In Clausius’s arguments
leading to Eq. (2), T refers to the temperatures of the
constant-temperature reservoirs that generate the cycle. By
definition, reservoirs have infinitesimally small relaxation
times and are always in equilibrium.

No reversible processes exist in the real world. If one
existed, it would take an infinite amount of time because
approaching reversibility in a laboratory requires an ultra-
slow process with minimal deviations from equilibrium, just
enough to make the process proceed. This entails near equi-
librium states, which lie outside the domain of classical ther-
modynamics, and which are arbitrarily close to the
equilibrium states on the reversible path.

John Norton5 summed up the issue neatly as follows: “…a
reversible process is, loosely speaking, one whose driving
forces are so delicately balanced around equilibrium that
only a very slight disturbance to them can lead the process to
reverse direction. Because such processes are arbitrarily
close to a perfect balance of driving forces, they proceed
arbitrarily slowly while their states remain arbitrarily close
to equilibrium states. They can never become equilibrium
states, for otherwise there would be no imbalance of driving
forces, no change, and no process. Equilibrium states remain
as they are.”

Key Point 3. A quasistatic path is a continuum of equilib-
rium states. An infinite number of reservoirs is needed to
take a working substance through paths with variable-
temperature heat processes. Real paths must deviate from
equilibrium states, and can only approximate quasistatic
work and heat processes.
Key Point 4. When taken from thermodynamic state a to
state b quasistatically, a system can traverse those states in

reverse order, and its entropy change is DSab ¼
Ð b

a d-Q=T
¼ &DSba. A quasistatic process is reversible only if it can
be run backwards such that both the system and environ-
ment follow their same paths in reverse order. All reversible
processes are quasistatic but a quasistatic process need not
be reversible.
Key Point 5. It takes a reversible heat engine an infinite
amount of time to complete each cycle and thus, the power
output of such a cycle is zero. Similarly, a reversible refrig-
erator would have a cooling rate of zero. The same is true
for quasistatic cycles.

Despite the practical limitations of reversible cycles, their
ease of treatment and use in establishing profound efficiency
limits are important. Actual heat engines and refrigerators
have unavoidable sources of irreversibility like friction and
heat leaks. They typically operate so fast that their working
substances, e.g., steam, do not have uniform temperatures
and pressures. Nonequilibrium states are involved and such
processes are irreversible.6

III. CHARACTERISTICS OF REVERSIBLE AND
IRREVERSIBLE PROCESSES

A. Finite-speed work processes

Thermodynamic processes depend critically on process
speed. For sufficiently slow processes, the path of thermody-
namic states followed can be approximated using equilib-
rium states and quasistatic processes, which can be
represented on a pressure-volume or temperature-volume
graph such as the lower path 2! 1 in Fig. 1. The upper path
1! 2 cannot be graphed because the irreversibility leads to
nonequilibrium states without well defined pressures and/or
volumes.

For an example, consider an external force on a piston,
which induces external pressure Pext on a gas whose equilib-
rium pressure is initially P. If Pext ) P, the gas molecules
bunch up near the quickly moving piston, and gas pressure
near the piston exceeds that farther away; i.e., there is a non-
equilibrium situation without a well defined pressure, as in
Fig. 2(a). If Pext * P, the piston moves in the opposite direc-
tion, and the gas pressure near the piston is less than that
farther away, as in Fig. 2(b). If the receding piston moves
faster than any of the gas molecules, the gas expands freely
and a P-V plot is not possible.

Key Point 6. Only if the external pressure differs infinitesi-
mally from P, will a volume change approach the quasi-
static ideal, and an infinitesimal external pressure change
can reverse the path. If the work sources (e.g., a weight
hanging from a pulley) and reservoirs also retrace their
paths, the process is reversible. Clearly, a quick compres-
sion followed by a quick expansion does not lead to the
initial gas state.

Fig. 1. Clockwise cycle with an irreversible segment 1! 2 and a reversible
segment 2! 1. The dashed line 1! 2 is purely symbolic because pressure
P might not be well defined along this path, so the path cannot be graphed.
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B. Finite-speed heat processes

For a reversible adiabatic (zero heat) process, the work
process involved induces temperature changes of a gas with-
out reservoirs. More generally, there can be temperature var-
iations associated with a combination of work and heat
processes. To approach reversibility, such temperature
changes must be extremely slow. It is helpful to imagine suc-
cessive, constant-temperature energy reservoirs, as illustrated
in Fig. 3(a). In principle, the limiting case of an infinite num-
ber of reservoirs with vanishing successive temperature dif-
ferences achieves reversibility.7 As successive temperature
differences get smaller, the entropy produced does too,
approaching zero in the reversible limit. The energy trans-
ferred to the system is Qsys ¼

Ð Tn

T1
Cp dT, where Cp is the sys-

tem’s constant-pressure heat capacity at an assumed constant
atmospheric pressure. The system’s entropy gain DSsys ¼Ð Tn

T1
ðCp=TÞ dT is the negative of that for the reservoirs.

Key Point 7. Reversible heating can be done with a
sequence of reservoirs, each with an infinitesimally higher
temperature than the last and reversal is possible.

If instead, heating or cooling results from an energy trans-
fer through a finite temperature difference such as Tn & T1

> 0 in Fig. 3(b), the process is irreversible. The energy
transfer to the system and its entropy change are the same as
in the previous paragraph. Thus the total entropy change is
positive which signals irreversibility,

DStotal ¼ DSsys þ DSres

¼
ðTn

T1

Cp
1

T
& 1

Tn

$ %
dT > 0 for T1 ! Tn: (4)

Although this process is irreversible, the calculation of DSsys

takes advantage of the state function property of entropy,

using a convenient reversible path that connects the system’s
initial and final states.

It is possible to transfer energy from higher to lower
temperature quasistatically, but not reversibly, as shown in
Fig. 4. Connect the cycle’s working substance, with tempera-
ture reservoirs using ultra-thin low-conductivity fibers. If
the connection is closed, opened, and closed again at quick
intervals, this creates arbitrarily small, irreversible energy
transfers by thermal conduction. Repeating this procedure
generates a quasistatic, irreversible heat process. Although
pulsing through narrow fibers provides a pleasing mental
model, in fact pulsing through larger surfaces can achieve
the same result.

When the working substance undergoes a cyclic process,
its entropy change per cycle is zero. Because the pulsed
energy transfers between the working substance and reser-
voirs are through finite temperature differences, there is a net
entropy gain by the reservoirs during each cycle—i.e., out-
side the working substance—consistent with the second law
of thermodynamics.

Key Point 8. Quasistatic-irreversible cycles with two reser-
voirs can be effected via ultra slow work and pulsed heat
processes. Reversal using only the same reservoirs is
impossible.
Key Point 9. A variable temperature path can be achieved
for a quasistatic irreversible cycle with two reservoirs, as in
Fig. 4, using an ultra-slow heat process together with a
simultaneous slow work process.

There are other ways a quasistatic-irreversible process can
occur. One is by friction between a slowly moving piston
and its cylinder wall, which converts mechanical energy of
the moving piston to internal energy of the piston and cylin-
der. If the piston’s motion is reversed, again ultra-slowly,
friction converts more mechanical to internal energy. Such
processes dissipate energy and are not reversible.

C. Quasistatic volume changes

In this section, I address isothermal, isobaric and adiabatic
quasistatic volume change. Although a heat process unac-
companied by a work process requires a temperature gradi-
ent, an isothermal volume change has no such gradient.

Key Point 10. An ultra-slow volume change of a gas in con-
tact with a reservoir generates an isothermal process
through a sequence of near equilibrium states.5 Throughout
the process energy is exchanged between the gas and reser-
voir, keeping the gas temperature constant.

Fig. 2. Symbolic view of an irreversible quick (a) compression and (b)
expansion of a gas.

Fig. 3. (a) Heating by thermal contact with a sequence of n constant-
temperature energy reservoirs, with Tj ¼ T1 þ j!; j ¼ 0; 1…ðn& 1Þ.
Reversibility is achieved as !! 0 and n!1 with n! fixed. (b) Irreversible
energy transfer, bringing the system directly from the first to nth reservoir.

Fig. 4. Depiction of an irreversible cyclic process with a working substance
(circle) using ultra-slow, pulsed heat processes through narrow low-
conductivity fibers connected to hot ðTþÞ and cold ðT&Þ reservoirs. Either
positive or negative work can be done on the working substance, which goes
through a quasistatic cycle, with zero entropy change of the working sub-
stance, but non-zero net entropy increase of the reservoirs.
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Key Point 11. A quasistatic process at constant pressure
can be induced using a succession of constant-temperature
reservoirs. This results in a combination of work and heat
processes that redistribute energy between the system and
reservoirs, leading to a desired final volume or temperature.
Key Point 12. A reversible, adiabatic ultra-slow work pro-
cess on an insulated system alters its internal energy and
temperature at constant entropy. Examples are (i) a volume
change resulting from ultra-slow, variable-pressure piston
work and (ii) magnetization or demagnetization of a para-
magnet slowly and adiabatically, altering its temperature.
Key Point 13. Adiabatic work processes are central to ther-
modynamics, from connecting higher and lower tempera-
ture regions of heat engines and refrigerators to reaching
ultra-low temperatures not reachable otherwise.

IV. HEAT ENGINES, REFRIGERATORS, AND
EFFICIENCY MEASURES

The focus here is on quasistatic cycles with gaseous work-
ing substances that can be represented on pressure-volume
and temperature-entropy graphs.

What is a heat engine? A general definition of a heat
engine is a cyclic device that takes a working substance
through a CW thermodynamic cycle, receiving energy Qin

from a range of high temperature reservoirs, delivering positive
work energy W to an external load and the remaining energy
Qout ¼ Qin &W to a range of low temperature reservoirs. A
special case is a “traditional” heat engine with narrow high
and low temperature ranges relative to the temperature differ-
ence between those ranges. An example is an electric generat-
ing plant, where the high temperature range is that of the
burner and the low temperature range is that of the outdoor
environment.

What is a refrigerator? A general definition of a refriger-
ator is a cyclic device that takes a working substance through
a CCW thermodynamic cycle, receiving positive external
work energy W and heat energy Qin from a range of low tem-
peratures, delivering energy Qout ¼ Qin þW to a range of
higher temperatures. The special case of a “traditional”
refrigerator has narrow high and low temperature ranges
relative to the temperature difference between those ranges.
An example is a household refrigerator, where the high tem-
perature range is that of the kitchen and the low temperature
range is that of the food compartment.

Qin and Qout represent net energy input and output
magnitudes for the working substance during a cycle.
Subscripts & and þ are reserved for the highest and lowest
cycle temperatures. The irreversible-quasistatic cycles
considered in the remainder of this article are limited to
irreversibilities achievable using pulsed energy exchanges
with reservoirs.

Efficiency measures. Applying the first law of thermody-
namics to one complete CW cycle, DU ¼ Qin & Qout &W
¼ 0, and the work done by the working substance is W ¼ Qin

&Qout > 0. Doing the same for one complete CCW cycle,
the latter equation holds with W being the external work on
the working substance.

Because the objective of a heat engine is to use energy
from a high-temperature region to perform external work, it
is common to compare CW cycles according to their thermal
efficiency g

g ' W

Qin
¼ 1& Qout

Qin
: (5)

Similarly, a refrigerator cycle’s purpose is to remove
energy from a lower temperature region, and it is common to
define a coefficient of performance K for such CCW cycles,

K ' Qin

W
¼ 1

Qout=Qin & 1
: (6)

The general efficiency measures, g and K, exist for any CW
and CCW cycles, but are of most practical interest for
“traditional” model heat engines or refrigerators defined
above.

For a reversible cycle, Qin in g equals Qout in K and vice
versa, and Eqs. (5) and (6) together imply

K ¼ 1& g
g

reversible cycleð Þ: (7)

In Secs. V–VII, I use the Kelvin, Carnot and Stirling cycles
to illustrate some implications of reversibility and irrevers-
ibility for CW and CCW cycles.

V. KELVIN CYCLE

A. CCW Kelvin cycle

One of the earliest studies of CCW cycles was by William
Thomson (Lord Kelvin) who was interested in a novel way
to heat buildings by extracting energy from the outdoor envi-
ronment, thereby in essence inventing the concept of the
heat pump.8,9 His idea, modeled (roughly) in Figs. 5(a) and
5(b), was to take outdoor air into a conducting cylinder
located outdoors, and to expand that air isothermally at the
winter outdoor temperature T& (path ab), reducing its pres-
sure. The second step was an adiabatic compression (path
bc) in a now insulated cylinder, raising the gas temperature
from T& to Tþ > T&.

Kelvin’s proposed machine did not execute a closed cycle;
i.e., one with zero exchange of working substance with the
environment. Rather, he specified that the warmed air in state
c was to be transferred at constant pressure to the space
being heated, with an equal amount of somewhat cooler
air being transferred from that space to the outdoors.
Simultaneously, new, lower-temperature air in state a was to
be taken into the Kelvin warming machine from the out-
doors, and the latter set of steps was to be repeated ad
infinitum.

The closed cycle in Fig. 5, which is dubbed the
“Kelvin cycle,” approximates Kelvin’s proposed machine

Fig. 5. (a) Pressure vs. volume for a Kelvin Cycle. (b) Temperature vs.
entropy for the same cycle. Work on the system (CCW cycle) or by the sys-
tem (CW cycle) is the shaded area abca.
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with the quasistatic paths ab and bc, plus a quasistatic,
isobaric path leading from state c back to a. This captures
the spirit, but not the letter, of Kelvin’s warming machine
proposal.

1. Reversible CCW Kelvin cycle

The reversible CCW Kelvin cycle abca in Fig. 5 uses an
infinite number of reservoirs along ca, covering the tempera-
ture interval ðT&; TþÞ.
Key Point 14. For the reversible CCW Kelvin cycle,
energy Qin ¼ Q& is taken in at temperature T& and Qout is
rejected over the interval ðT&; TþÞ, which includes T&. The
absorption and ejection temperature regions are not sepa-
rated. Although this is not a traditional refrigerator, it
does refrigerate, removing net energy from the reservoir
at T& in Fig. 5.

Figure 6 shows the reversible Kelvin cycle embedded in a
graph of a reversible Carnot cycle with isothermal segments
at Tþ and T& alternated with adiabatic segments. That figure
shows that for CCW cycles, the same heat input Qin ¼ Q&
occurs at T& for the Kelvin and Carnot cycles. The Kelvin
cycle’s highest and lowest reservoir temperatures are the
Carnot cycle temperatures and the Carnot cycle’s adiabatic
segments contain states a and c, so the external work WKelvin

for the Kelvin cycle (area abca) is less than WCarnot (shaded
plus hatched areas, abcda). Equation (6), KCarnot

' Qin=WCarnot, gives us

KKelvin>KCarnot when Carnot cycle temperatures

are T&;Tþ: ð8Þ

Figure 6(b) makes clear that the magnitude QCarnot
þ

¼
Ð c

d T dS > QKelvin
p ¼

Ð c
a T dS, which also leads to Eq. (8),

using Eq. (6). Equation (8) is generalized in Sec. IX A.

2. Irreversible CCW Kelvin cycle

No reservoir is needed at Tþ because that temperature is
reached via adiabatic compression. Only the T& reservoir is
needed to facilitate the isothermal segment ab. Along iso-
baric path ca, a pulsed heat process sends energy from the
working substance to the T& reservoir.

Key Point 15. With only one reservoir, the irreversible
CCW Kelvin cycle is not a refrigerator. It removes Q& from
the lone reservoir and adds Qin ¼ Q& þWKelvin to the same
reservoir, generating entropy DS ¼ WKelvin=T& each cycle.

Application of Eq. (6), intended for a multi-reservoir sys-
tem, gives a meaningless result.

B. Clockwise Kelvin cycle

Although William Thomson did not consider a CW cycle,
one has been studied.10 There are stark differences between
its reversible and irreversible cases.

1. Reversible CW Kelvin cycle

The constant-pressure expansion ac of the reversible
Kelvin cycle’s working substance requires energy inputs at
all temperatures in ðT&; TþÞ. Figure 6(b) shows that Q& ¼
QKelvin
& ¼ QCarnot

& and QKelvin
p < QCarnot

þ , which with Eq. (5)
confirms Carnot’s inequality, which is generalized in Sec.
VIII,

gKelvin < gCarnot: (9)

Key Point 16. The reversible CW Kelvin cycle has some
characteristics of a heat engine: most of QKelvin

p is input at
the higher temperatures, output is to the lowest temperature,
and the cycle does external work. Because energy absorp-
tion occurs over the full temperature range ½T&; Tþ,, this is
not a “traditional” heat engine.

2. Irreversible CW Kelvin cycle

For the irreversible CW Kelvin cycle acba, a high temper-
ature reservoir at Tþ is needed to execute path ac with
ultra-slow pulsed heating of the gas from T& to Tþ. A low
temperature (T&) reservoir is needed for the isothermal path
ba. Energy is received from the Tþ reservoir and is delivered
to the T& reservoir.

Key Point 17. The irreversible CW Kelvin cycle with
two reservoirs is a traditional heat engine as described in
Sec. IV.

To see an explicit indicator of irreversibility, suppose the
working substance is a monatomic classical ideal gas. The
energy transferred is Qp ¼ ð5=2ÞNkðTþ & T&Þ and along cb
the gas does work on the piston, lowering its temperature to
T&. The compression ba delivers energy Q& ¼ NkT&ln
ðVb=VaÞ to the low temperature reservoir. Along ac, Va=Ta

¼ Vc=Tc and along cb, V2=3
b Tb ¼ V2=3

c Tc so Vb=Va

¼ ðTþ=T&Þ5=2, and Q& ¼ ð5=2ÞNkT&lnðTþ=T&Þ: The
entropy change of the gas per cycle is DSws ¼ 0. Because
Ta ¼ Tb ¼ T& and Tc ¼ Tþ, the net entropy change of the
gas plus reservoirs is11

DStotal¼&
Qp

Tþ
þQ&

T&
¼&5

2
Nk 1&T&

Tþ

$ %
& ln

T&
Tþ

$ %& '
>0

withT&<Tþ: ð10Þ

More entropy is gained by the low temperature reservoir
than is lost from the high temperature reservoir, leading to a
net entropy increase, signaling irreversibility and consistency
with the second law of thermodynamics.

Notably, the irreversibility does not reduce the thermal
efficiency gKelvin relative to the reversible Kelvin cycle
because both cycles have the same Q and W energy transfers.

Fig. 6. Kelvin cycle abca, embedded in a reversible Carnot cycle. Note that
QKelvin

p ¼ fQout;Qing for {CCW, CW} cycles, respectively. Subscript p con-
notes a constant-pressure path.
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Generally, the connections between entropy increase and
thermal efficiency can be complex.12

VI. CARNOT CYCLES

A. Clockwise Carnot cycle

The familiar CW Carnot cycle for a classical ideal gas
working substance is illustrated on the pressure vs. volume
and temperature vs. entropy graphs in Fig. 7.

1. Reversible CW Carnot cycle

The reversible Carnot cycle holds a unique role in thermo-
dynamics. It has two constant-temperature reservoirs, and
temperature changes occur only along the adiabatic seg-
ments. The work done by the working substance is the
shaded area of the cycle abcda in Figs. 6(a) and 6(b). This
follows from

Þ
dU ¼

Þ
TdS&

Þ
pdV ¼ 0 for one cycle,

implying

W ¼
þ

abcda
P dV ¼

þ

abcda
T dS

¼ positive area bounded by abcda: (11)

Key Point 18. The reversible CW Carnot cycle in Fig. 6 is
a traditional heat engine as described in Sec. IV.

2. Irreversible CW Carnot cycle

Consider two possible sources of irreversibility: ðaÞ a pro-
cess that takes the working substance out of equilibrium,
e.g., by a rapid, irreversible adiabatic (Q¼ 0) expansion; and
ðbÞ a quasistatic heat process through a finite temperature
difference using the pulsed energy technique in Fig. 4.

Type ðaÞ irreversibility is exemplified by a working
substance that undergoes a quick adiabatic expansion as in
Fig. 2(b), replacing segment bc with bc0 in Fig. 8(a).12

Because the piston moves away from the gas, less work is
done on it per unit of volume expansion than for the revers-
ible case. In order for the working substance to lose suffi-
cient internal energy to lower its temperature to T&, the
piston must move farther. This results in a subsequent
isothermal compression c0d with larger output Q0& > Q&
relative to the reversible case. According to the definition in
Eq. (5), the thermal efficiency is g ¼ 1& Q0&=Qþ < gCarnot.
In similar fashion, a quick compression, depicted in Fig. 2(b),

leads to the modified path da0 in Fig. 8(b). This results in
Q0þ < Qþ and g < gCarnot again.

Key Point 19. Internal irreversibilities from rapid volume
changes lower the efficiency of a Carnot heat engine rela-
tive to the corresponding reversible Carnot cycle.

Type ðbÞ irreversibility is illustrated by the cycle, shown
in Fig. 9, that was introduced to physics teachers by Curzon
and Ahlborn in 1975.13 The cycle is sometimes referred to as
a Novikov-Curzon-Ahlborn cycle.14,15 It consists of a revers-
ible Carnot cycle with irreversible energy exchanges with
reservoirs at temperatures TH>TL as shown in Fig. 9. As
normally implemented, this model is internally inconsistent
in that the quasistatic Carnot cycle takes infinite time per
cycle while the heat processes take finite times. As an
approximation, one can envisage long but finite times for all
processes, depicted in Fig. 9, which limits the output power.

For fixed reservoir temperatures TH and TL, there are two
limiting cases in Fig. 9(a). One is Tþ ! TH and T& ! TL,
the reversible Carnot limit with zero power output. The other
is, Tþ ! T&, where the work per cycle and power output
approach zero. For intermediate values of ðT&; TþÞ there is a
power maximum with thermal efficiency13

g- ' W

Qin
¼ 1&

ffiffiffiffiffiffi
TL

TH

r
< gCarnot

at maximum power output: (12)

Fig. 7. Carnot cycle (CW or CCW) on (a) pressure–volume (P-V) and (b) tem-
perature–entropy (T-S) plots for a gas working substance. Paths ab and cd are
isothermal while bc and da are adiabatic. The areas abcda in (a) and (b) equal
the work magnitude by or on the gas. The ðshaded þ hatched; hatchedÞ areas
in (b) equal ðQþ;Q&Þ.

Fig. 8. Carnot cycle with (a) rapid, irreversible expansion starting in state b,
leading to c0 rather than c; and (b) a rapid compression starting in state d,
leading to a0 rather than a. The dashed lines in (a) and (b) are symbolic, rep-
resenting paths that cannot be graphed because pressure is not well defined
between states b and c0 and states d and a0. The latter four states are well
defined.

Fig. 9. Temperature-entropy plot of an irreversible-quasistatic Carnot CW
(heat engine) cycle with two isothermal and two adiabatic segments. (b)
Temperature-entropy plot of the irreversible CCW (refrigerator) cycle.
Note: ðTþ; T&Þ are the working substance’s (maximum, minimum) tempera-
tures while ðTH; TLÞ are the high and low reservoir temperatures.
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The Novikov-Curzon-Ahlborn model shares a common fea-
ture with real life heat engines: there are finite temperature
differences between the working substance’s highest and
lowest temperatures and the respective high and low reser-
voir temperatures. A (non-Carnot) example is a steam engine
used to generate electricity in a power plant.16 The boiler’s
flame temperature exceeds the steam temperature and the
water temperature in the condenser exceeds the ambient tem-
perature. It turns out that the efficiency g- in Eq. (12) gives
good numerical approximations (likely fortuitous) for elec-
tric power plants. The efficiency g- occurs also under maxi-
mum work (not power) conditions for a number of common
reversible heat engine models.17

Key Point 20. The irreversible Carnot cycle in Fig. 9(a) is
a “traditional” heat engine and obeys Carnot’s inequality,
g- < gCarnot. Because of this model’s rich behavior, it led to
a new field called finite-time thermodynamics,18 and is
included in some textbooks.19 There is positive entropy pro-
duction during each cycle.

The “first law efficiency” g does not account for limita-
tions by the second law of thermodynamics. In contrast, a
second law efficiency20 ! measures performance relative to
the maximum possible g using the same reservoirs and input
energy; i.e., ! ¼ g=ð1& TL=THÞ ! 1. For example, at maxi-
mum power the Novikov-Curzon-Ahlborn engine’s second
law efficiency is ! ¼ 1=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
TL=TH

p
Þ.

B. CCW Carnot cycle

1. Reversible CCW Carnot cycle

Because Qin=Tþ ¼ Qout=T&; the coefficient of perfor-
mance K can be expressed solely as a function of T&; Tþ,
giving the following result, consistent with Eq. (7):

Key Point 21. The reversible CCW Carnot cycle, a tradi-
tional refrigerator as described in Sec. IV, has coefficient
of performance KCarnot ¼ 1=ðTþ=T& & 1Þ.

2. Irreversible CCW Carnot cycle

If energy flows from the TL reservoir and to the TH reser-
voir, it is necessary that the Carnot cycle’s low and high tem-
peratures satisfy T& < TL and Tþ > TH , as in Fig. 9(b). The
reservoir temperatures are assumed fixed and the working
substance temperatures can be adjusted by design. In the
double limit Tþ ! TH; T& ! TL, the reversible Carnot
refrigerator is recovered. Unlike the heat engine, which has a
maximum power condition, there is no such optimal operat-
ing condition for the refrigerator.

Key Point 22. Statements such as “heat flows uphill in a
CCW cycle” are incorrect. The heat processes for the irre-
versible cycle in Fig. 9(b) have normal energy flows from
higher to lower temperatures, modeling real-life refrigera-
tors; i.e., the hot coil is heated by compressive work, and
becomes hotter than the kitchen, while the cold coil is
cooled via expansion and is colder than the food
compartment.21

Despite irreversibility, the quasistatic Carnot cycle has
Qin=Tþ ¼ Qout=T& and

KirrCarnot ¼
1

Tþ=T& & 1ð Þ
for an irreversible–quasistatic CCW Carnot cycle:

(13)

Key Point 23. The irreversible CCW Carnot cycle is a tra-
ditional refrigerator as described in Sec. IV. For a given
Qout, Fig. 9(b) shows the minimum required input work
occurs in the reversible Carnot cycle limit, and Eq. (6)
implies KirrCarnot ! KCarnot.

VII. STIRLING CYCLE

The Stirling cycle has two isothermal segments at temper-
atures Tþ and T&, alternated with two constant-volume seg-
ments, which have non-isothermal heat processes. Pressure
vs. volume and temperature vs. entropy graphs of the
Stirling cycle are in Fig. 10.

A. CCW Stirling cycle

1. Reversible CCW Stirling cycle

The reversible Stirling cycle is well known and the CCW
refrigerator was discussed recently by Mungan.22 The tempera-
ture range for both energy input Qin ¼ Q& þ Qdc and output
Qout ¼ Qþ þ Qbc is the full interval ðT&; TþÞ. This is inconsis-
tent with the specified narrow temperature range in the defini-
tion of a refrigerator and the intended meaning of Eq. (6). From
Fig. 10, it is clear that Qin ¼ Q& þ Qdc exceeds the Carnot
cycle’s input QCarnot

& at T& and WStirling, the shaded area adcba,
is less than WCarnot, the area within the dashed rectangle. From
Eq. (6) it follows that KStirling " KCarnot. The constant-volume
segments “cancel” one another if the specific heat of the gas is
volume dependent, with the reservoirs involved returning to
their initial states each cycle. If the intended goal for the device
being modeled is cooling at temperature T&, then using Qin

¼ Q& þQdc in Eq. (6) is misleading. A more relevant measure
of efficiency is the task-specific coefficient of performance,
defined as Ktask ' Q&=W < KStirling.23

In real-life Stirling cycles, the movements of two pistons
are coordinated to approximate the four Stirling cycle seg-
ments, and with a regenerator, depicted in Fig. 11(a). As the
constant volume gas winds its way through the regenerator

Fig. 10. Two views of the Stirling cycle with alternating constant-
temperature and constant-volume segments. (a) Pressure vs. volume. (b)
Temperature vs. entropy. The dashed rectangle is for a comparison Carnot
cycle and the shaded lower rectangle is the energy exchanged between the
gas and reservoir at T&.
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from higher to lower temperature, the regenerator retains a
temperature gradient as in Fig. 11(b), generating path ba.
This process approximates using a sequence of successively
cooler reservoirs, ideally approaching reversibility.
Similarly, heating along dc occurs when gas flows in the
reverse direction. The CCW reversible Stirling cycle with
regeneration uses only two reservoirs and has the same coef-
ficient of performance as the reversible Carnot cycle.

2. Irreversible CCW Stirling cycle

For a quasistatic-irreversible CCW cycle, energy flows
(from, to) the cold reservoir along (ad, ba), and (to, from) the
hot reservoir along (cb, dc), so this is not a traditional refrig-
erator. The net input from the cold reservoir per cycle is Qin

¼ Q& & Qba, so K ¼ ðQ& & QbaÞ=W is more reflective of
the energy from the cold reservoir than Ktask. Irreversibility
increases the environment’s entropy.

B. CW Stirling cycle

1. Reversible CW Stirling cycle

Analysis of the reversible clockwise Stirling cycle is sub-
stantially the same as for the counterclockwise case. Here
Qout ¼ Qcd þ Q& " QCarnot

& and Qin ¼ Qab þ Qþ ! QCarnot
þ ,

and it follows from Eq. (5) and an area-based argument using
Fig. 10(b) that gStirling ! gCarnot.

This cycle also can be used with a regenerator to approach
reversible heat exchanges along the constant-volume seg-
ments, in which case only the Tþ and T& reservoirs are
involved, and the efficiency equals the reversible Carnot effi-
ciency, gCarnot.

In analogy with the CCW case a, task-specific thermal
efficiency gtask ' W=Qþ is sensible if the energy exchanges
over the constant-volume segments cancel—or nearly do. In
this case gStirling

task ¼ gCarnot, the same result obtained with a
regenerator.

2. Irreversible CW Stirling cycle

Heating energy flows to the gas from the hot reservoir
along both ab and bc, and from the gas to the cold reservoir
along cd and da. Although not a traditional heat engine, this
cycle does supply external work.

VIII. CARNOT’S INEQUALITY FOR CW CYCLES

A. Reversible CW cycles

An interesting geometric demonstration of Carnot’s
inequality for reversible CW cycles was presented by Tatiana
Ehrenfest-Afanaseva in her book on thermodynamics.24 A
variant, which incorporates adiabatic segments that separate
the upper and lower temperature regions, is illustrated in Fig.
12. An arbitrary25 reversible cycle is represented by a closed
path abcda (or adcba), circumscribed by a comparison
Carnot cycle (dashed rectangle),26 chosen to have the arbi-
trary cycle’s maximum and minimum temperatures.

The thermal efficiency is defined as g ¼ 1& Qout=Qin, and
Qin ¼

Ð
uppera!bT dS is the area under the upper path a! b

of the arbitrary cycle and the S axis. In Fig. 12(a), Qout is the
area of the hatched pattern, namely, the area under the lower
path dc. QCarnot

& and QCarnot
þ are the respective areas of the

lower shaded rectangle and rectangle efhg. Since Qin;Qout

are non-negative by definition, it is clear visually that

Qin ! QCarnot
þ and Qout " QCarnot

& : (14)

Using the latter inequalities, we have

g ¼ 1&Qout=Qin ! 1&QCarnot
& =QCarnot

þ ¼ gCarnot: (15)

Key Point 24. Any reversible variable-temperature CW
cycle represented in the temperature–entropy diagram in
Fig. 12 satisfies g ! gCarnot, where the comparison Carnot
cycle circumscribes the arbitrary cycle.

B. Irreversible CW cycles

For any quasistatic CW cycle receiving Qþ and delivering
Q& from and to high and low temperature reservoirs, DScycle

¼ 0, and the total entropy change (of the universe) is the net
entropy change of the reservoirs

DStot ¼ DScycle þ
Q&
T&
& Qþ

Tþ
" 0: (16)

Equation (16) reduces to Q&=Qþ " T&=Tþ, which implies
Eq. (15).

Fig. 11. (a) Depiction of Stirling cycle apparatus with regenerator in which the
gas cools as the gas moves from the hot to cold side, and heats as the gas
moves oppositely. (b) Temperature profile of the gas in the regenerator, regard-
less of gas flow direction. Adapted from D. V. Schroeder, An Introduction to
Thermal Physics (Addison-Wesley-Longman, 1999), p. 133.

Fig. 12. (a) Temperature vs. entropy plot of an arbitrary CW or CCW revers-
ible cycle (abcda or adcba) and a comparison Carnot cycle (dashed rectangle).
The vertical segments are quasistatic adiabatic (Q¼ 0) paths that separate the
high and low temperature heat processes. A traditional heat engine or refrigera-
tor cycle has jTb & Taj and jTd & Tcj much less than Tþ; T&. For a CW cycle,
Qab¼Qin, Qdc¼Qout; for a CCW cycle, Qab¼Qout, Qdc¼Qin. (b) The same
plot, with a set of narrow reversible Carnot cycle rectangles whose envelope
approximates the arbitrary cycle.

351 Am. J. Phys., Vol. 86, No. 5, May 2018 Harvey S. Leff 351



Key Point 25. Any irreversible CW quasistatic cycle,
including those represented in Fig. 12 has g ! gCarnot,
where the comparison Carnot cycle operates between the
arbitrary cycle’s maximum and minimum temperatures.

IX. CARNOT-LIKE COEFFICIENT OF
PERFORMANCE INEQUALITIES FOR CCW
CYCLES

A. Reversible CCW cycles

I now present three different derivations leading to a gen-
eralization of Eq. (8) for the reversible CCW Kelvin cycle.
Each leads to Eq. (17), where the comparison Carnot cycle
temperatures are the arbitrary cycle’s extreme temperatures.

Derivation 1. From Fig. 12(a), Qþ=Q& " Qout=Qin, thus
Eq. (6) leads to

K " KCarnot; generalizing Eq: ð8Þ: (17)

Derivation 2. The inequality (17) can also be obtained
using Fig. 12(b), where the ith approximating narrow Carnot
rectangle has energy input Qin;i and coefficient of perfor-
mance Ki. Note that each rectangular approximating Carnot
cycle has a larger coefficient of performance than the cir-
cumscribing Carnot cycle; i.e., Ki " KCarnot. This follows
from Tout;i=Tin;i ! Tþ=T&, which implies Ki ¼ 1=ðTout;i=
Tin;i & 1Þ " 1=ðTþ=T& & 1Þ ¼ KCarnot.

For the approximating Carnot rectangles, K ¼ ð
Pn

j¼1 Qin;jÞ=
ð
Pn

‘¼1 W‘Þ, where W‘ is the external work for the ‘th rectan-
gle. Because Qin;j ¼ WjKj for the jth Carnot rectangle,

K ¼
Xn

j¼1

Wj

Pn

‘¼1

W‘

0

B@

1

CA
Kj " KCarnot: (18)

The first step represents K as a weighted average of the fKjg
for the approximating narrow Carnot cycles, and the second
step uses the previous result Kj " KCarnot and the fact that,
ð
Pn

j¼1 WjÞ=ð
Pn

‘¼1 W‘Þ ¼ 1. Equation (18) confirms Eq. (8),

which was derived for the Kelvin CCW cycle.27

Derivation 3. The third proof of Eq. (17) comes from Eq.
(7), which can be rearranged to read K ¼ 1=g& 1. For a
Carnot cycle, KCarnot ¼ 1=gCarnot & 1. Using Carnot’s inequal-
ity g ! gCarnot for the reversible CW cycle we obtain,

K&KCarnot¼
gCarnot&g
gCarnotg

" 0 for reversible cycles; (19)

again agreeing with Eq. (8). The Carnot cycle reservoir tem-
peratures here are the maximum and minimum arbitrary
cycle temperatures used to obtain g ! gCarnot.

Key Point 26. Any reversible CCW cycle has coefficient of
performance K " KCarnot. Its CW counterpart satisfies
g ! gCarnot. For both cases, the comparison Carnot cycles
operate between the cycle’s maximum and minimum
temperatures.

B. Irreversible CCW arbitrary cycle

For any quasistatic CCW cycle operating between Tþ and
T&, DScycle ¼ 0 for each cycle, and the net entropy change is

that of the reservoirs, DStot ¼ DScycle þ Qout=Tþ & Qin=T&
" 0: The latter inequality together with Eq. (6) implies

K ' 1=ðQout=Qin & 1Þ ! 1=ðTþ=T& & 1Þ: (20)

Key Point 27. For any 2-reservoir irreversible CCW cycle,
K ! KCarnot, an inequality that appears in some physics
books.28

X. FINAL REMARKS

The examples above show how reversible and irreversible
cycles that look the same on quasistatic pressure-volume or
temperature-entropy graphs can result in very different
behavior and entropy changes of the environment. The num-
bered Key Points provide a capsule summary of major find-
ings. Sections V–VII are illustrative of the differences
between irreversible and reversible cycles.

For irreversible cycles, the inequalities g ! gCarnot and
K ! KCarnot are imposed by the second law of thermodynam-
ics. The g inequality holds also for non-Carnot reversible
CW cycles. The K inequality for reversible CCW cycles,
K " KCarnot, is not imposed by the second law because
reversible cycles generate zero entropy and always satisfy
the second law. For the Stirling and other29 cycles with iso-
thermal segments, a task-specific coefficient of performance
Ktask and efficiency gtask can be useful efficiency measures.

We found that the reversible and irreversible CW Kelvin
cycles have the same thermal efficiency gKelvin, which might
seem odd at first. However, the thermal efficiency g, which
is a ratio of the work output to heat input, is unaffected by
entropy-generating irreversibilities involving the reservoirs.
For the reversible case, the infinite set of reservoirs under-
goes zero net entropy change, but for the irreversible case,
the net entropy change of the hot and cold reservoirs is posi-
tive, as shown, e.g., in Eq. (10). The point is that the primary
difference between the reversible and quasistatic irreversible
cases lies in changes to the environment.

In summary, thermodynamic cycles are rich in insights
and subtleties. Because there is much more to them than typ-
ical textbook expositions indicate, they offer unique opportu-
nities for teachers who would like to stimulate the mental
juices of their students.
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