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Fig. 1. Two-dimensional charge space.
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Under rotations in charge space, both sides of Eq. (19)
transform as vectors, and both sides of Eq. (20) transform
as scalars. So our system is invariant under rotations in
charge space. An argument that nature favors symmetry
would certainly favor this model over conventional electro-
dynamics.

Now suppose that all charged particles are, in fact, dual-
charged particles, and that they all have the same ratio g/e.
Then the charge of every particle would have the same
angle 0 = tan ~' (g/e) in charge space. Rotating the axes
of charge space through the angle 8 would then convert

every dual-charged particle to a pure electric monopole,
but because of the invariance of the system under this rota-
tion, the behavior of the system would not change. An iso-
lated system of dual-charged particles, all having the same
ratio g/e, is therefore indistinguishable from a system of
pure electric monopoles. The charge space symmetry, in
this case, leads us back to conventional electrodynamics.

V.SUMMARY

The direct development of classical electrodynamics
from its symmetries, without recourse to Hamilton’s prin-
ciple, would seem to have some pedagogical advantages.
Students can readily determine that Maxwell’s equations
and the Lorentz force law are the only “simple” dynamical
equations having Lorentz covariance and gauge invar-
iance. But these equations presuppose a vector field 4*. By
replacing this vector field by an antisymmetric tensor field
F*, a classical model of magnetic monopoles is immedi-
ately developed. Although this latter treatment would not
be valid in a quantized model (the vector field 4* being
essential to quantum electrodynamics), it does present, in a
simplified way, the classical properties of magnetic mono-
poles.

'P. A. M. Dirac, “Quantised singularities in the electromagnetic field,”
Proc. R. Soc. London Ser. A 133, 60-72 (1931); “The theory of magnetic
poles,” Phys. Rev. 74, 817-830 (1948).
“For an excellent review of the significance of gauge invariance to the
theory of particle interactions, see R. Mills, “Gauge fields,” Am. J. Phys.
57, 493-507 (1989).
*1.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), Sec.
11.9.
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First-order and second-order phase transitions are demonstrated using soap-film models. The -
models consist of two-dimensional parallel plates or three-dimensional frameworks in which film
patterns are maintained. By making the sizes of the frameworks variable, it is possible to induce
switching between film patterns analogous to transitions between phases. These phase changes
are discussed thermodynamically and using a catastrophe theory model.

I. INTRODUCTION

Soap films, set up either between two-dimensional per-
spex plates that are connected together with pins or within
three-dimensional wire frameworks, can be used to demon-
strate the phenomenon of minimization of energy'™ and
are well known. The effect arises because the surface ener-
gy associated with the film is proportional to its area. The
tendency for the film to minimize its energy means that it
tries to minimize its area. The patterns achieved are both
surprising when viewed for the first time and attractive.
Analogous patterning can be seen in biological systems and
in crystal structures. However, the frameworks used are
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usually fixed in size and shape; any sudden change of film
pattern that occurs is erratic due to contraction of the film
immediately after it has been established and prior to the
achievement of equilibrium or is due to external influences
such as air currents. .

What have received far less attention are frameworks
whose size and shape can be varied in a controlled way.
Soap-film patterns then switch in a predictable manner and
the changes are analogous to phase transitions in crystals.
Such changes in the soap-film patterns can be quite spec-
tacular to observe. Pattern changes can be quite complex
and so the analogy is very illuminating and effective in the
teaching of phase transitions. As will be shown in this arti-
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cle, mathematical comparisons can be made with both
first-order and second-order phase transitions because the
underlying thermodynamics is the same. Just as catastro-
phe theory can be applied to phase transitions, so a catas-
trophe model can be used for modeling changes in soap-
film configurations.

The frameworks can be constructed very easily in a
workshop, or it is possible to obtain the patterns using
frameworks made with acetate sheets, plastic straws, and
matchsticks! Although we refer traditionally to the films as
soap films, it is customary to use washing-up liquids or
similar detergents.

Although pattern changes as observed in three-dimen-
sional frameworks show the closest analogy to crystal ar-
rangements and biological cell structures that are also
three-dimensional, these soap-film configurations are less
easy to model mathematically because they involve curved
surfaces or curved edges, where the surfaces meet, or both.
It is not easy to calculate the curvature of such surfaces.
However, soap-film patterns between parallel plates show
no such curvatures and are mathematically more tractable.
Hence, we will first show phase-transition modeling using
films confined between parallel perspex plates.

IL. 2-D MODEL; FIRST-ORDER PHASE
TRANSITION

In the first example, the film, besides being constrained
between the paralle] plates, connects four pins as shown in
Fig. 1(a). Minimization of area now implies minimization
of length and we show the soap-film configuration to join
the four points A, B, C, and D. (The shortest lengthis nota
cross.) The continuous and the dashed lines show two al-
ternative and equivalent configurations. Suppose we keep
A and B fixed and move pins C and D outward and inward
together as shown by the arrows. It is easy to see that the’
film will switch backward and forward between the two
configurations. Provided movement of C and D is done
slowly, the film alters such as always to establish the equi-
librium shape corresponding to minimum length; see Fig.
1(b). There may be a tendency for some sticking of the film
but it will gradually take up the correct shape. If, for in-
stance, one blows the film to move it away from equilibri-
um, this increases the energy of the film such that there is
movement up the energy versus configuration curve. The
film then relaxes back to its equilibrium shape.

One can calculate the total length L of the film for any
particular separation x by summing the five component
lengths together and, by doing this for a range of values of
X, can plot a graph of L vs x as shown in Fig. 2(a). There is

a portion of the graph with gradient of 3 and a portion
with gradient 1. The variation of dL /dx with x is shown in
Fig. 2(b). The change in gradient occurs as the soap-film
pattern changes from its full-line to its dashed-line configu-
ration. Note that the film exhibits hysteresis; the switch
“happens when the two intersection points of the film meet
and this occurs for different values of x during expansion
and contraction. The two portions are analogous to the
existence of different phases of a material on either side of a
transition temperature, and the hysteresis is analogous to
superheating and supercooling. What we see is a first-order
phase change with a distinct jump in area or volume at the
transition.

Thermodynamically, one can consider the Helmholtz
free energy, F = U — TS, where Uis the internal energy, T
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Fig. 1. (a) Film patterns using four pins; (b) Energy versus configuration
plots for film patterns corresponding to different separations x of AB and
CD.

is Kelvin temperature, and S'is entropy. For the Helmholtz
function, the independent variables are 7T'and volume y,>o
so that

dF = —SdT— PdV,
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Fig. 2. (a) Variation of soap-film length L with separation x of AB and
CD; (b) Variation of dL /dx.

where P is pressure and

P= ——(ﬂ) and S = ——(ﬁ) .
av/r aT /v

Alternatively, if P and T are the independent variables,
we should use the Gibbs free energy G = U — TS + PV, in
which case

dG= —SdT —VdP
and

V= ——(‘—?g) and §' = _(6_6) .
oP/r aT /e

The gradient dL /dx in Fig. 2 will be equivalent to any of
these partial differentials (giving P, V, or S) depending on
which analogy one wishes to make. However, the analogy
with P= — (JF /dV) ; is clearly the most appropriate. In
fact, the force in the direction of x required to keep pins AB
and CD distance x apart is 27, A(dL /dx), where T is the
surface tension and 4 is the height of the pins. This force for
the two-dimensional case is analogous to pressure in the

three-dimensional case and has the value of 2y37, 4 for the
low x phase and 27,k for the high x phase.

II1. 2-D MODEL; SECOND-ORDER PHASE
TRANSITION

A very different type of transition occurs if we consider
only three pins as shown in Fig. 3. Pins A and B are fixed
and pin C is variable, moving along the line OCC'. When
the movable pin lies within the arc ACB, the film will con-
sist only of two lengths AC and CB. When this pin is out-
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Fig. 3. Film patterns using three pins.

side the arc, the film will consist of lengths AX, XB, and
XC' with the angles between the lengths all 120°. Again we
plot the variation of total film length L with x. The curve
now looks smooth as shown in Fig. 4(a) and it is only when
we plot the gradient dL /dx vs x, Fig. 4(b), that we obtain a
sudden change of gradient characteristic of a phase transi-
tion. This occurs at x = x,;,, where x, measures OC, the
value of x at the edge of arc ACB. Thus we have a second-
order phase transition. It is relatively easy to calculate and
plot L vs x and dL /dx vs x but actual plots will depend on
the chosen position of O along AB. We can go on to plot
d*L /dx*vsxasshowninFig.4(c). Nowd ’L /dx*isequiv-
alent to (axial compressibility) ~' or the equivalent ther-
modynamic quantity as summarized in Table I. Beyond arc
ACB, the variation in d L /dx” arises because the angle
XC'C changes and would be zero for O midway between A
and B.

A second-order transition involves a lowering of symme-
try and we can associate an order parameter with the tran-
sition. The highest possible symmetry is that of isotropic
bodies whose properties are the same in all directions. In
anisotropic bodies the symmetry is lowered. When point C’
moves from inside to outside the arc ACB, there is no over-
all change in the total symmetry of the system. Neverthe-
less, there is a change of local symmetry about point X. It is
appropriate that we categorize the symmetry about this
point X as the symmetry at X characterizes the pattern.
The lengths of the arms can be of any magnitude without
affecting the transition provided the angular relationship is
retained.

When C’ lies outside the arc ACB there is threefold sym-
metry about X (i.e., crystallographic symmetry 3m),
whereas when C’ lies within the arc there is no particular
symmetry (crystallographic symmetry 1). The higher
symmetry phase corresponding to when C' lies outside the
arc (symmetry 3m) should correspond to the order param-
eter having the lower value. Such an order parameter must
describe quantitatively the change in structure as it passes
through the transition point and must be zero in the sym-
metrical phase.® An order parameter that gives a variation
analogous to that for crystal phase transitions can be de-
fined by

Q= (<AXB/60° —2)"2 (1)
The power of | is in line with phase-transition theory,

D. R. Lovett and J. Tilley 417
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Fig. 4. (a) Variation of soap-film length L with parameter x for three-pin
pattern; (b) Variation of dL /dx with x; (c) Variation of d °L /dx* with x;
(d) Variation of order parameter Q with x.

Table 1. Equivalent thermodynamic quantities.

and it is of similar form to the order parameter that will be
found necessary for the next model to be considered. Brief-
ly, the thermodynamic potential ® for a system involving a
phase transition can be expressed in the form

=0, +aQ*+bQ%+ -+, (2)

where ®,, a, and b are constants. $ can be expressed in the
soap-film model in the form

b=P,4da+ba’+ -, (3)

where @’ and b’ are constants and « is an angle. Hence Q is
proportional to a'/? and as the constants are undefined we
can put @ =a'’?

Note that the structural type of order parameter Q fits
with the thermodynamic analogy made with (dG /dP) at
constant 7. If we were making the analogy with (dG /dT)
at constant P, we would need an order parameter in the
form of (reduced temperature)'’?. However, the surface
tension does not change significantly with temperature so
this analogy is not possible.

IV. 2-D MODEL; PHASE-TRANSITION AND
CATASTROPHE THEORY MODEL

A more general model combines features of the two pre-
ceding ones: Not only does it show the first-order phase
change when the total film length suddenly contracts, but
also the change of symmetry associated with a second-or-
der transition. Such a model can be established using three
fixed pins and a fourth pin that is movable. It is more gen-
eral because it involves two degrees of freedom and as a
consequence two order parameters. We could use the ar-
rangement shown in Fig. 1(a). However, a more conven-
ient and symmetrical model is one with the fixed pins at the
vertices of an equilateral triangle.” Such a model is shown
in Fig. 5. P, P, and P, are the fixed pins and C is the
movable pin. The two alternative equilibrium film patterns
for one position of C are shown, one pattern being shown
with full lines and the other with dashed lines. In order to
describe the behavior of this model, it is helpful to draw two
intersecting circles, one through Py, Z, and P,, the other
through P, Z, and P,, where Z is the centroid of the trian-
gle P,P,P,. An equilibrium pattern occurs when the film
Jjunction lies on one of the circular arcs. If the pattern in-
cludes the length CP,, the equilibrium junction point J, lies
on the arc P,ZP, because this always subtends an angle
(PJ.P,) of 120°. The other two angles at the junction
pointJ,, P,J,Cand P,J,C, are also 120°, and it is straight-

Thermodynamic Helmholtz free energy, ¥  Experimental Film energy o film length, L Experimental
function Differential quantity Differential quantity
F,l st . (—QE) pressure, P (?A) force
differential v+ dx/r
oF )
— entropy, S
(BT v py
Second ( aP) 1/ (isothermal (a 2L ) 1/(axial
differential Vs compressibility) ax*/r compressibility )
( aJs ) specific
aT /v heat, C,,
418 Am. J. Phys., Vol. 59, No. 5, May 1991 D. R. Lovett and J. Tilley 418



Fig. 5. Film pattern for model involving three fixed pins and a movable
pin.

forward to show that J, lies on the straight line CS,. The
same argument applies if the pattern includes CP,, in
which case J, lies on the arc P,ZP, and on the straight line
CS,. :

One can obtain a mathematical expression for the energy
of the model for the general case, whether junction J lies at
an equilibrium position or away from such a position. The
properties of the model depend on the position and motion
of the movable pin C. The following features, which are
characteristic of a system displaying catastrophic changes,
have been deduced or calculated:

(1) While C is in the shaded region, two equilibrium
patterns are always possible. :

(2) The boundaries of the shaded regions are bifurcation
lines separating the plane into certain regions where the
model is monostable and others where it is bistable.

(3) One can show that the length of the film for the
configurations shown in Fig. 5 can be expressed as

L=AP?+ BQ? + CP2Q?* + DP* 4+ EQ*. (4)

This is the form of equation used to describe phase dia-
grams in which there are two order parameters P and Q.*
(A-E are constants independent of Pand @Q.) It is also the
form of equation used to describe a double-cusp catastro-
phe model.®

To get the length in the form given by Eq. (2), it is neces-
sary to use two angular parameters to define the position of
the junction point J in the plane relative to the control point
C. The angles that have been used by the authors are a
(angle JS,C), and S (angle JS,C). Provided C is not too
distant from the cusp point, Z, Eq. (4) is general and ap-
plies for J being at nonequilibrium as well as equilibrium
positions. The order parameters are given by

P=g,(a +B)”zandQ=fg(a—ﬂ)'/2, (5)

where g, and f; involve a theta step function used to define
whether P and Q are positive or negative, a requirement
arising because the positive square roots are always taken
in Eq. (5). The order parameters fit well with that given in
Eq. (1) for a single variable model.

Solution of Eq. (4) to obtain the bifurcation lines (the
phase boundaries) involves partial differentiation of L with
Pand Q. The (P =0, Q = 0) solution gives the high sym-
metry point at Z. There are also imaginary solutions for P
and Q which can be ignored. The important solutions in-
volve coupled equations between P and @ and give arcs

419 Am. J. Phys., Vol. 59, No. 5, May 1991
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Fig. 6. Cusp catastrophe; energy surface and control plane.

passing through Z and pairs of points Py, P, and P,. Two
such arcs are shown in Fig. 5 but there are possible a com-
plete pattern of such arcs, each one passing through two
pins. The angle subtended on these arcs by the two pins is
always 120°.

The complete model can be represented by a series of
cusp catastrophes of the type described by Zeeman.'' A
single such cusp catastrophe is shown in Fig. 6. As the
control point, i.e., the movable pin, is moved on the control
surface, the total energy of the soap film varies according to
position on the energy surface. When the control point
reaches a bifurcation line, the soap film changes its length
and hence its energy. For example, at point C, the energy
changes from E, to E,. In the present example, it is as if we
had three such surfaces pivoted around the cusp point Z
with the surfaces tilted such that they are continuous and
hence produce one overall surface. Traveling around the
central cusp point Z in a circle in one sense would thus
produce three such catastrophic jumps.

V. 3-D MODELS; FIRST-ORDER REVERSIBLE
PHASE TRANSITIONS

We now describe models that show changes in soap-film
pattern in three dimensions. As stated previously, this has
more realistic comparison with transitions in crystalline
solids that consist of three-dimensional packing of atoms.
Three simple frameworks demonstrate these transitions.
Triangular and pentagonal prisms and the cuboid, each
with variable height, show distinct transitions between two
different configurations. They are illustrated in Fig. 7. In
the case of the triangular prism, the soap film switches
between a pattern with all curved surfaces and one with flat
surfaces. The film always takes on the curved configuration
for height less than 0.3 X side length, and always takes on
the plane configuration for height equal to side length.
Between these values there is hysteresis.

In the case of the cuboid, as its length is increased from a
flat shape, there occurs a switch from a square region of
film parallel to the square cross section to a rectangular
region parallel to a long side. If the cuboidal frame is - made
carefully, the square region can switch to a rectangular
region at right angles in either of two orthogonal planes.
This phenomenon can occur during phase transitions in
real crystals leading to twinning.

The pentagonal prism exhibits film surfaces that switch
from a pattern showing two distinctive vertical planes in
the center to a pattern with a horizontal pentagon. Analo-
gous patterns can be formed between parallel perspex

D. R. Lovett and J. Tilley 419



Fig. 7. Soap-film patterns within a triangular prism, a cuboid, and a pentagonal prism.

_plates joined by five pins in the configuration of a pentagon,
although in this case the central pentagon is a bubble hav-
ing curved faces. In two dimensions the pentagonal bubble
has to be established by suitable dipping of the framework
into the soap solution and cannot be obtained by switching.

VI 3-D MODEL; FIRST-ORDER IRREVERSIBLE
PHASE TRANSITION

Another example of a jump between two configurations
is a soap film contained within a wedge. The film is held
between two pins placed equidistant from the vertex of the
wedge. The film bends into the wedge in order to minimize
its area (Fig. 8). The bending produces a curve that is a
catenary (the shape established by a hanging chain sus-
pended at its ends). Provided the separation of the pins is
less than 1.33r, where ris the perpendicular distance of the
pins from the wedge vertex, the film is stable. If the model is

-

Fig. 8. Film formed within a wedge.

420 Am. J. Phys., Vol. 59, No. 5, May 1991

made such that the separation of the pins is variable and is
increased to greater than 1.33r, the film is unstable and
slowly moves toward the vertex of the wedge where it splits
to form two parallel films. (This is provided the wedge is
horizontal and there are no gravity effects. If the wedge is
vertical, the gravitational force can stabilize the film, in
which case it is possible to see very attractive interference
films.) Unlike in the previous models, it is not possible by
reversing the motion of the pins to get the film back to its
original configuration. The film is a slice of the film set up
between two hoops after they have been dipped in solution
and opened apart.'" In the case of separating the two
hoops greater than 1.337, where r is their radius, the film
collapses immediately. The theory of such films has been
discussed extensively in the literature.'>'3 In the case of the
wedge, the collapse can be viewed in slow motion.

VII. CONCLUSION

In this paper we have described several different soap-
film models that demonstrate various features of first- and
second-order phase transitions. However, it is not neces-
sary for students to have a knowledge of phase transitions
to appreciate the simple demonstrations of changes of
shape occurring as the consequence of the need to minimize
energy. The models help in understanding the reasons for
differing crystal symmetries and patterns in nature.

'C. Isenberg, “Problem-solving with soap films,” Phys. Educ. 10, 452~
456, 500503 (1975).
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Analogy between general relativity and electromagnetism for slowly
moving particles in weak gravitational fields

Edward G. Harris

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
(Received 30 March 1990; accepted for publication 8 August 1990)

Starting from the equations of general relativity, equations similar to those of electromagnetic
theory are derived. It is assumed that the particles are slowly moving (v <c), and the gravitational
field is sufficiently weak that nonlinear terms in Einstein’s field equations can be neglected. For
static fields, the analogy to electrostatics and magnetostatics is very close. Results are compared
with those of a previous derivation by Braginsky, Caves, and Thorne [Phys. Rev. D 15, 2047—
2068 (1977)]. These results lead to very simple derivations of the Lense~Thirring precession
[Phys. Z. 19, 156-163 (1918)] and the spin-curvature force of Papepetrou [Proc. R. Soc.
London Ser. A 209, 248-258 (1951)] and Pirani [ Acta Phys. Pol. 15, 389-405 (1956)]. ’

I. INTRODUCTION

Braginsky ez al.' have derived equations similar to Max-
well’s equations that describe a weak gravitational field.
This has the advantage that many of the known results of
electromagnetic theory may be applied to the gravitational
field with only minor modifications. These equations de-
serve to be better known. The starting point for the deriva-
tion was the “parametrized post-Newtonian (PPN) for-
malism.” We think a derivation that starts from the
equations of general relativity and arrives rather quickly at
a result is of interest. This is given below.

A particle of mass m and charge ¢ moving in a gravita-
tional and an electromagnetic field has the equations of
motion

d *x* dx™\ (d e dx”
m 5 (5) (%)) =) 7 (%) o
[ dr \dr/ \dr c dr (a)
where
F'ZB = ilg'ug(aagﬂﬁ + aﬁgaa - aagaﬁ (lb)

are the components of the connection (Christoffel sym-
bols) and

0 —E —E —E,
po_ | TE 0 +B -5 (1c)
+E, ~B, 0 +B,
+E, +B, —-B, 0

is the electromagnetic field tensor. The coordinates are x*
= (ct,x,y,z) and 7is the proper time. Greek indices take on

421 Am. J. Phys. 59 (5), May 1991

the values 0,1,2,3, and Latin indices take on the values
1,2,3. We write the metric tensor as g,,, = 7,,, + A,,, where
7., is the Lorentz metric whose only nonvanishing compo-
nents are oo = — N, = — NPpu = — N33 = + 1. We as-
sume the gravitational field is sufficiently weak so that
|,..| €1, and we raise and lower indices with 7** and Myr-
In a coordinate system in which the metric tensor is the
Lorentz metric 7,,,, the four-velocity is
dx*

—_— = c, ’
dr 7’/( v

where

y=(1—0v¥/c?) "2

If the particle is moving very slowly so that v <c, then it
is a good approximation to write

(1d)

e, (%) (%B)zczl“’go + 2. (2)
We write Eq. (1b) as [%; = g“T, , and find

Loop = 34(3pho, + doh,p — 3, hop). (3)
We see that for static fields, the term dyhg, =0 and
Lo = — oo This suggests that we divide I, into its

antisymmetric and symmetric parts and write

Foop = —fop +30h,5/2, (4a)
where
fgﬁ = (aahoﬁ - ‘9/3}100)/2 = ~fﬁa- (4b)
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