‘ 1. Introduction |

Understanding non-Fermi liquids is among the most interesting challenges to quantum many-
body physics [1,2]. Such systems may occur in a variety of physical contexts such as for
example superfluidity in imbalanced Fermi gases. Non-Fermi liquid behaviour could appear
in the proximity of a quantum critical point (QCP) [3, 4]. We study the possibility of gen-
erating a QCP for imbalanced Fermi gases [5—8] at the mean field level in two and three
spatial dimensions. Such systems, containing a mixture of fermionic atoms, nowadays are
experimentally available [9-14].

‘ 2. Theoretical Model |

We study the model defined by the hamiltonian [15]:
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where & = k2/2m, — U, With o =T, |, g Is an attractive interspecies contact interaction con-
stant and V is the volume of the system. In general, the masses m, and chemical potentials
ls can be different.

‘ 3. Grand Potential |

The grand potential density at the mean-field level can be expressed as:
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where miny leads to the global minimum with respect to the order parameter A. In this case,
there are two possible phases: a normal phase with A = 0 and a superfluid phase with
A # 0[16,17]. We are denoting the Landau functional as Q;[A]. Moreover, the elementary
excitations energies are given by:

i TSRy Ger o\
E:=—— i\|A|2+< 5 . (3)

We use p = “0E as the average chemical potential and h = “0E as the average "Zeeman”
field. We are considering a case in which p, > 0.

‘ 4. Landau Coefficients |

Setting ¢ = ﬂ we express Landau functional Q;[A] as a Taylor expansion in the order
parameter A:

Qr[A] = QL(A = 0) + ax(T)AI + as(T)|A[* + O (1AI°), (4)
where the quadratic Landau coefficient a, Is given by
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and the quartic Landau coefficient a4 is given by
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The QCP correspond to continuous phase transition at zero absolute temperature, so we
compute Landau coefficients for T — 0.

‘ 5. Coefficient a, for T =0 |

We use the fact that tanh (ﬁg’“’) =1-2f(& ), where f(-) is the Fermi function, which leads
us to the expression below:
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where 60(-) is the Heaviside step function. The first condition of the existence of the QCP
requires the disappearance of the coefficient a, for that point of the phase diagram.
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Figure 1: Coefficient a, plotted as a function of the Zeeman field (h) and average chemical
potential (11). On the left side we show the plot for d = 2, on the right side we show the plot
for d = 3. In addition, mass ratio r correspond to the case of °Li and *°K mixture.
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First we will perform an analysis of this expression in two dimensions:
A2 = 2um,| - 2um,
a%D = —l — ﬁln 2| sl |2 i ; (8)
g 4r A5 = 2pm,| - |A] = 2pmy||

where ml = m% - mll is the reduced mass, A is the UV cutoff and A2 = 2u,m,. The strength of

the interaction can be adjusted using the Feshbach resonance [5-7], so we can always tune
the coefficient a3” to zero.
Analogously, in three dimensions
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As before, we can tune the agD value to zero. As an example, see figure 1, where we introduce
r=my/my.

‘ 6. Coefficient g, for T =0 |

Existence of a QCP requires that a4 > 0 in addition to a, = 0. As before we consider the
zero-temperature case:
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Figure 2: Coefficient a4 plotted as a function of the Zeeman field (h) and average chemical
potential (11). On the left side we show the plot for d = 2, on the right side we show the plot
ford = 3. Also, In this case, mass ratio corresponds to the lithium and potassium mixture.

In two dimensions we get

3
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which is always negative, so in two dimensions there is no QCP at the mean-field level.
Furthermore, the coefficient aiD In three dimensions is given by
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which as it turns out is also negative, therefore in three dimensions as well there is no QCP
at the mean-field level. Figure 2 shows the corresponding graphs.

‘ 7. Summary |

e We perform a detailed analysis of the conditions necessary for the existence of the QCP
In two and three spatial dimensions at the mean-field level.

e In both cases, it appears that no QCP can be generated at the mean-field level.

e Landau coefficients for T = 0 are not specified for some parameter choices, such as those
corresponding to the BCS theory (r = 1, h = 0).

e The inclusion of the fluctuations and use of the renormalization group approach allows to
modify that result and to generate the QCP in two dimensions [15].
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