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1. Introduction

Understanding non-Fermi liquids is among the most interesting challenges to quantum many-
body physics [1, 2]. Such systems may occur in a variety of physical contexts such as for
example superfluidity in imbalanced Fermi gases. Non-Fermi liquid behaviour could appear
in the proximity of a quantum critical point (QCP) [3, 4]. We study the possibility of gen-
erating a QCP for imbalanced Fermi gases [5–8] at the mean field level in two and three
spatial dimensions. Such systems, containing a mixture of fermionic atoms, nowadays are
experimentally available [9–14].

2. Theoretical Model

We study the model defined by the hamiltonian [15]:
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where ξ~k,σ =
~k2/2mσ − µσ , with σ =↑,↓, д is an attractive interspecies contact interaction con-

stant and V is the volume of the system. In general, the masses mσ and chemical potentials
µσ can be different.

3. Grand Potential

The grand potential density at the mean-field level can be expressed as:
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where min∆ leads to the global minimum with respect to the order parameter ∆. In this case,
there are two possible phases: a normal phase with ∆ = 0 and a superfluid phase with
∆ , 0 [16, 17]. We are denoting the Landau functional as Ω̃L[∆]. Moreover, the elementary
excitations energies are given by:
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We use µ =
µ↑+µ↓

2 as the average chemical potential and h =
µ↑−µ↓

2 as the average ”Zeeman”
field. We are considering a case in which µσ > 0.

4. Landau Coefficients

Setting ξ =
ξ~k,↑+ξ~k,↓

2 we express Landau functional Ω̃L[∆] as a Taylor expansion in the order
parameter ∆:
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where the quadratic Landau coefficient a2 is given by
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and the quartic Landau coefficient a4 is given by
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The QCP correspond to continuous phase transition at zero absolute temperature, so we
compute Landau coefficients for T → 0.

5. Coefficient a2 for T = 0

We use the fact that tanh
(
βξ~k,σ

2

)
= 1 − 2f (ξ~k,σ ), where f (·) is the Fermi function, which leads

us to the expression below:
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where θ (·) is the Heaviside step function. The first condition of the existence of the QCP
requires the disappearance of the coefficient a2 for that point of the phase diagram.

Figure 1: Coefficient a2 plotted as a function of the Zeeman field (h) and average chemical
potential (µ ). On the left side we show the plot for d = 2, on the right side we show the plot
for d = 3. In addition, mass ratio r correspond to the case of 6Li and 40K mixture.

First we will perform an analysis of this expression in two dimensions:
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where 2
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= 1
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+ 1

m↓
is the reduced mass, Λ is the UV cutoff and λ2

σ = 2µσmσ . The strength of
the interaction can be adjusted using the Feshbach resonance [5–7], so we can always tune
the coefficient a2D

2 to zero.
Analogously, in three dimensions

a3D
2 = −

1
д
−

mr

2π 2


Λ +

√
2µmr

2
ln *
,

|Λ −
√

2µmr |

|Λ +
√

2µmr |

+
-
−

∑
σ



λσ +

√
2µmr

2
ln *
,

|λσ −
√

2µmr |

|λσ +
√

2µmr |

+
-





. (9)

As before, we can tune the a3D
2 value to zero. As an example, see figure 1, where we introduce

r =m↓/m↑.

6. Coefficient a4 for T = 0

Existence of a QCP requires that a4 > 0 in addition to a2 = 0. As before we consider the
zero-temperature case:
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Figure 2: Coefficient a4 plotted as a function of the Zeeman field (h) and average chemical
potential (µ ). On the left side we show the plot for d = 2, on the right side we show the plot
for d = 3. Also, in this case, mass ratio corresponds to the lithium and potassium mixture.

In two dimensions we get
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which is always negative, so in two dimensions there is no QCP at the mean-field level.
Furthermore, the coefficient a3D

4 in three dimensions is given by
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which as it turns out is also negative, therefore in three dimensions as well there is no QCP
at the mean-field level. Figure 2 shows the corresponding graphs.

7. Summary

• We perform a detailed analysis of the conditions necessary for the existence of the QCP
in two and three spatial dimensions at the mean-field level.

• In both cases, it appears that no QCP can be generated at the mean-field level.

• Landau coefficients for T = 0 are not specified for some parameter choices, such as those
corresponding to the BCS theory (r = 1, h = 0).

• The inclusion of the fluctuations and use of the renormalization group approach allows to
modify that result and to generate the QCP in two dimensions [15].
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