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1. Introduction

Understanding non-Fermi liquids is among the most interesting challenges to quantum many-
body physics [1, 2]. Such systems may occur in a variety of physical contexts such as for
example superfluidity in imbalanced Fermi gases. Non-Fermi liquid behaviour could appear
in the proximity of a quantum critical point (QCP) [3, 4]. We study the possibility of generat-
ing a QCP for imbalanced Fermi gases [5–8] at the mean field level in two and three spatial
dimensions.

2. Theoretical Model

We study the model defined by the hamiltonian [9]:
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where ξ~k,σ =
~k2/2mσ − µσ , with σ =↑,↓, д is an attractive interspecies contact interaction con-

stant and V is the volume of the system. In general, the masses mσ and chemical potentials
µσ can be different.

3. Grand Potential

The grand potential density at the mean-field level can be expressed as:
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where min∆ leads to the global minimum with respect to the order parameter ∆. We are de-
noting the Landau functional as ωL[∆]. Moreover, the elementary excitations energies are
given by:
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We use µ =
µ↑+µ↓

2 as the average chemical potential and h =
µ↑−µ↓

2 as the average ”Zeeman”
field.

Figure 1: (left) A typical mean-field phase diagram in d = 3. The low-temperature superfluid
phase is separated from the normal phase with a first-order phase transition (bold line) at T
sufficiently low, and with a second-order phase transition (dashed line) at T higher. The blue
dots indicate the tricritical points.
(right) A mean-field phase diagram in d = 3 displaying a quantum critical point. The colors
refer to the value of the order parameter (∆).

4. Landau Coefficients

We express Landau functional ωL[∆] as a Taylor expansion in the order parameter ∆:

ωL[∆] = ωL(∆ = 0) + a2(T ) |∆|
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The QCP correspond to continuous phase transition at zero absolute temperature, so we
compute Landau coefficients for T → 0.
Since potential divergencies in a4 come from the vicinity of ξ~k = 0, we restrict the integration
region in a4 to a shell of width 2ϵ around ξ~k = 0. Upon expanding the integrands, performing
the integrations, and, at the end, considering T → 0+, we find that the limit is finite provided
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r + 1
r − 1

,

where we introduced r =
m↓
m↑

. The analysis can be extended to higher Landau coefficients. As
a result we obtain a necessary and sufficient condition for the regularity of the Landau ex-
pansion in the limit T → 0+. The above result does not depend on the system dimensionality.

5. Coefficient a2 for T = 0

Setting ξ =
ξ~k,↑+ξ~k,↓

2 we have:
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where θ (·) is the Heaviside step function. The first condition of the existence of the QCP
requires the disappearance of the coefficient a2 for that point of the phase diagram. The
attractive interaction coupling д < 0 can always be tuned (both in d = 2 and d = 3) so that
a2 is zero (more about it in the work [10]). In an experimental situation this is achievable via
Feshbach resonances.

6. Coefficient a4 for T = 0

Existence of a QCP requires that a4 > 0 in addition to a2 = 0. As before we consider the
zero-temperature case:
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In two dimensions we get (µ > 0)
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where 2
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is the reduced mass, Λ is the UV cutoff, λ2

σ = 2µσmσ and λ2
r = 2µmr . The co-

efficient a (2D)4 is always negative, so in two dimensions there is no QCP at the mean-field level.

Figure 2: Evolution of the subset of the µ −h plane characterized by a (3D)4 > 0 upon varying r .
The (light) beige area corresponds to negative a (0)4 , while in the (darker) orange area a (0)4 > 0.
The coefficient a (3D)4 is singular along the red straight lines. The first diagram corresponds to
r = 1.5, the second one to r = 5, the last one to r = 10. Upon increasing r towards r → ∞ the
orange region extends further to cover half of the µ − h plane located below the diagonal.

Furthermore, the coefficient a (3D)4 in three dimensions is given by (µ > 0)
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For d = 3 we have that a second-order quantum phase transition is possible only between
a fully-polarized gas and the superfluid phase (more details are included in the work [10]).
Such a scenario is favorable at large mass imbalance (r � 1 or r � 1).

7. Finite temperature

We analyze the asymptotic shape of the Tc line in the vicinity of the QCP. The behavior
observed in Fig. 1 (right) can be understood employing the Sommerfeld (low-temperature)
expansion for the coefficient a2. We obtain:
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The first term in the Sommerfeld expansion corresponds to the zero-temperature Landau co-
efficient and the second term is the low-temperature correction. We expand a (0)2 around the
(T = 0) critical value hc of the field h and find hc from the condition a (0)2 (hc ) = 0. This yields:
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where δh is a small deviation from hc. The MF Tc-line is described by a power law with the
exponent 1/2. Notably δh is positive, in agreement with the numerical results.

8. Summary

We have shown the Landau expansion to be well-defined at T → 0+ except for a subset of
parameters described by condition in sec. 4. We have demonstrated that at mean-field level
the occurrence of a QCP is generally excluded in d = 2. In d = 3 we have found and char-
acterized a parameter regime admitting a QCP. This is restricted to situations where one of
the chemical potentials is negative so that the quantum phase transition occurs between the
superfluid phase and the fully polarized gas. The second-order transition turns out to be fa-
vorable at large mass imbalance r . We have performed a functional RG calculation showing
stability of our conclusion with respect to fluctuation effects (details are included in the work
[10]).
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