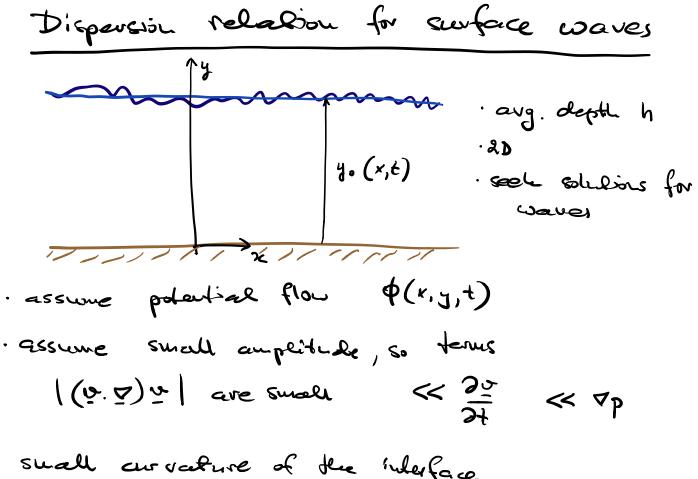

SELECTED TOPICS LECTURE 2
Subaves can capillary premomena

$$1DEL FLUID$$

 $\gamma = 0$
Feynmen -> "diy weller"
1° continuum meel... no viscosity -> early y
 f wavestimm
 f wavestime
 f word f word f word f word f word f wo

Bernoulli's theorem
Ideal fluid, potendial flow ->
$$\phi(s)$$

conservative force with potential 4


$$S \frac{D}{D+} \nabla \phi = -\nabla p + g \nabla \phi$$

($g = const.$
$$S \left(\frac{\partial}{\partial t} + (\underline{\nabla} \cdot \underline{\nabla})\right) \nabla \phi = -\nabla p + g \nabla \phi$$

$$\nabla \left(g \frac{\partial \phi}{\partial t} \right) + g \frac{\phi}{2} \cdot \nabla \frac{\phi}{2} = -\nabla p + g \nabla \psi$$

$$\left(\int \left(\frac{1}{x} g \frac{\phi^2}{x^2} \right) \right)$$

$$\nabla \left(\frac{1}{x} g \frac{\partial \phi}{x^2} + \frac{1}{x} g \frac{\phi^2}{x^2} + p + g \psi \right) = 0$$

S D + Sv² + p + S4 = 0 fluse volume Berulli's freereen

Yo -instantaneous possion of the curface

$$\frac{\partial y_{0}}{\partial x} \ll 1$$

We will use

$$\frac{\partial \Phi}{\partial t} + \frac{P}{S} + \frac{Q}{S} = cmS^{2}. \quad (4*)$$
The processure of the surface R^{2}

$$P = P_{0} - \frac{Y}{R}$$

$$R = \frac{1}{2} \left(\frac{z^{2}y}{2x^{2}}\right)$$

$$R = cmS^{2} + \frac{1}{2} \left(\frac{z^{2}y}{2x^{2}}\right)$$

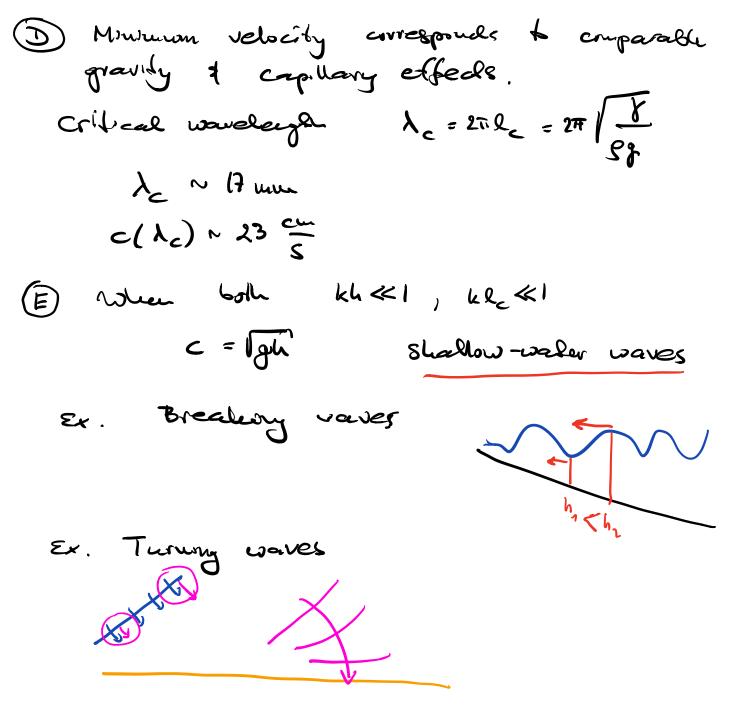
$$R = \frac{1}{2} \left(\frac{z^{2}y}{2x^{2}}\right)$$

Boundary condutions:
(a) bottom well - us normal velocity
$$\Psi = \nabla \phi$$

 $\frac{\partial \phi}{\partial y}\Big|_{y=0}^{z=0$


$$\nabla \cdot \varphi = 0$$

 $\nabla = \nabla \varphi$
 $t = 0$
 $t = 0$
 $t = 0$
 $t = 0$
 $t = 0$


Separation of variables . need a colution in the form of a tracelling wave f(u) = f(x - ct)(when speech c in the x-diversion) amperture q(y)= $\phi(x, y, t) = f(u) q(y) = f(x - ct) q(y)$

From (4)

$$\frac{\partial^2 f}{\partial^2 u} q + f \frac{\partial^2 q}{\partial y^2} = 0 \Rightarrow \frac{f}{f} \frac{\partial^2 f}{\partial u^2} = -\frac{f}{q} \frac{\partial^2 q}{\partial y^2}$$

- A w² cost (ky,) + Ag k sin (ky,) +
$$\frac{Y}{S}$$
 sur (ky,) k³A = 0
We get the driperin relation (kh)
 $w^{2} = \left(gk + \frac{Yk^{2}}{S}\right)$ tanh (kh)
Dispersion velocity
 $G_{1} = \frac{G}{k}$
Phase velocity - "
 $G_{1} = \frac{G}{k}$
 $G_{2} = \frac{G}{k}$
 $G_{3} = \frac{G}{k}$
 $G_{4} = \frac{G}{k}$
 $G_{5} = \frac{G}{k}$

