

$$\begin{array}{l} \text{Odvzity}: \quad \underline{v} = \frac{d\underline{v}}{dt} \quad \text{in Leous of} \quad \underline{v} = \frac{d\underline{v}'}{dt} \\ \frac{d}{dt}(+) \quad \left(\begin{array}{c} v_x = v_x' \cos \Omega t + v_y' \sin \Omega t - \Omega z' \sin \Omega t + \Omega z' \sin \Omega t \\ v_y = -v_x' \sin \Omega t + v_y' \sin \Omega t - \Omega z' \sin \Omega t + \Omega z' \sin \Omega t \\ v_y = -v_y' \sin \Omega t + v_y' \cos \Omega t - \Omega z' \\ v_y = v_y' \end{array} \right)$$

Acceleration $a = \frac{dv}{dt}$ in torus of $a' = \frac{dv'}{dt}$

Introduce a rotation modure A with angle & = It

Then:

$$\begin{cases}
x = A \cdot x' \\
y = A \cdot y' - A \times x \\
a = A \cdot a' - A \times (A \times x) - dA \times y$$
for a general A

So, Newton's 2nd law: I = conflant

un
$$\frac{d^2 x}{dt^2} = f - m \Omega \times (\Omega \times 2) - dm \Omega \times \frac{dx}{dt}$$

centri frysel force Coribers force
both a m, like gravity.
§ Estimated for Earth
· scale for condui frysel force $\Omega^2 R / g \sim \frac{1}{291}$ small!
· scale for condui frysel force $\Omega^2 R / g \sim \frac{1}{291}$ small!

Control is force is different!

$$z - i h$$
 he East
 $y - i h$ he North
 $z - i h$ he North
 $y - i h$ he north
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ he is a second of the interval
 $z - i h$ here is a second of the interval
 $z - i h$ here is a local
 $z - i h$ here is a local in the interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval
 $z - i h$ here is a local interval he

At
$$\Theta = \{5^{\circ}\}$$
, so here $\Omega_{\perp} = \{0^{-4}, \frac{1}{5}\}$
Reviel of a torcard parlial $\frac{2\pi}{\Omega_{\perp}} \sim 34$ li
Flow in a rotaling system
Steady rotalow.
Hempessible flow.
Navier - Stoless etc.
 $\begin{cases} \frac{2\psi}{2t} + (\psi, \nabla)\psi + 2\Omega \times \psi - \Omega \times (\Omega \times \psi) = -\frac{1}{5}\nabla p + \nu\nabla^{2}\psi + \frac{1}{9}\\ \nabla \cdot \psi = 0 \end{cases}$
Formaly, the gravitational and cauterifyed fields can
be included in the effective pressure:
 $p^{4} = p + g + -\frac{1}{2}g(\Omega \times \psi)^{2}$
Then N-S because
 $\frac{2\psi}{2t} + (\psi, \nabla)\psi = -2\Omega \times \psi - \nabla(\frac{1}{5}) + \nu\nabla^{2}\psi$
 $+ 4t = entries surface use Ω_{\perp} for Cartolic.
Dimensionless numbers
length scale L , velocity scale U
111$

Regulas no. $Re = \frac{UL}{v}$

Typically
$$Re \gg 1$$
 advection $\gg viscority$
advective acc. = $Rossby uo.$
 $Cortalis acc.$
 $Ro = \frac{l(2 \cdot \nabla) Q}{|2 \cdot \Omega \times Y|} \approx \frac{U^2/L}{2 \cdot \Omega U} = \frac{U}{2 \cdot \Omega L}$
For very like flow, the Cortalies force in
significants only if $Ro \leq 1$, $U \leq 2 \cdot \Omega L$
 $\frac{5}{2}$
Occan convects and weather cyclones
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $2 \cdot \Omega \sim 10^{-4} \text{ s}^{-1} \implies Ro \approx 0.01$ occan constr
 $U \sim 1000 \text{ lan}$
 $U \sim 1000$

Small
$$2k - viscoidy negligible
Large $Re + vislande do = Ele suidel.$
Ek large edose to boundaries view viscosity
downales over advertion. $\rightarrow Eleman layer$
S Geostrophic flow
Natural large-scale systeme : Ro, $Ele < 1$
igne advertion, viscosity
outy Costolis
· steady
N-S taken kee form: steady geotrophile flow
 $-2(Q \times Q) - \frac{1}{5}\nabla p^{4} = 0$ (*+)
Where level in an open cannel
flow M II $\frac{e}{2}$
welth e
we have
 $\nabla_{K} p^{4} = \nabla_{R} p^{4} = 0$
and $\frac{1}{5} \frac{2p^{4}}{25} = -2Sue \rightarrow p^{4} = +2g U Systeme
 $h(y) = -\frac{2Su}{3} y$
 $h(y) = -\frac{2Su}{3} y$$$$

$$\sum_{k} F_{k} = \sum_{k} F_{k} = F_{k$$

$$\begin{cases} \overline{\nabla} \nabla - dvueesionaelity of geosfraphic flows \\ \underline{\nabla} \cdot (\underline{+}\underline{+}) \\ (\underline{\nabla} \cdot \nabla)p^{+} = 0 \\ \underline{\nabla} \frac{2p^{+}}{2t} = 0 \\ p^{+} is constant along the case of volation. \end{cases}$$

Hydrosladiz pessave

$$p = p^{x}(x, y) - ggt$$

Take
$$\nabla \times (+\infty)$$
 and 0
 $0 = \nabla \times (\mathbb{L} \times \mathbb{C}) + \nabla \times \mathbb{C} \mathbb{P}^{+}$
 $0 = \Omega (\nabla \mathbb{C})^{0} - (\Omega \mathbb{C})^{0} = -\Omega \frac{2\mathbb{C}}{2^{2}}$