
 

THEFUMANLAVERT

Boundary layers arise near a dy k a nearly ideal
f100

i
u

BL The B L thickens
along the flow

d increases direction

Ekman boundary layer in a rotating system
fluid in geostrophic flow
Ro Fe E 1 Coriolis force important for the

formalism of beweary layers
If geostrophic flow

i
Coriolis i
force
nexle I 6 Wo slip

a



Ekman layer solution
U

661
Top boundary
gessfpplee flow

tf 22 0 egypt
with

9 0
ng s U j Vy 0

bottom

pts rug like last
week

Bottom boundary
5 0 no slip

symmetries
solution invariant in y
we are looking for a solution I IG

Mass conservation of D crust 0DZ
because

Oz SO

The transition flow is horizontal and independent of ybut varies with t

N S equations simplify because

E y fox a Oy EG 0 vanishes
we include viscosity the Coriolis force

Steady case



N S equations 2 I I p so Zag s p
P

e ret at
components

o snog f EPI off ng
o 229 0 off q

p't independent of 8 so equal to p 2grlly
top bowdary

The Cys of motions

on drug my Ender
I

off g orca ox

a 01 Ica od
solution linear combination of 4 teens with ekt
k GI

82

Define 8 VE 8 length



tell I k
84 5

Re k 70 no good

only a lg and us

The general solution is
ki 2G

U ox Ae Be
i i HS

my i Ae Chilton Be Ci ins

ng t O Dy t o 0 so A B

The final solution

ox U I e
EG

css 218

q Ue thsonals

8 is a measure of the theodeness of the Ekman
layer
I independent of U

vi g y

iqsr.aeI v
yhe

v l I i g i l re1 2 3 EG o 5 1 x



If middle latitudes 8 n 55 cue for 0 1.5 155mg
for the atmosphere

Measured thickness w them

why Atmosphere is turbulent Got laminar
and effective viscosity can be n 10

Ref f Pedlosky Geophysical Flud Dynamics Springer
1987

Ekman upwelling suction

If U Ux Ug
the solution becomes

as U l e Tss yo Wye guys

og Uy l e as uxe tlsg.no o

If the velocity components Ux Hy a Ugkg
change slowly with x and y

ou a large scale LDS
is still valid because 8 is independent of U

Slowly varying geostrophic flow generates a non zero
vertical floo Ut x y
I I Dark guy i QQ SO gessheplie flow

wz vorticity

9 0 0 4 8 Etty OyUx e south



We have used the fact that QU t Uy O

Integrating over t with vz O for 2 so weget

co 128 Oxley 9USD11 e tbfsstls is.at o

8Note of u

8,1 U because K 1

For 2 there reeerains a vertical component

U s Jwt
Note Uz is independent of 2 Taylor Prouduran

Note if coz 0 of the same saga as global rotationof
the fluid wells up from the Ehman layer

Ea lov p cyclone



Flow in differentially rotating boundaries
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The vertical velocity
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