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Luminy - Case 907, F13288 Marseille Cedex 9, France

In this paper inhomogeneous group G is a semidirect product of a finite-dimensional
vector space V by a group G0 of linear transformations of V . Then V is a normal
subgroup of G and G0 = G/V is the factor group. The Hopf algebra A = Poly(G)
of polynomial functions on G is generated by the sub-algebra A0 = Poly(G0) and
N distinguished linearly independent elements elements x1, x2, . . . xN (N = dim V )
being the linear forms on V . The comultiplication ∆ restricted to A0 coincides with
the one describing the group structure of G0 and for any k = 1, 2, . . . , N

∆(xk) =
N∑

l=1

Λkl ⊗ xl + xk ⊗ I, (1)

where Λ = (Λkl)k,l=1,2,...N is the matrix corepresentation of A0 describing the action
of G0 on V .

In the classical case A0 is commutative and the elements x1, x2, . . . xN commute
with the elements of A0. Moreover x1, x2, . . . xN mutually commute: we have (N−1)N

2

relations xkxl = xlxk (l = 2, 3, . . . , N ; k = 1, 2, . . . , l − 1). In the quantum case A0

is no longer commutative (G0 is a quantum group) and the relations describing the
commutation properties of x1, x2, . . . xN are more complicated. We shall assume that:

1. Elements of A0 may be dragged from the right hand side of xk to the left: for
any a ∈ A and any k = 1, 2, . . . , N there exist a0, b1, b2, . . . , bN ∈ A0 such that

xka = a0 + b1x1 + b2x2 + . . . + bNxN . (2)
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2. The elements xk (k = 1, 2, . . . , N) satisfy (N−1)N
2

independent quadratic rela-
tions of the form

N∑
k,l=1

aklxkxl +
N∑

k=1

bkxk + c = 0, (3)

where akl, bk, c ∈ A0

The following problem seems to be interesting: for given Hopf algebra A0 and
given matrix corepresentation (Λkl)k,l=1,2,...N of A0 one has to find the commutation
relation of the form (2) and (3) compatible with the Hopf algebra structure. If there
are many solutions (that seems to be the case in general), one has to classify them.

Let Γ be the set of all elements of the form

a = b0 + b1x1 + b2x2 + . . . + bNxN (4)

where bk ∈ A0, k = 0, 1, 2, . . . , N . By virtue of the assumption 1 (cf (2), Γ is a
bimodule over A0. So is Γ̇ = Γ/A0. According to the (1), ∆(Γ) ⊂ Γ⊗A0 +A0 ⊗ Γ.
Remembering that ∆(A0) ⊂ A0 ⊗ A0 = Γ ⊗ A0 ∩ A0 ⊗ Γ we see that ∆ induces a
linear mapping from Γ̇ into Γ̇⊗A0 ⊕A0 ⊗ Γ̇. We denote by

∆R : Γ̇ −→ Γ̇⊗A0,

∆L : Γ̇ −→ A0 ⊗ Γ̇

the components of this mapping. The further investigations are based on the following
simple observation:

Theorem 1 (Γ̇, ∆R, ∆L) is a bicovariant bimodule over A0 in the sense of
[3, Definition 2.3].

Let ẋk ∈ Γ̇ be the element corresponding to xk ∈ Γ (k = 1, 2, . . . N). According to
(1),

∆Rẋk = ẋk ⊗ I, (5)

∆Lẋk =
N∑

l=1

Λkl ⊗ ẋl (6)

Relation (5) means that ẋk ∈ Γ̇inv, where Γ̇inv is the set of all right-invariant elements
of Γ̇. Taking into account (4) and using [3, Theorem 2.3.1] we see that Γ̇ is a free left
A0-module with the basis (ẋ1, ẋ2, . . . , ẋN). It shows that in the decomposition (4) the
coefficients bk ∈ A0, k = 0, 1, 2, . . . , N are determined uniquely by a.

Now we shall analyse the quadratic relations. Applying the comultiplication ∆ on
the both sides of (3) we get:

N∑
k,l=1

∆(akl)

[
N∑

s=1

Λks ⊗ xs + xk ⊗ I

] [
N∑

r=1

Λlr ⊗ xr + xl ⊗ I

]
+ . . . = 0

2



and
N∑

k,l=1

∆(akl)

[
N∑

s=1

Λksxl ⊗ xs +
N∑

r=1

xkΛlr ⊗ xr

]
+ . . . = 0,

where in the last equation the dots represent terms belonging to A0 ⊗ A + A ⊗ A0.
Passing to the factor bimodule Γ̇ = Γ/A0 we obtain

N∑
k,l,r=1

∆(akl) [Λkrẋl ⊗ ẋr + ẋkΛlr ⊗ ẋr] = 0.

Using the formula1 2.33 of [3] one can easily check that

ẋkΛlr =
N∑

n,s=1

cklnsΛnrẋs. (7)

Inserting this result into the previous formula we get

N∑
k,l,r,s=1

∆(akl)

[(
Λkrδls +

N∑
n=1

cklnsΛnr

)
⊗ I

]
(ẋs ⊗ ẋr) = 0.

Remembering that (ẋ1, ẋ2, . . . , ẋN) is a basis of the free left A0-module Γ̇ we obtain

N∑
k,l=1

∆(akl)

[(
Λkrδls +

N∑
n=1

cklnsΛnr

)
⊗ I

]
= 0

for any r, s = 1, 2, . . . , N . Multiplying the both sides by (Λ−1)rn and summing over r
we have

N∑
k,l=1

∆(akl) [(δknδls + cklns) I ⊗ I] = 0

and finally
N∑

k,l=1

akl (δknδls + cklns) = 0 (8)

for any n, s = 1, 2, . . . , N .

To understand better the last relation we recall the canonical twisted flip mapping
σ : Γ̇ ⊗A0 Γ̇ → Γ̇ ⊗A0 Γ̇ introduced in [3, Proposition 3.1]. By definition this is the
unique bicovariant bimodule homomorphism such that

σ(ẏ ⊗A0ẋ) = ẋ⊗A0ẏ (9)

for any left-invariant element ẏ and any right-invariant element ẋ of Γ̇.

1actually there is a misprint in this formula, to get the correct form one has to replace fij by
fijoκ−2
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Let

τ =
N∑

k,l=1

aklẋk ⊗A0ẋl. (10)

We shall compute σ−1(τ). To this end we consider elements ẏk =
N∑

l=1

(Λ−1)klẋl (k =

1, 2, . . . , N). Then

ẋl =
N∑

r=1

Λlrẏr. (11)

Inserting this formula into (10) and using (7) we see that

τ =
N∑

k,l,r=1

aklẋk ⊗A0Λlrẏr =
N∑

k,l,r=1

aklẋkΛlr ⊗A0ẏr =
N∑

k,l,r,n,s=1

cklnsaklΛnrẋs ⊗A0ẏr.

Using (6), one can easily check that elements ẏr are left-invariant:

∆L(ẏr) = I ⊗ ẏr.

Now, taking into account (9) and using once more (11) we get

σ−1(τ) =
N∑

k,l,r,n,s=1

cklnsaklΛnrẏr ⊗A0ẋs =
N∑

k,l,n,s=1

cklnsaklẋn ⊗A0ẋs,

and one can easily see that (8) is equivalent to τ + σ−1(τ) = 0 and to

σ(τ) = −τ. (12)

This way we showed that any quadratic relation (3) leads to an eigenelement of σ
corresponding to the eigenvalue −1. Taking into account the Condition 3, we obtain

Theorem 2 The number −1 is an eigenvalue of σ with the multiplicity not smaller
then (N−1)N

2
.

We applied the above theory to the classification of quantum Poincaré groups [2].
In this case G0 is a quantum Lorentz group and Λ is the four-dimensional (1

2
, 1

2
)-

representation of G0 (like in the classical case, the smooth representations of the
Lorentz group are labelled by a pair of spins). The quantum Lorentz groups are
well classified [4]. Each quantum Lorentz group has assigned a numerical parameter
q ∈ C that enters the commutation relations describing the algebra A0. For the
classical Lorentz group the value q = 1. However this is also the case for many
quantum Lorentz groups. For example the groups described in the Section 3.3 of [4]
have by definition the value q = 1.
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It turns out that for any quantum Lorentz group described in [4], there exist
only two2 bicovariant bimodules corresponding to the (1

2
, 1

2
)-representation. One can

compute the eigenvalues of σ for these bimodules. The results are the following:
for the first bimodule:

Eigenvalues of σ :

Multiplicities:

|q|−1,

9,

−q2|q|−1,

3,

−q2|q|−1,

3,

|q|3,

1,

for the second one:

Eigenvalues of σ :

Multiplicities:

|q|,

9,

−q−2|q|,

3,

−q−2|q|,

3,

|q|−3.

1.

The reader should not be surprised with the appearence of the multiplicities 9, 3,
3, 1. They come from the decomposition

(1
2
, 1

2
)

4

⊗

×

(1
2
, 1

2
)

4

=

=

(1, 1)

9

⊕

+

(1, 0)

3

⊕

+

(0, 1)

3

⊕

+

(0, 0)

1

In the considered case (N−1)N
2

= 6. Taking into account the eigenvalues of σ given
above, we see that only the Lorentz groups with q = ±1 satisfy the demand formulated
in Theorem 2. It means that only these groups may be used to construct quantum
Poincaré groups. For these groups the multiplicity of the eigenvalue −1 is precisely
6, so we have to take into account all quadratic relations coming from solutions of
the eigenequation (12). It shows that the choice of the quantum Lorentz group (with
q = ±1) and the choice of one of the two bimodules determine the main terms in (2)
and (3). The lower order terms (a0 in (2) and coefficients bk and c in (3)) are not
fixed yet. One possibility is to consider homogeneous relations only, assuming that
the lower order terms vanish. This way we obtain a large class of quantum Poincaré
groups: two for each quantum Lorentz group with q = ±1.

In general case the determination of the lower order terms is very painful. For the
Poincaré groups the problem is simpler, because the tensor product of any irreducible
representation v of the Lorentz group with the (1

2
, 1

2
)-representation is disjoint with

v. This makes it possible to determine the form of the lower order terms up to a
numerical constants. The latter satisfy a complicated set of linear and quadratic
equations, to solve them we used the computer MATHEMATICA program. With
this help we found all possible forms of the lower order terms for the most of the
quantum Lorentz groups. The only case that is not solved yet is the one when the
corresponding Lorentz group is the classical one. One should notice however that this
case contains the most celebrated κ-deformation of Poincaré group [1] (cf [5]).

2in particular cases they may coincide
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