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A theorem on kernel in the theory
of operator-valued distributions
by
S. L. WORONOWICZ (VVaram.wa)

1. Introduction. Let S(R™) denote the topological vector space of
test functions for tempered distributions introduced by L. Schwartz [3].
For any two functions peS(R™), yeS(R™) we put

P ®v) (@, 9) Z o(@)p(),

where zeR", y < R™ and (2, y)e R**™. It is known that this formula defines
a continuous bilinear mapping

®: S(R") X S(R™) - S(R"™y.
Let L be a topological vector space. Any continuous linear mapping
A: S(R") -~ L

is called & L-valued distribution defined on R"™ For the special case
L = C* this definition coincides with the definition of tempered distri-
butions given by L. Schwartz. The second special case I = L(D), where
D is & dense linear subset of a Hilbert space H and L (D) denotes the
*- algebra of operators acting in D (the strict definition of L(D) is given
below), is of great importance in the quantum field theory [4]. L(D)-
valued distributions are often called operator-valued distributions.

We say that the topological vector space I satisfies the theorem on
kernel if for any separately continuous bilinear mapping

B: S(R*)X 8(R™) — L
there exists a continuous linear mapping
[
B: S(R"*™) - L

® .
such that B(g, ) = B(p®y) for any geS(R") and peS(R™).
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It is known that C* satisfies the theorem on kernel. This fact discov-
ered by L. Schwartz is of great importance for the theory of tempered
distributions. Similarly many interesting problems concerning ZL-valued,
distributions can be solved if it is known that L satisfies the theorem on
kernel. For example assuming that L (D) satisfies the theorem on kernel
one can easily show that for any two L(D)-value distributions A, A4,
defines on R™ and R™ respectively there exists a L (D)-value distribution,
B defined on R™™ such that B(p®v) = 4,(p) A, (y) for any g8 (R™)
and peS(R™).

One can check that in general case L(D) does not satisfy the theorem
on kernel. However, it appears that there exist sufficiently many dense
linear subsets D c H such that L(D) satisfies the theorem on kernel.
More exactly, for any dense linear subset D < H we shall construct a linear
subset D > D such that:

1° L(D) satisties the theorem on kernel.

2° For any L(D)-valued distribution A4 there exists one and only

.one L(D)-valued distribution A such that Ap) < A4 (¢) for all test func-

tions ¢. (Relation 4 < B, where 4, B are operators acting in the Hilbert
space H means that D, « Dy and Aw = By for any ueD,.)

2. Sequentially complete spaces. Assume that I is a locally convex
topological vector space i. e. that the topology of L is given by system
of seminorms {¢,: aeA}. Let us remind that a sequence (Ag)i_,, . of
elements of L is called a Cauchy sequence if for any aed and any positive
number ¢ one can find an integer N such that 9 (4x— Ay) < & for any
k&' = N. The space L is sequentially complete if any Cauchy sequence
is convergent. . )

Let (Ap)pays,... be a sequence of elements of the space L. Assume
that L is sequentially complete and that .

D 6u(4y) < oo

k=1

o
for any aed. Then the series > 4, is convergent. and
k=1 .

) (Y 4) < Y a4y
k=1 k=1
for any aed. . B
TEEOREM 1. Any locally comves and sequentially complete topological
veclor space satisfies the theorem on kernel.
Proof. Let '

(@) B(RY) X S(R™) > (7, )+ Blg, v) e I
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be a partially continuous linear mapping. We have to find a continuous
linear mapping

®
S(Rn'i'm); z%—B(x) el
®
such that B(p®y) = B(p, v) for any p<S(R™) and peS(R™).

Assume for simplicity that # =m =1 (the proof in the gemeral
case is glightly more complicated). Let

(o) &L gn( L) o
WO = e @)

be the k-th normalized Hermite function. Tt is known that hyeS(RY).
Moreover any element peS(R1) is a linear combination

? =D Culp)hy,
k=0

‘where complex coefficients €, (p) decrease rapidly when % — oo. It means
that

(3) Py(p) £ ST G (¢)| (14 %)™ < oo

for any natural ¥. One can check that (3) introduces the system of norms
{py: N-integer} on the space §(R?) and that the topology of S(R') given
by this system coincides with the well known topology introduced by
L. Schwartz.

Similarly any element ye¢S(R?) can be written as a linear combi-
nation

x= 2 Crae (1) by @ By
kK =0
where Oy, (7) decrease rapidly when kyE' - oo; i.e.:
(4) Py (1) 5 50 0 ()| (L HY (1 7)Y < oo

for any natural ¥ and N". The topology of 8 (R?) is defined by the system
of norms {pyy-: N, N'-integer} introduced by (4).

S(RY) is a Fréchet space and therefore according to the theorem of
Mazur, Orlicz and Bourbaki (see [2]) we can conclude that (2) is a contin-
uous mapping. It means that for any aed there exist integers N (a),
N'(a) and a positive number K, such that

2. (B(o, v)) < K, P50 (#) Dy (%) :
for any ¢, ¢ S(RY). Setting h;, and %, instead of @ and y we obtain:
Ga (B (hyy b)) < Ky (14 BV (14 5V,
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On. the other hand the formula (4) says that

PN(a)+z,N'(a)+z(Z)
[Crae ()] < (L R)N@F2 (1 L )V @e

Combining these two formulas one can check that

had 22\2
(s) D) 10 (1)1 0 (B ey o) < (7) By v@alt),
kk'=0
7%\? e 1
where (?) = WZ:o —-——w———(l TR
Therefore (L is assumed to be sequentially complete) the series

This inequality holds for any aed.

(®) B2 Y O ()Bin)

k&' =0

is convergent. It is seen that this formula defines a linear mapping

&
B: S(R)— L.
This mapping is continuous. Indeed by virtue of (5) and (1) we have

2

® 2\?
2.(B(x) < ('6*) K DN+, N@+2(2) -

Let ¢, peS(R'Y). Then Cpp(p®y) = Crlp)Cp (y) and equation (6)
®
shows that B(p @) = B(g, v). This completes the proof. m
3. L(D)-valued distributions. Let D be a dense linear subset of

a Hilbert space H. Symbol L(D) will denote the set of all (in general

unbounded) operators acting in H and such that:

A Dec D,
and A*Dc D,

D, =D,
Dy>D

where D, is the domain of an operator 4. For any AeL(D) the domain
D 4. is dense in H and therefore the operator 4 is preclosed.

It is seen that L(D) is a =*-algebra. It means that A+ B, 14, AB
and A+ £ 4* |p belong to L(D) for any 4, BeL(D), 1 e C*.

Let ueD. Then the mapping

) ‘ L(D)> A - (4] Au) « C*

icm
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is a linear functional on L(D). The topology of L(D) induced by the
family of all functionals of the form (7) is called weak topology. It can
be proved that L (D) provided with the weak topology is a locally convex
topological vector space and that the mappings

L(D)> A -> A+cL(D),

L(D)» A > AB<L(D),

L(D)> A -» BAL(D),
(where B is a fixed element of L(D)) are continuous.

A sequence (u,) of elements of H is called (D)-fundamental if u,, eD ;
(where A is the closure of an operator 4) and the sequence (4dw,) is con-
vergent for any A <L(D). Any (D)-fundamental sequence (u,) is conver-
gent (since I|peL(D)). Moreover limu,eDz and
(8) lim Aw, = Alimu,

for any A eL(D).

Let D be the smallest linear subset of the Hilbert space H such
that:

1° D < D c Dy for any AeL(D),

2° limw,, eD for any (D)-fundamental sequence (u,) of elements
of D.

For any BeL(D) we put
(9) B £ Bj3.
It is seen that B = B = B. We are going to prove

THEOREM 2.

1° BeL(D) for any BeL(D)

2° The mapping ‘

L(D)>B -> BeL(D)

18 & homomorphism of the *-algebras.

3° D =D. . ‘
Proof. Let D; be the set consisting of all elements weD such that
(10) Bu <D,
(1) ABu = ABu,
(12) A+Bu = Au+ Bu,
(13) w ¢ Dy,
(14) . B*u = B+u .
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for any A, BeL(D). It is seen that D = D, c D. Let (u,) be a (D)-funda-
mental sequence of elements of .D,. Then

a) U, _—_limuneb (since (u,) is a (D)-fundamental sequence of
elements of D).

b) The sequence (Eu”) is convergent for any 4, BeL (D) and equa-
tion (11) shows that (Bu,) is a (D)-fundamental sequence. By using (8)
one can see that Bu, =lim Bu,e¢D (as a limit of a (D)-fundamental
sequence of elements f)).

¢) Taking n — oo in the both sides of equations

ABu, = ABu,,
A+Bu, = Au,+ Bu,

we have (see (8)):

A+Buy, = 4 ug+Bu,,.

d) Taking # > oo in the both sides of equation B*u, = B¥u and

remembering that B* is a closed operator we obtain UoeDpy and B'u,,

= Bty

The obtained results imply that weeD,. We have proved that any
(D)-fundamental sequence of elements of D, is convergent to an. element
of D,. Now the definition of ) says that D, = D. Therefore the equa-
tions (10)—(14) hold for any weD. Let us notice that B* — B*. Now the
statement 1° of the theorem follows immediately from (10), (13) and (14).
The statement 2° is a simple conclusion of (11), (12) and (14).

‘We are going to prove the statement 3°. Let (u,) be a (i))—fundamenta.l
sequence of~ elements of D. It is sufficient to prove that limu, eD. The
sequence (Au,) i3 convergent for any A <L(D) (since ;151}(1))). But flun
= Au,. It means that (u,) is a (D)-fundamental sequence and therefore
limu,eD. m

Briefly speaking the Theorem 2 says that all operators from L(D)

can be extended to the larger domain ) and that this extention preserves

all algel?raic relations. However, one can. easily prove that (excluding
the trivial case D = D) mapping B— B is not continuous. Therefore
the following theorem needs a proof.

TEEOREM 3. Let

(15) A : 8(R") —~ L(D)
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be a L(D)-valued distribution. Then the mapping
(16) . A: S§(R")— L(D),

where fi(q)) = A(p)" for any peS(R™), is comtinuous, i.e. Aisa L(ﬁ)-
valued distribution.
Proof. For any ueD we put

Fulp) = (u]A(e)" 1)

fu 18 a linear functional on S(R™). Let D, be the subset of H consisting
of all vectors weD such that the funetional fu is continuous. The conti-
nuity of (15) means that D < D,.

Let (u,) be (D)-fundamental sequence of elements of D,. By virtue
of (8) one can. see that for any A <L(D):

p e S(R")

]im(un lgun) = (uoo !Z’uoo):
where w,, = limu,. Setting 4 = A(¢) we geb:
limfun(‘ﬁ) =fu°°(‘p)

for any peS(R"). The functionals f., are continuous since %, eD,. There-
fore we have the sequence of continuous functionals on §(R™), which
is convergent at any point peS(R™). In this situation the limit functional
Ju,, as to be eontinuous (cf. [1] Chapter IT § 1, Theorem 17). It means that
UpeD,. Taking into account the definition of D one can see that D, = D
i.e. for any weD the functional

(17) S(RY) > ¢— (u]d(p)u) « C*

is continuous. In order to complete the proof let us remind that the mapping
(16) is continuous if and only if the functionals (17) are continuous for
all ueD. m

4. Strong topology in L(D). Let D be a dense linear subset of a Hil-
bert space H. The topology of L(D) introduced by the family of mappings
of the form

L(D)> A - BAueH,

L(D)> A - BA*ueH,

where weD and BeL(D) is called a strong topology. This topology is
stronger than the weak topology introduced before. It means that any
strongly confinuous mapping into L (D) is the more weakly continuous.
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The following theorem shows that these two topologies are equivalent
from the point view of the operator-valued distribution theory.

THEOREM 4. Let

A: 8(R") — L(D)

be a L(D)-valued distribution. Then A is a sirongly continuous mapping.
Proof. It is sufficient to show that for any weD and BeL(D) the
mappings

(18) S(R")>p —~ BA(p)ucH,

(19) S(R">p - BA(p)" ucH

are continuous.
Agsume that limg, = ¢ and Im BA(g,)u =v for a sequence (p,)
of test funetions. Then for any u,eD:

lim (u1 |BA (‘Pn)u) = (Uy|0}.
On, the other hand the mapping A4 is weakly continuous and

lim (u, |BA (¢,) %) = im (B* u,| A (¢,,)%)
= (B u,|4(p)u) = (u:| BA(g)u).

It implies that BA(p) v = v. This way we have proved that the mapping
(18) has a closed graph. By using the closed graph theorem (see for example
[1] Chapter I1 § 3 theorem 4) we conclude that (18) is a continuous mapping.
Similarly one can prove the continuity of (19). m

It can be easily seen that (excluding the trivial case D = H) the
space L(D) (provided with a weak topology) is not sequentially complete.
The situation becomes better if one considers the strong topology.

THEOREM 5. Let D = D. Then the space L(D) provided with the strong
topology is sequentially complete.

Proof. Assume that (4,),_;,,. (Where 4, ¢L(D)) is a Cauchy se-
quence with respect to the strong topology. Then (B4,u%),.;,.. and
(BAf ), are convergent in H for any BeL(D) and ueD (the Hilbert
space H is complete and any Cauchy sequence of elements of H is con-
vergent). It means that (4d,u),_i,, . and (4; ), ., are (D)funda-
mental sequences. For any ueD we put:

(20) . AuElim A u.

icm

Theorem on kernel 225

Then
(21) AueD

as a limit of a (D)-fundamental sequence of elements of D =D. Let
veD. Then

(v[lim 4; w) = lim (0] A} w) = lim (4,,v[u) = (4v|w).

Therefore ueD 4 and
(22) ‘ A*y =lmAju D

because (A7 w),_;, . is also (D)-fundamental sequence of elements of
D = D. Relations (21) and (22) show now that 4 ¢L (D).
By using (8) we get

limBA,u = BAu and lmBA}u =BAYu

for any BeL(D) and ueD. It means that the sequence (4,) is strongly
convergent to the element AeL(D). =

5. Final results. By virtue of Theorems 1, 4 and 5 we immediately
get:

THEEOREM 6. Let D be a dense linear subset of a Hilbert space H such
that D = D. Then L(D) satisfies the theorem on kernel.

For the general case (without assumption that D — D) we have:

TeEOREM. 7. Let D be a dense linear subset of a Hilbert space H and
let

B: S(R") x S§(R™) — L(D)

" be a separately continuous bilinear mapping. Then ‘there exists a L(D)-

valued distribution

®
B: S(R™™) > L(D)
such that

®
B(p, y) <« Blp®v)

for any peS(R") and ypeS(R™).
This theorem follows immediately from the Theorems 3 and 6.
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