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F-theory

IIB string hasSL(2, Z) symmetry

axion-dilatonT = complex structure of a torus

» 1 more complex dimension:
Elliptic equation, with one section

Y =x+1x+g

dim 2 — 1, genus 1: torus.

» In total 12 real dimensions:
Calabi-Yau manifold, with more compact base sp@ce

f Kyt g~ KO

f, g are holomorphic polynomials of degreesl& onB’,
resp.



F-theory

IIB string hasSL(2, Z) symmetry

axion-dilatonT = complex structure of a torus

» 1 more complex dimension:
Elliptic equation, with one section

Y =x+fx+g

dim 2 — 1, genus 1: torus.
» In total 12 real dimensions:
Calabi-Yau manifold, with more compact base spce
f~Kgt g~Kgt
f, g are holomorphic polynomials of degreesl& onB’,
resp.
» Fibered:r vary onB’

() =13/A, A=a34277 ~ K"

» Going close taA = 0 surface, fiber singular.



F-theory
IIB string hasSL(2, Z) symmetry

axion-dilatonT = complex structure of a torus

v

Elliptic equation, with one section
Y =X +fx+g

dim 2— 1, genus 1: torus.

v

To be Calabi—Yau manifold
fe HJ(B, — 4Kg), ge HY (B, — 6Ka)

f, g are resp. holomorphic polynomials of orderd8
onB.

Fibered:r vary onB

v

i(r) =f3/A, A =43 42792

v

Going close toA = 0 surface, fiber singular.

v

> |dentification: Kodaira Table.
» Equation: Tate’s algorithrmBershadsky et al].

Gauge symmetry: how singular the fiber is ¢fdg, A).

ordf | ordg | ordA | name
0 0 n An_1
2 >3 n+6 | Dnys
>2 3 n+6 | Dnys
>3 4 8 Es
3 >5 9 E;
>4 5 10 Eg
[Kodaira]

In generalA is reducible. How to reduce?




Gauge symmetry
Singularity of the fiber

» gauge symmetry of the same name.
Matter fields

» off-diagonal component of the adjointatz vara)

cf. Bifundamentals at the intersections of branes.

Ex.U(m+n) — U(m) x U(n)

ordf | ordg | ordA | name
0 0 n An—1
2 >3 n+6 | Dnya
>2| 3 n+6 | Dnia
>3 4 8 Es
3 >5 9 E;
>4 5 10 Es




Gauge symmetry

Singularity of the fiber
ordf | ordg | ordA | name
» gauge symmetry of the same name. 0 0 n A1
. 2 >3 n+6 Dnta
Matter fle.lds N ol s n+6 | Dora
» off-diagonal component of the adjointatz vara) >3 8 Es
cf. Bifundamentals at the intersections of branes. 3 >5 9 E7
> 4 5 10 Es
Ex.U(m+n) — U(m) x U(n)

Y =%+ (z-u@)"z-t@))"

> If u=tthe symmetry is enhanced th(m+ n).

» Evenu # tat{z= u} N {z=t}, local symmetry enhancement.
» Branching

(m+n)? — (Mm% 1) + (1,n%) + (1,1) + (m, n) + (M, 7).

Chiral fields are localized

z=0
(m,n) : CPT conjugate.




Intersection and divisors

Divisor
» Codimension one subspace specified by an equation
> Ex. (x— 20)2(x — ar)(x — ap) % = 0.

D = 2Py + P1 — 3P

» Extended to higher dimension



Intersection and divisors

Divisor
» Codimension one subspace specified by an equation
> EX. (X — 30)2(x — ar)(x — a2) "2 = 0.
D = 2Py + P1 — 3P
» Extended to higher dimension
Intersection number
» A natural product between homological cycles
» Ex. OnTZ, two one-cycle<C; andC,

+1

+1
Ci-Cy=+1.
» Curves: thenet number of intersections (topological quantity).
» Surfaces: the intersection divisors (higher codimensigeat).



Matter curves

Ex.U(m+n) — U(m) x U(n)
Y=xX+@Z-u"z-1t"
G ={z=u@)}, Co={z=t()}.



Matter curves

Ex.U(m+n) — U(m) x U(n)
Y=xX+@Z-u"z-1t"
G ={z=u@)}, Co={z=t()}.

(M+n)2 - m2,1) & (1,n%) & (1,1) + (m,n) + (M, 7).

Under the reduction
» u=t:D=(m+n)C.
> u;ét: D:n1C1+nC2.
(m, n) is localized at
C-Co={z=u@)}n{z=tZ)} =D miPa.

Matter curveskatz, vafal [Beasley, Heckman, Vata]



Calabi—-Yau manifold

12D with 32 SUSY: On Calabi-Yau 4-fold, we hayé = 1 SUSY in 4D.

direction 0123| 4567 | 89 | 1011
MmL3 Calabi-Yau 4-fold
definition of F-theory ” B | T
F-theory on K3 = heterotic om " B, K3
K3 =T fiber overP?! ” B, P1=5] T

General structureBy; is alP! fibration overB;.
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direction 0123| 4567 | 89 | 1011
MmL3 Calabi-Yau 4-fold
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r- (I’ + t) = 0. [Friedan, Morgan, Witten]



Calabi—-Yau manifold
12D with 32 SUSY: On Calabi—Yau 4-fold, we haté = 1 SUSY in 4D.

direction 0123| 4567 | 89 | 1011
MmL3 Calabi-Yau 4-fold
definition of F-theory ” B | T
F-theory on K3 = heterotic om " B, K3
K3 =T fiber overP?! ” B, P1=5] T

General structureBy; is alP! fibration overBs,.

P! described by two line bundles(base) and (Og, (1) fiber) satisfying
r- (I’ + t) = 0. [Friedan, Morgan, Witten]

Putting the dual gauge grodgy x Egonr, (r +t), resp.

F= —4Kg = 4 + 40+1 + 8t
G= —6Ky = 5 + B+t + 2 +6c(By)+t,
D= —1XKg = 100 + 100+t + 4 +12:(B)+2t

Two ends of the interval of heterotic-M-theoRprava, witten] (Morrison, vafa ]
Information onB; is its divisors{s; }. t, c1(By) are also expressed in terms of them.

Maximal gauge symmetry atis Eg x Eg + zero size instantons (blowing-ups on the base).
cf. two global sections: Spin(32)., [aspinwall, Gross]



Global consistency condition
Ex. CaseB; = PL. A P! fibration over this gives the Hirzebruch surfdée

012345 67|89|10ll
[VES Calabi-Yau 3-fold

7 Fy T

77 Pl | Pl T

Fn is generated by two divisoi, f such thaCo - (Co + nf) = 0,C3 = —n,f2 = 0.



Global consistency condition

Ex. CaseB; = PL. A P! fibration over this gives the Hirzebruch surfdée

012345 67|89|10ll
[VES Calabi-Yau 3-fold

7 Fy T

77 ]P>l | Pl T

Fn is generated by two divisoiB, f such thaCo - (Co + nf) = 0,C3 = —n,f2 = 0.

Eg x Eg located atCq and(Cop + nf),

F= —4Ks, = 4Gy +
G= —6Ks, = 5C; +
D= —12Ks, = 10C, +

Induced 6-dimensional objects

4(Co +f)
S(Co =+ nf)
10(Co + nf)

+ 8f,

+  2Co + (124 njf,

4+ 4Co+ (24+ 2n)f .
N—— ——

D’

Co-D' =2(12—n), (Co+nf).-D' =2(12+n) cf. Z, monodromy.
Bianchi identity on the heterotic side with backgroud besdl;, V.
(V1) + c2(V2) + dng = c(K3) = 24



Global consistency condition
Ex. CaseB; = PL. A P! fibration over this gives the Hirzebruch surfdée

012345 67|89|10ll
[VES Calabi-Yau 3-fold

7 Fy T

77 ]P>l | Pl T

Fy is generated by two divisoi, f such thatCo - (Co + nf) = 0,C3 = —n,f2 = 0.
Eg x Eg located atCq and(Cop + nf),

F= —4Ks, = 4Cy + A4Co+nf) + 8f,

G= —6Kg, 5Co + 5(Co+nf) + 2Co+ (12+ n)f,

D= —12Kg, 10C, + 10(Co+nf) + 4Co+ (24+ 2n)f .
—_——

D’

Induced 6-dimensional objects
Co-D' =2(12—n), (Co+nf).-D' =2(12+n) cf. Z, monodromy.
Bianchi identity on the heterotic side with backgroud besdl;, V.
c2(V1) 4+ c2(V2) + dng = c(K3) = 24
Some of 24 points are blown-up. 4D compactification: misgiag

1
M:ngﬁ-—/ Gy N Gg.
24 2 X4

Sufficiently smootiCalabi—Yau condition = ‘charge conservation’ of ‘branes’

Symmetry breaking preserving this form.



Symmetry breaking

Along A = 0, gauge theory on the 8D worldvolume.

Field contents

direction | 0123 | 4567 | 89 | 1011
geometry | MTL3 B PT T?
fields A An | wso | (1)

Internal index is uniquely determined by twisted SUB¥sly Heckman vata)
Two ways of gauge symmetry breaking




Symmetry breaking

Along A = 0, gauge theory on the 8D worldvolume.

Field contents

direction | 0123 | 4567 | 89 | 1011
geometry | MTL3 B PT T?
fields A An | wso | (1)

Internal index is uniquely determined by twisted SUB¥sly Heckman vatal
Two ways of gauge symmetry breaking

1. ¢g9 ~ Kg ® adiG

>

vyvy

adjoint Higgs

parameterizes the normal direction to the base ‘brane’
nonconstant profile: intersecting branes
tuning the parameters @ = re-decomposin®




Symmetry breaking

Along A = 0, gauge theory on the 8D worldvolume.
Field contents

direction | 0123 | 4567 | 89 | 1011
geometry | MTL3 B PT T?
fields A An | wso | (1)

Internal index is uniquely determined by twisted SUB¥sly Heckman vatal
Two ways of gauge symmetry breaking

1. ¢g9 ~ Kg ® adjG
> adjoint Higgs
> parameterizes the normal direction to the base ‘brane’
> nonconstant profile: intersecting branes
» tuning the parameters @t = re-decomposin®

2. An ~ Qp ® adiG
» HYM equation with DUY condition: instanton solution
» background gauge field on the brane

> analogous to magnetized brane
» blowing up some intersection @t = replacing the divisors

Reduction of the discriminant locus



Reduction of discriminant locus

A nontrivial scalar profile/y) gives rise the reductions ~ Kg @ adjGs
We re-decomposB within Eg x Eg.
Ex. Eg — Eg x U(Z)

4+ A+t + 8t
5r 4+  5(r+t) + 2r + 6c1(B2) + t,
10+  10(r+t) +  4r+12c,(Bp) + 2t.

I

E
G
D



Reduction of discriminant locus

A nontrivial scalar profile/y) gives rise the reductions ~ Kg @ adjGs
We re-decomposB within Eg x Eg.
Ex. Eg — Eg x U(Z)

4+ A4t + 8t
5r 4+  5(r+t) + 2r + 6c1(B2) + t,
10r 4+ 10(r+t) 4+ 4r+412c(Bp) + 2t

I

E
G
D

F= 35+05+1%+ 40+t + 8t
G= 45 +05+1S+ 5(r+t) +  2r +6c(By) +1,
D= 85 +25+0%+ 10(r+1t) + 4 +12c(By) + 2t

» 7-brane charge preserved, if



Reduction of discriminant locus

A nontrivial scalar profile/y) gives rise the reductions ~ Kg @ adjGs
We re-decomposB within Eg x Eg.
Ex. Eg — Eg x U(Z)

4 4+ A+t + 8t
5r 4+  5(r+t) + 2r + 6c1(B2) + t,
10r +  10(r+t) 4+ 4+ 12¢(Bp) + 2t

I

E
G
D

F= 35409+ 1%+ 4(r+1)
G= 45 +0%+1%+ 5(r+1)
D= 83 +2%+ 0%+ 10(r +1)

8t
r + 6C1(Bz) +t,
4r + 12(:1(82) + 2t.

+++

» 7-brane charge preserved, if

3d+ 0§+ 1S
A4S+ 09+ 1S
85+ 25+ 03

4r
5r

10r

cf. S3 plays no role in gauge theory.
» Instanton number untouched

248 — (3,1) + ((1,1)) + (1,78) + (2,1); + (1,27), + (2, 27), + CPT conj,
‘Off-diagonal’ matters are localized along the matter esrv

31'52=Zma§3§2



Matter curves

Line bundle background
. ‘off-diagonal’ components with differenit) (1) charges.

z=0 z2=1(2)
5-3= Yne
exEg — SU(2) x Egin 6D, we had 10 — 2C; + 6Cs.



Matter curves

Line bundle background
. ‘off-diagonal’ components with differenit) (1) charges.

z2=0 z=1(2)
§-§=> s
exEg — SU(2) x Egin 6D, we had 10 — 2C; + 6Cs.
» C~Ci~ Cj
10r — 2r + 6r

Cl~02:r2:—n.

Not allowed unless the base is blown-up.



Matter curves

Line bundle background
. ‘off-diagonal’ components with differenit) (1) charges.

z=0 z2=1(2)
§-§=> s
exEg — SU(2) x Egin 6D, we had 10 — 2C; + 6Cs.
> CNCi NCj
10r — 2r + 6r
Cl~02:r2:—n.

Not allowed unless the base is blown-up.
» GG
10r — 2(r + 6t) + 6(r — 2t)
Ci-Co=(r+6t)-(r—2t)=4—n
if n < 4, we havg4 — n)(2, 27)s.
n = 4 ‘parallel separtaion’
cf. If n > 4, the minimal gauge group should be bigger tBanvorrison, vaal



Spectrum

We have obtained

1. Gauge surfaceB = > ordA;S + D’
by the decomposition preserving thg x Eg structure

2. Matter curvesS - § =3 rrhEﬁ
from the intersections

We can also turn on the background gauge bugdig — V
Multiplicity: index theorem

XS W) = /3 ch(1)Td(S)



Conclusion

We studied global issues of F-theory compactification. Tingartant problem is

v

decomposition of the discriminant locus

Intersection theory is useful for enumerative operatiomgngeometric objects.

The adjoint scalap normal to the basB parameterizes the geometry of discriminant
locus.

(¢) # 0 corresponding to reducing the discriminant locus.

Preserving the charges of discriminant locus: susy camditi‘brane charges’, instanton
no are preserved.

We also need 3-branes.

We have analogous phenomena of parallel separtaion anahbatation in the D-brane
picture.

Chiral fermions emerge as ‘off-diagonal’ component of tbimt during the reduction.
We can calculate their matter curve and localization

With background gauge field, we obtain the spectrum usingnthex theorem.



