Global Aspects of F-theory Compactification

Kang Sin Choi
Kyoto University

with Tae-Won Ha (Bonn)

String Pheno 09, Warsaw
16 June 2009
F-theory

IIB string has $SL(2, \mathbb{Z})$ symmetry

axion-dilaton $\tau \equiv$ complex structure of a torus

- 1 more complex dimension:
 Elliptic equation, with one section

$$y^2 = x^3 + fx + g$$

$\dim 2 - 1$, genus 1: torus.

- In total 12 real dimensions:
 Calabi–Yau manifold, with more compact base space B'

$$f \sim K_{B'}^{-4}, \quad g \sim K_{B'}^{-6}. $$

f, g are holomorphic polynomials of degrees 8, 12 on B', resp.
F-theory

IIB string has $SL(2, \mathbb{Z})$ symmetry

$$\text{axion-dilaton } \tau \equiv \text{complex structure of a torus}$$

► 1 more complex dimension:
Elliptic equation, with one section

$$y^2 = x^3 + fx + g$$

\text{dim } 2 - 1, \text{ genus } 1: \text{torus.}

► In total 12 real dimensions:
Calabi–Yau manifold, with more compact base space B'

$$f \sim K_{B'}^{-4}, \quad g \sim K_{B'}^{-6}.$$

f, g are holomorphic polynomials of degrees 8, 12 on B', resp.

► Fibered: τ vary on B'

$$j(\tau) = \frac{f^3}{\Delta}, \quad \Delta = 4f^3 + 27g^2 \sim K_{B'}^{-12}$$

► Going close to $\Delta = 0$ surface, fiber singular.
IIB string has $SL(2, \mathbb{Z})$ symmetry

axion-dilaton $\tau \equiv$ complex structure of a torus

- Elliptic equation, with one section
 \[y^2 = x^3 + fx + g \]

 \text{dim} \ 2 - 1, \text{ genus} \ 1: \text{torus.}

- To be Calabi–Yau manifold
 \[f \in H^0_\partial (B, -4K_B), \quad g \in H^0_\partial (B, -6K_B) \]

 f, g are resp. holomorphic polynomials of orders 8, 12 on B.

- Fibered: τ vary on B
 \[j(\tau) = \frac{f^3}{\Delta}, \quad \Delta = 4f^3 + 27g^2 \]

- Going close to $\Delta = 0$ surface, fiber singular.

- Gauge symmetry: how singular the fiber is $\text{ord} (f, g, \Delta)$.
 \[\text{Identification: Kodaira Table.} \]
 \[\text{Equation: Tate’s algorithm. [Bershadsky et al].} \]

- In general Δ is reducible. How to reduce?
Gauge symmetry

Singularity of the fiber

- gauge symmetry of the same name.

Matter fields

- off-diagonal component of the adjoint. \[\text{[Katz Vafa]}\]
 cf. Bifundamentals at the intersections of branes.

Ex. \(U(m + n) \rightarrow U(m) \times U(n)\)

<table>
<thead>
<tr>
<th>ord (f)</th>
<th>ord (g)</th>
<th>ord (\Delta)</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(n)</td>
<td>(A_{n-1})</td>
</tr>
<tr>
<td>2</td>
<td>(\geq 3)</td>
<td>(n+6)</td>
<td>(D_{n+4})</td>
</tr>
<tr>
<td>(\geq 2)</td>
<td>3</td>
<td>(n+6)</td>
<td>(D_{n+4})</td>
</tr>
<tr>
<td>(\geq 3)</td>
<td>4</td>
<td>8</td>
<td>(E_6)</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 5)</td>
<td>9</td>
<td>(E_7)</td>
</tr>
<tr>
<td>(\geq 4)</td>
<td>5</td>
<td>10</td>
<td>(E_8)</td>
</tr>
</tbody>
</table>
Gauge symmetry

Singularity of the fiber
 ▶ gauge symmetry of the same name.

Matter fields
 ▶ off-diagonal component of the adjoint. [Katz Vafa]
 cf. Bifundamentals at the intersections of branes.

Ex. $U(m+n) \rightarrow U(m) \times U(n)$

$$y^2 = x^2 + (z - u(z'))^m(z - t(z'))^n$$

▶ If $u = t$ the symmetry is enhanced to $U(m+n)$.
▶ Even $u \neq t$ at $\{z = u\} \cap \{z = t\}$, local symmetry enhancement.
▶ Branching

$$(m + n)^2 \rightarrow (m^2, 1) + (1, n^2) + (1, 1) + (m, n) + (\bar{m}, \bar{n})$$

Chiral fields are localized

$$(\bar{m}, \bar{n}) : CPT \ conjugate.$$
Intersection and divisors

Divisor

- Codimension one subspace specified by an equation
- Ex. \((x - a_0)^2(x - a_1)(x - a_2)^{-3} = 0\).

\[D = 2P_0 + P_1 - 3P_2 \]

- Extended to higher dimension
Intersection and divisors

Divisor

- Codimension one subspace specified by an equation
- Ex. \((x - a_0)^2(x - a_1)(x - a_2)^{-3} = 0\).

\[D = 2P_0 + P_1 - 3P_2 \]

- Extended to higher dimension

Intersection number

- A natural product between homological cycles
- Ex. On \(T^2\), two one-cycles \(C_1\) and \(C_2\),

\[C_1 \cdot C_2 = +1. \]

- Curves: the net number of intersections (topological quantity).
- Surfaces: the intersection divisors (higher codimension object).
Matter curves

Ex. $U(m + n) \rightarrow U(m) \times U(n)$

$$y^2 = x^2 + (z - u)^m (z - t)^n$$

$C_1 = \{ z = u(z') \}, \quad C_2 = \{ z = t(z') \}.$
Matter curves

Ex. $U(m + n) \rightarrow U(m) \times U(n)$

$$y^2 = x^2 + (z - u)^m(z - t)^n$$

$$C_1 = \{ z = u(z') \}, \quad C_2 = \{ z = t(z') \}.$$

$$(m + n)^2 \rightarrow (m^2, 1) \oplus (1, n^2) \oplus (1, 1) + (m, n) + (\overline{m}, \overline{n}).$$

Under the reduction

- $u = t$: $D = (m + n)C$.
- $u \neq t$: $D = mC_1 + nC_2$.

(m, n) is localized at

$$C_1 \cdot C_2 = \{ z = u(z') \} \cap \{ z = t(z') \} = \sum m_a P_a.$$

Matter curves [Katz, Vafa] [Beasley, Heckman, Vafa]
Calabi–Yau manifold

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M^{1,3}$</td>
<td>Calabi–Yau 4-fold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>definition of F-theory</td>
<td>$''$</td>
<td>B'_3</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F-theory on $K3 = $ heterotic on T</td>
<td>$''$</td>
<td>B_2</td>
<td>$K3$</td>
<td></td>
</tr>
<tr>
<td>$K3 = T$ fiber over \mathbb{P}^1</td>
<td>$''$</td>
<td>B_2</td>
<td>$\mathbb{P}^1 = S^2$</td>
<td>T</td>
</tr>
</tbody>
</table>

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2.
Calabi–Yau manifold

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{1,3}$</td>
<td>Calabi–Yau 4-fold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>definition of F-theory</td>
<td>$"$</td>
<td>B'_3</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F-theory on K3 = heterotic on T</td>
<td>$"$</td>
<td>B_2</td>
<td>K3</td>
<td></td>
</tr>
<tr>
<td>K3 = T fiber over \mathbb{P}^1</td>
<td>$"$</td>
<td>B_2</td>
<td>$\mathbb{P}^1 = S^2$</td>
<td>T</td>
</tr>
</tbody>
</table>

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2.

\mathbb{P}^1 described by two line bundles r (base) and t ($\mathcal{O}_{B_2}(1)$ fiber) satisfying

$r \cdot (r + t) = 0$. [Friedan, Morgan, Witten]
Calabi–Yau manifold

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{1,3}$</td>
<td>B'_3</td>
<td>Calabi–Yau 4-fold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **definition of F-theory**
 - $"$ B'$_3$ T
- **F-theory on K3 = heterotic on T**
 - $"$ B_2 $K3$
- **K3 = T fiber over \mathbb{P}^1**
 - $"$ B_2 $\mathbb{P}^1 = S^2$ T

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2.

\mathbb{P}^1 described by two line bundles r (base) and t ($\mathcal{O}_{B_2}(1)$ fiber) satisfying

$$r \cdot (r + t) = 0.$$ [Friedan, Morgan, Witten]

Putting the dual gauge group $E_8 \times E_8$ on r, $(r + t)$, resp.

$$F = -4K_{B'_3} = 4r + 4(r + t) + 8t$$
$$G = -6K_{B'_3} = 5r + 5(r + t) + 2r + 6c_1(B_2) + t,$$
$$D = -12K_{B'_3} = 10r + 10(r + t) + 4r + 12c_1(B_2) + 2t.$$

Two ends of the interval of heterotic-M-theory [Horava, Witten] [Morrison, Vafa I]

Information on B_2 is its divisors $\{s_i\}$. $t, c_1(B_2)$ are also expressed in terms of them.

Maximal gauge symmetry at r is $E_8 \times E_8 +$ zero size instantons (blowing-ups on the base).

cf. two global sections: Spin(32)/\mathbb{Z}_2 [Aspinwall, Gross]
Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n.

<table>
<thead>
<tr>
<th></th>
<th>0 1 2 3 4 5</th>
<th>6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{1,5}$</td>
<td>Calabi–Yau 3-fold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{F}_n</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{P}^1</td>
<td>\mathbb{P}^1</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\mathbb{F}_n is generated by two divisors C_0, f such that $C_0 \cdot (C_0 + nf) = 0$, $C_0^2 = -n, f^2 = 0$.
Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n.

<table>
<thead>
<tr>
<th>0 1 2 3 4 5</th>
<th>6 7 8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{1,5}$</td>
<td>\mathbb{F}_n</td>
<td>T</td>
</tr>
<tr>
<td>\mathbb{P}^1</td>
<td>\mathbb{P}^1</td>
<td>T</td>
</tr>
</tbody>
</table>

\mathbb{F}_n is generated by two divisors C_0,f such that $C_0 \cdot (C_0 + nf) = 0$, $C_0^2 = -n, f^2 = 0$. $E_8 \times E_8$ located at C_0 and $(C_0 + nf)$,

\[F = -4K_{B_2} = 4C_0 + 4(C_0 + nf) + 8f, \]
\[G = -6K_{B_2} = 5C_0 + 5(C_0 + nf) + 2C_0 + (12 + nf), \]
\[D = -12K_{B_2} = 10C_0 + 10(C_0 + nf) + 4C_0 + (24 + 2nf). \]

Induced 6-dimensional objects

\[C_0 \cdot D' = 2(12 - n), \quad (C_0 + nf) \cdot D' = 2(12 + n) \quad \text{cf. } \mathbb{Z}_2 \text{ monodromy.} \]

Bianchi identity on the heterotic side with background bundles $\mathcal{V}_1, \mathcal{V}_2$.

\[c_2(\mathcal{V}_1) + c_2(\mathcal{V}_2) + \delta n_3 = c_2(K3) = 24 \]
Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n.

\[
\begin{array}{|c|c|c|c|}
\hline
0 & 1 & 2 & 3 \\
\hline
M^{1,5} & \text{Calabi–Yau 3-fold} & \mathbb{F}_n & T \\
\hline
\end{array}
\]

\mathbb{F}_n is generated by two divisors C_0, f such that $C_0 \cdot (C_0 + nf) = 0$, $C_0^2 = -n, f^2 = 0$. $E_8 \times E_8$ located at C_0 and $(C_0 + nf)$,

\[
\begin{align*}
F &= -4K_{B_2} = 4C_0 + 4(C_0 + nf) + 8f, \\
G &= -6K_{B_2} = 5C_0 + 5(C_0 + nf) + 2C_0 + (12 + nf), \\
D &= -12K_{B_2} = 10C_0 + 10(C_0 + nf) + 4C_0 + (24 + 2nf).
\end{align*}
\]

Induced 6-dimensional objects

\[
C_0 \cdot D' = 2(12 - n), \quad (C_0 + nf) \cdot D' = 2(12 + n) \quad \text{cf. } \mathbb{Z}_2 \text{ monodromy.}
\]

Bianchi identity on the heterotic side with backgroud bundles $\mathcal{V}_1, \mathcal{V}_2$.

\[
c_2(\mathcal{V}_1) + c_2(\mathcal{V}_2) + \delta n_3 = c_2(K3) = 24
\]

Some of 24 points are blown-up. 4D compactification: missing part

\[
\frac{\chi(X_4)}{24} = n_3 + \frac{1}{2} \int_{X_4} G_4 \wedge G_4.
\]

Sufficiently smooth Calabi–Yau condition = ‘charge conservation’ of ‘branes’

Symmetry breaking preserving this form.
Symmetry breaking

Along $\Delta = 0$, gauge theory on the 8D worldvolume.
Field contents

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>$M^{1,3}$</td>
<td>B</td>
<td>\mathbb{P}^1</td>
<td>T^2</td>
</tr>
<tr>
<td>fields</td>
<td>A_μ</td>
<td>A_m</td>
<td>φ_{89}</td>
<td>(τ)</td>
</tr>
</tbody>
</table>

Internal index is uniquely determined by twisted SUSY. [Beasley Heckman Vafa]
Two ways of gauge symmetry breaking
Symmetry breaking

Along $\Delta = 0$, gauge theory on the 8D worldvolume.

Field contents

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>$M^{1,3}$</td>
<td>B</td>
<td>\mathbb{P}^1</td>
<td>T^2</td>
</tr>
<tr>
<td>fields</td>
<td>A_μ</td>
<td>A_m</td>
<td>φ_{89}</td>
<td>(τ)</td>
</tr>
</tbody>
</table>

Internal index is uniquely determined by twisted SUSY. [Beasley Heckman Vafa]

Two ways of gauge symmetry breaking

1. $\phi_{89} \sim K_B \otimes \text{adj}G$
 - adjoint Higgs
 - parameterizes the normal direction to the base ‘brane’
 - nonconstant profile: intersecting branes
 - tuning the parameters of $\Delta = \text{re-decomposing } D$
Symmetry breaking

Along \(\Delta = 0 \), gauge theory on the 8D worldvolume.

Field contents

<table>
<thead>
<tr>
<th>direction</th>
<th>0 1 2 3</th>
<th>4 5 6 7</th>
<th>8 9</th>
<th>10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>(M^{1,3})</td>
<td>(B)</td>
<td>(\mathbb{P}^1)</td>
<td>(T^2)</td>
</tr>
<tr>
<td>fields</td>
<td>(A_\mu)</td>
<td>(A_m)</td>
<td>(\varphi_{89}) ((\tau))</td>
<td></td>
</tr>
</tbody>
</table>

Internal index is uniquely determined by twisted SUSY. [Beasley Heckman Vafa]

Two ways of gauge symmetry breaking

1. \(\phi_{89} \sim K_B \otimes \text{adj}G \)
 - adjoint Higgs
 - parameterizes the normal direction to the base ‘brane’
 - nonconstant profile: intersecting branes
 - tuning the parameters of \(\Delta = \) re-decomposing \(D \)

2. \(A_m \sim \Omega_B \otimes \text{adj}G \)
 - HYM equation with DUY condition: instanton solution
 - background gauge field on the brane
 - analogous to magnetized brane
 - blowing up some intersection of \(\Delta = \) replacing the divisors

Reduction of the discriminant locus \(\Delta \)
Reduction of discriminant locus

A nontrivial scalar profile \(\langle \varphi \rangle \) gives rise the reduction. \(\varphi \sim K_B \otimes \text{adj}G_S \)

We re-decompose \(D \) within \(E_8 \times E_8 \).

Ex. \(E_8 \to E_6 \times U(2) \)

\[
\begin{align*}
F &= 4r + 4(r + t) + 8t \\
G &= 5r + 5(r + t) + 2r + 6c_1(B_2) + t, \\
D &= 10r + 10(r + t) + 4r + 12c_1(B_2) + 2t.
\end{align*}
\]
Reduction of discriminant locus

A nontrivial scalar profile $\langle \varphi \rangle$ gives rise the reduction. $\varphi \sim K_B \otimes adjG_S$

We re-decompose D within $E_8 \times E_8$.

Ex. $E_8 \to E_6 \times U(2)$

\[
\begin{align*}
F &= 4r + 4(r + t) + 8t \\
G &= 5r + 5(r + t) + 2r + 6c_1(B_2) + t, \\
D &= 10r + 10(r + t) + 4r + 12c_1(B_2) + 2t.
\end{align*}
\]

\downarrow

\[
\begin{align*}
F &= 3S_1 + 0S_2 + 1S_3 + 4(r + t) + 8t \\
G &= 4S_1 + 0S_2 + 1S_3 + 5(r + t) + 2r + 6c_1(B_2) + t, \\
D &= 8S_1 + 2S_2 + 0S_3 + 10(r + t) + 4r + 12c_1(B_2) + 2t.
\end{align*}
\]

- 7-brane charge preserved, if
Reduction of discriminant locus

A nontrivial scalar profile $\langle \varphi \rangle$ gives rise the reduction. $\varphi \sim K_B \otimes adjG_S$

We re-decompose D within $E_8 \times E_8$.

Ex. $E_8 \rightarrow E_6 \times U(2)$

$$
\begin{align*}
F &= 4r + 4(r + t) + 8t \\
G &= 5r + 5(r + t) + 2r + 6c_1(B_2) + t, \\
D &= 10r + 10(r + t) + 4r + 12c_1(B_2) + 2t.
\end{align*}
$$

downarrow

$$
\begin{align*}
F &= 3S_1 + 0S_2 + 1S_3 + 4(r + t) + 8t \\
G &= 4S_1 + 0S_2 + 1S_3 + 5(r + t) + 2r + 6c_1(B_2) + t, \\
D &= 8S_1 + 2S_2 + 0S_3 + 10(r + t) + 4r + 12c_1(B_2) + 2t.
\end{align*}
$$

\triangleright 7-brane charge preserved, if

$$
\begin{align*}
4r &= 3S_1 + 0S_2 + 1S_3 \\
5r &= 4S_1 + 0S_2 + 1S_3 \\
10r &= 8S_1 + 2S_2 + 0S_3
\end{align*}
$$

cf. S_3 plays no role in gauge theory.

\triangleright Instanton number untouched

\[248 \rightarrow (3, 1) + \langle (1, 1) \rangle + (1, 78) + (2, 1)_3 + (1, 27)_2 + (2, 27)_1 + CPT \text{ conj}, \]

‘Off-diagonal’ matters are localized along the matter curves

$$
S_1 \cdot S_2 = \sum m_a \Sigma^a_{12}
$$
Matter curves

Line bundle background:
- ‘off-diagonal’ components with different $U(1)$ charges.

\[S_i \cdot S_j = \sum m^a \Sigma_{ij}^a \]

ex. $E_8 \rightarrow SU(2) \times E_6$ in 6D, we had $10r \rightarrow 2C_1 + 6C_2$.

\[z = u(z')^{(m, n)} \]
\[z = t(z')^{(\bar{m}, \bar{n})} \]
\[(m, n) \]
Matter curves

Line bundle background
: ‘off-diagonal’ components with different $U(1)$ charges.

$$z = u(z') \ (m,n)$$

$$z = t(z') \ (m,n)$$

$$S_i \cdot S_j = \sum m^a \Sigma^a_{ij}$$

ex. $E_8 \rightarrow SU(2) \times E_6$ in 6D, we had $10r \rightarrow 2C_1 + 6C_2$.

$\ ▶ \ C \sim C_i \sim C_j$

$$10r \rightarrow 2r + 6r$$

$$C_1 \cdot C_2 = r^2 = -n.$$

Not allowed unless the base is blown-up.
Matter curves

Line bundle background
: ‘off-diagonal’ components with different $U(1)$ charges.

\[

S_i \cdot S_j = \sum m^a \Sigma^a_{ij}
\]

\[z = u(z')^{(m, n)} \quad z = t(z')^{(\bar{m}, \bar{n})}
\]

ex. $E_8 \to SU(2) \times E_6$ in 6D, we had $10r \to 2C_1 + 6C_2$.

\[C \sim C_i \sim C_j\]

\[10r \to 2r + 6r\]

\[C_1 \cdot C_2 = r^2 = -n.\]

Not allowed unless the base is blown-up.

\[C_i \not\sim C_j\]

\[10r \to 2(r + 6t) + 6(r - 2t)\]

\[C_1 \cdot C_2 = (r + 6t) \cdot (r - 2t) = 4 - n\]

if $n \leq 4$, we have $(4 - n)(2, 27)$s.

$n = 4$ ‘parallel separation’

cf. If $n > 4$, the minimal gauge group should be bigger than E_7. [Morrison, Vafa]
We have obtained

1. **Gauge surfaces** $D = \sum \text{ord} \Delta_i S_i + D'$
 by the decomposition preserving the $E_8 \times E_8$ structure

2. **Matter curves** $S_i \cdot S_j = \sum m_a \Sigma_{ij}^a$
 from the intersections

We can also turn on the background gauge bundle $\langle A_m \rangle \to \mathcal{V}$

Multiplicity: index theorem

$$
\chi(S_i, \mathcal{V}_i) = \int_{S_i} \text{ch} (\mathcal{V}_i) \text{Td}(S_i)
$$
We studied global issues of F-theory compactification. The important problem is decomposition of the discriminant locus.

- Intersection theory is useful for enumerative operation among geometric objects.
- The adjoint scalar φ normal to the base B parameterizes the geometry of discriminant locus. $\langle \varphi \rangle \neq 0$ corresponding to reducing the discriminant locus.
- Preserving the charges of discriminant locus: susy conditions, ‘brane charges’, instanton no are preserved. We also need 3-branes.
- We have analogous phenomena of parallel separation and recombination in the D-brane picture.
- Chiral fermions emerge as ‘off-diagonal’ component of the adjoint during the reduction. We can calculate their matter curve and localization.
- With background gauge field, we obtain the spectrum using the index theorem.