Generalised fluxes and de Sitter vacua

Beatriz de Carlos
University of Southampton
StringPheno, 18th June 2009

w/ A. Guarino, J.M. Moreno, almost done!
Contents

1. Brief review of moduli stabilisation
2. Algebras and non-geometric fluxes
3. Looking for vacua using no-go theorems
4. Conclusions
Moduli stabilisation

- Moduli are present in any string model.
- Many of them parametrise physical quantities, i.e. must acquire a VEV if we are to obtain the Standard Model at low energies.
- Their stabilisation is likely to be linked to the breakdown of SUSY.
- They have potential cosmological interest.
Past history

- Partial success in stabilising moduli through non-perturbative effects: **multiple gaugino condensation** in the heterotic
- Minima that broke SUSY were **AdS**
- Very steep potentials: **runaway dilaton**
N=1, D=4 SUGRA

Scalar potential:

\[V_F = e^K \left\{ K^{I\bar{J}} D_I W D_{\bar{J}} \bar{W} - 3|W|^2 \right\} \]

K, Kähler potential, W superpotential

\[D_I W = K_I W + W_I \]
Kähler derivative

In general this is a multivariable potential
SUSY preserved: \[D_I W = 0 \text{ for all } I \]

\begin{align*}
\text{AdS} & \rightarrow V = -3e^K |W|^2 \\
\text{Minkowski} & \rightarrow V = W = 0
\end{align*}

SUSY broken: \[D_I W \neq 0 \text{ for some } I \]

\begin{align*}
\text{AdS} \quad & \text{Minkowski} \quad \text{dS} \\
\} & \text{all possible}
\end{align*}

but mostly \textbf{AdS} solutions found!
Recent progress

Flux compactification in type IIB opens up a new path in model building

\[K = -3 \ln(T + \bar{T}), \quad W = W_0 + Ae^{-aT} \]

KKLT proposal: combine fluxes and np effects

Gives a SUSY-preserving, AdS minimum

More realistic models in the heterotic and LVC give SUSY breaking with, again, AdS

Dasgupta, Rajesh, Sethi’99
Gukov, Vafa, Witten’00
Giddings, Kachru, Polchinski’02
Kachru, Kallosh, Linde, Trivedi’03
Balasubramanian, Berglund, Conlon, Quevedo’05
BdC, Gurrieri, Lukas, Micu’06
If we now forget about NP effects...

In type IIA it is possible to generate a superpotential for all (closed) string moduli just from fluxes.

Grimm, Louis’05
Derendinger, Kounnas, Petropoulos, Zwirner’05
Villadoro, Zwirner’05
DeWolfe, Giryavets, Kachru, Taylor’05
Cámara, Font, Ibáñez’05

These can be \textbf{NS-NS} \((H_3)\), \textbf{R-R} \((F_p)\) and also \textbf{geometric} \((\omega)\) fluxes.

Graña, Minasian, Petrini, Tomasiello’06
Andriot’08
Caviezal, Koerber, Kors, Lüst, Tsimpis, Zagermann’08
Aldazábal, Font’08
To recover T-duality between IIA and IIB we have to introduce **non-geometric** \((Q,R)\) fluxes in the latter

Shelton, Taylor, Wecht’05,’06

For a symmetric orbifold, \(T^6/Z_2 \times Z_2\)

\[
K = -\ln(-i(S-S_b))-3\ln(-i(\tau-\tau_b))-3\ln(-i(U-U_b))
\]

\[
W = P_1(\tau) + S P_2(\tau) + U P_3(\tau)
\]

- \(S\) is the dilaton
- \(U\) is the Kähler (IIB), complex structure (IIA) modulus
- \(\tau\) is the complex structure (IIB), Kähler (IIA) modulus
W is linear in S and U, whereas

$$P_1(\tau) = a_0 - 3a_1\tau + 3a_2\tau^2 - a_3\tau^3$$

$$P_2(\tau) = -b_0 + 3b_1\tau - 3b_2\tau^2 + b_3\tau^3$$

$$P_3(\tau) = 3(c_0 + (\hat{c}_1 + \check{c}_1 - \zeta_1)\tau - (\hat{c}_2 + \check{c}_2 - \zeta_2)\tau^2 - c_3\tau^3)$$

In type IIB language

$a_0,...,a_3$ given by R-R fluxes

$b_0,...,b_3$ given by NS-NS fluxes

$c_0,...,c_3$ given by Q fluxes \(\rightarrow\) non geometric

They must be all integers
Comments on method

- The scalar potential is a function of 3 complex fields \((S, U, T)\), or 6 real variables.
- It contains polynomials of high degree.
- The stationary conditions, \(\partial V = 0\), are difficult to solve in general.
- Most results in the literature look for SUSY solutions, solving the F-equations.
- Powerful techniques based on computational algebra are available.

References:
- Shelton, Taylor, Wecht’06
- Micu, Palti, Tasinato’07
- Font, Guarino, Moreno’08
- Gray, He, Lukas, Ilderton’09
Summarising so far

enormous efforts have been devoted to understanding flux compactification in string theory

non geometric fluxes provide a T-dual description between IIA and IIB

the resulting potential is a polynomial in the different fields and difficult to minimise

only SUSY and/or AdS solutions have been found

Goal: can we find SUSY breaking, dS solutions?
To achieve this we combine two different pieces of research.

The classification of all subalgebras satisfied by Q fluxes in IIB (on $T^6/Z_2 \times Z_2$)

- Font, Guarino, Moreno’08

A no-go theorem on the existence of de Sitter vacua and inflation in IIA

- Hertzberg, Kachru, Taylor, Tegmark’07
- Zagermann’s talk
Consider IIB compactified on \((T^2 \times T^2 \times T^2)/(Z_2 \times Z_2)\)

NS-NS \((H_3)\) and Q fluxes can be regarded as structure constants of an extended (12d) symmetry algebra of the compactification

The algebra has isometry generators \((Z_a)\) and gauge symmetry generators \((X^a)\)

\[
[X^a, X^b] = Q^b_d X^d, \quad [Z_a, X^b] = Q^b_d Z_d, \quad [Z_a, Z_b] = H_{abd} X^d
\]

Font, Guarino, Moreno’08
Shelton, Taylor, Wecht’06
Dabholkar, Hull’06
Jacobi identities \((H_3Q = 0, Q^2 = 0)\) and tadpole cancellation conditions restrict the possible values of the flux constants \((a_s, b_s, c_s)\)

Even more, \(Q\) can only be one of 5 possible 6d subalgebras:

- \(SO(4) \sim SU(2)^2\)
- \(SO(3,1)\)
- \(SU(2) + U(1)^3\)
- \(iso(3) \sim SU(2) \oplus U(1)^3\)
- \(nil \sim U(1)^3 \oplus U(1)^3\)
Parameter counting

κ_1, κ_2 define the 6d subalgebra

$\varepsilon_1, \varepsilon_2$ define the embedding in the 12d algebra

ζ_3, ζ_7 define the localised sources

Moreover we can perform redefinitions of fields/couplings to end up with

$$W = W(\varepsilon_2/\varepsilon_1, \zeta_7/\zeta_3)$$

the F-equations can be solved analytically
No-go theorem and inflation

Hertzberg, Kachru, Taylor, Tegmark'07

Instead of looking at V in terms of W and K, let's write it in terms of the contributions from the different fluxes in IIA

\[V = V_{H_3} + V_{F_p} + V_{D6} + V_{O6} \]

\[V_{H_3} \sim 1/y^3 \sigma^2 \]
\[V_{F_p} \sim 1/y^{3-p} \sigma^4 \]
\[V_{D6} \sim 1/\sigma^3 \]
\[V_{O6} \sim -1/\sigma^3 \]

$\sigma = \text{Im}(S)$, $y = \text{Im}(\tau)$
V_{H_3} and V_{F_p} are positive definite

This potential satisfies

$$-y \frac{\partial V}{\partial y} - 3\sigma \frac{\partial V}{\partial \sigma} = 9V + \sum pV_{F_p}$$

Then, at an extremum, $V<0$!

Way out: consider geometric (V_ω) and non geometric (V_Q, V_R) fluxes. The previous condition reads

$$-y \frac{\partial V}{\partial y} - 3\sigma \frac{\partial V}{\partial \sigma} = -2V_\omega - 4V_Q - 6V_R + 9V + \sum pV_{F_p}$$

V_ω used to construct de Sitter vacua
Our work

We consider $N=1$ orientifolds of the $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold

- it is its own mirror under T-duality (U and τ swap roles)

- IIA and IIB compactified on these structures are equivalent under T-duality

IIB with O3/O7 \leftrightarrow IIA with O6 \leftrightarrow IIB with O5/O9
Strategy:

i) we have a complete classification of allowed fluxes in IIB (based on the Q subalgebra)

\[W = W(\epsilon_2/\epsilon_1, \zeta_7/\zeta_3) \]

ii) we can map this IIB potential to a IIA one and use no-go theorems to look for de Sitter vacua

Moreover: it seems that only compactifications on \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) may allow for inflation

Flauger, Paban, Robbins, Wrase’08
The generalised scalar potential

We work with real fields,

\[S = s + i \sigma, \quad U = t + i \mu, \quad \tau = x + i y \]

in terms of which the potential reads

\[V = A(y, \mu, \phi)/\sigma^2 + B(\mu)/\sigma^3 + C(y, \mu, \phi)/\sigma^4 \]

\(\phi=(s,t,x) \) are the axions and \(\mu \) (IIB) \(\rightarrow \mu/\sigma \) (IIA)

A accounts for generalised fluxes (\(H_3, R, Q, \omega \))
B accounts for localised sources
C accounts for R-R (\(F_p \)) fluxes
We can now study moduli stabilisation in a **systematic way**, relating A, B, C to the original flux parameters in IIB

This already tells us the signs of the different contributions, **facilitating** the search for de Sitter vacua

Most of the search can be done **analytically** because S and U enter W linearly.

$$\frac{\partial V}{\partial s} = 0 \Rightarrow s_0 = s_0(x_0, y_0)$$

$$\frac{\partial V}{\partial t} = 0 \Rightarrow t_0 = t_0(x_0, y_0)$$
The physical parts of S,U (σ,μ) can be stabilised analytically by imposing V=0

\[\sigma_0 = \sigma_0(x_0, y_0) \]
\[\mu_0 = \mu_0(x_0, y_0) \]

We are left with \(\partial V / \partial x = \partial V / \partial y = 0 \)

After replacing all other fields these are two nasty equations that require numerical analysis
Results

Of the 5 possible subalgebras, four of them do not give de Sitter vacua.

At most one can have Minkowski/de Sitter minima with one tachyonic direction.

SO(3,1) contains plenty of de Sitter vacua with all moduli stabilised.
Results

<table>
<thead>
<tr>
<th>subalgebra</th>
<th>SO(3,1)</th>
<th>SO(4)</th>
<th>iso(3)</th>
<th>nil</th>
<th>SU(2)+U(1)3</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>NG</td>
<td>NG</td>
<td>G</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>no-go</td>
<td>✔️</td>
<td>✘</td>
<td>✔️</td>
<td>✔</td>
<td>✔️</td>
</tr>
<tr>
<td>dS vacua</td>
<td>✔️</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
</tr>
<tr>
<td>NG/G: admits a description in terms of non geometric/geometric backgrounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villadoro, Zwirner’05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\zeta_7 = 16 \]
\[\varepsilon_2 = 44.309 \]

\(SO(3,1) \)
Scalar potential contributions

$\zeta_7 = 16$
$\varepsilon_2 = 44.309$

$SO(3,1)$
Q flux: SO(3,1)
Q & H_3 fluxes: SO(3,1) x SO(3,1)

$\varepsilon_1 = -1$
$\xi_3 = 1$
Q flux: SO(3,1)
Q & H_3 fluxes: SO(3,1) x SO(3,1)

$\varepsilon_1 = -1$
$\xi_3 = 1$
The vacua oscillate between AdS and dS according to the value of ε_2 (for fixed ζ_7)

$\varepsilon_2 = 44$

$\varepsilon_2 = 44.309$

$\varepsilon_2 = 45$
Conclusions

- We have discussed T-dualities between IIA and IIB using non geometric fluxes.
- The resulting W can stabilise all moduli, but the potential is quite involved. Treating it requires new, systematic, analytic and numerical methods.
- Strategy: use algebraic results in IIB, which simplifies W and the number of fluxes, and no-go theorems on the existence of de Sitter vacua in IIA.
- This results in a systematic and feasible search which gives plenty of de Sitter (SUSY breaking) minima.
- The method is exportable to other orbifolds.