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Integrating Out v.s. Freezing Fields

Effective Theory

Effective theories are an important tool for particle physics, leading to
reliable simplifications.

However, even at the classical level, the integration of H i heavy fields:

Leff (Lα) = L(H i (Lα),Lα) ,
∂L
∂H i

∣∣∣∣
H i (Lα)

= 0 . (1)

is a very hard task for many interesting systems, e.g., 4D fields theories
arising from String theory compactifications.

A common approach is to study a simplified version

Lsim(Lα) = L(H i
0,L

α) , (2)

H i
0 the leading solution for H i independent of Lα.
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N = 1 Supersymmetric theories

Freezing complete susy multiplets
The simplified version is described by

Ksim(Lα, L̄ᾱ) = K (H i
0, H̄

ī
0,L

α, L̄ᾱ) , Wsim(Lα) = W (H i
0,L

α) ,
fsim,ab(Lα) = fab(H i

0,L
α) . (3)

Moduli stabilization (Two Steps Stabilization)
Flux compactifications, (e.g. KKLT)

W (T ) = Wflux (U0,S0) + Wnp(U0,S0,T ) . (4)

Some works addressing this:

Extensions to KKLT. K. Choi, et. al. ’04

Conditions on the mass matrix. H. Abe, T. Higaki & T. Kobayashi ’06

Comments on the proper integration. S. P. de Alwis ’05
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UNDER WHAT CONDITIONS THIS IS A
GOOD APPROXIMATION?

That is the Question

We focus on a particular class of N = 1 SUSY theories inspired by flux
compactifications.

D. Gallego (SISSA, Trieste) An Effective Description of the Landscape StringPheno09 4 / 19



Outline

1 Basic Set-up: No Matter Mutiplets
Component Approach
Supersymmetric Approach

2 Matter Multiplets and Gauge Interactions
O(1) Yukawa Couplings.
Vector Multiplets

3 Conclusions
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No Matter Mutiplets

4D, N = 1 SUGRA theory described by

W (H i ,Lα) = W0(H i ) + εW1(H i ,Lα) , (5)

with ε ∼ mL/mH .

We allow arbitrary, but regular, Kähler potential.

The eigenvalues of gMN̄ = ∂M∂N̄K are O(ε0).

The following discussion excludes, then, the LARGE volume compactification
scenario. This belongs to the so called factorizable models.
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Canonically Normalized Fluctuations

The eigenvalues of gMN̄ = ∂M∂N̄K are O(1).

Then physical heavy and light modes are uniquely identified by its
appearance in the scalar potential:

〈gMN̄〉 = [(T−1)†(T−1)]MN̄ (Cholesky decomposition)

T =

(
(TH)i

j 0
(THL)αj (TL)αβ

)
,(

Ĥ
L̂

)
= T ·

(
Ĥc

L̂c

)
. (6)

The Ĥ i
c are linear combinations of only the Ĥ i with O(1) coefficients:

V (〈H〉+ Ĥ, 〈L〉+ L̂) = V (〈H〉+ TH · Ĥc , 〈L〉+ THL · Ĥc + TL · L̂c) . (7)

The kinetic part and canonical normalization are irrelevant for our
discussion, so we can focus in the potential part of the Lagrangian.
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Scalar potential and vacuum structure

Scalar potential, G = K + ln |W |2,

V = eG
(

gM̄NGM̄GN − 3
)
. (8)

Expanding in ε the leading terms are

V0 = eK
(

gM̄NF 0,M̄F0,N − 3|W0|2
)
, (9)

where F0,i = ∂iW0 + (∂iK )W0, F0,α = (∂αK )W0.

Solutions for F0,i = 0 are not decoupled for generic K .

Decoupling requires 〈W0〉 ∼ O(ε). (This also ensures an O(ε) hierarchy).

With this in mind solve ∂MV = 0, φM = φM
0 + εφM

1 ,

O(1): decoupling at the SUSY solution ∂iW0 = 0, fixing all H i
0 if all

eigenvalues for ∂i∂jW0 are O(1).

O(ε): shift in H i is determined

H i
1 = −(K̂−1)i

j̄g
j̄M (∂MW1 + W∂MK ) , where K̂ ī

j = g īk∂k∂jW0 . (10)

At H i = H i
0 + εH i

1: GM = O(1) , Gi = O(ε) , Gα = O(1).
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Effective action

Vfull = V (〈H〉,L) + Vint(〈H〉,L) .

At the Gaussian level,

Vint = −1
2

VIV IJVJ |H=〈H〉 , I = i , ī . (11)

Up to O(ε2) we have, g̃i j̄ = (g j̄ i )−1

∂i∂j̄V |0 = eK∂j̄∂k̄ W 0 g k̄ j ∂i∂jW0

∂iV |1 = eG∂i∂jW0Gj/W

}
⇒ Vint = −eGGi g̃i j̄G

j̄
. (12)

Thus with g̃ᾱα = (gαᾱ)−1, satisfying g̃ᾱα = gᾱα − gᾱi g̃i j̄g
j̄α,

Vfull = eG
[
GM̄

(
gM̄N − gM̄i g̃i j̄g

j̄N
)

GN − 3
]

+O(ε3)

= eG
(

g̃ᾱαGαGᾱ − 3
)

+O(ε3) = (1 +O(ε)) Vsim . (13)
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Supersymmetric Approach

E.o.m. and two derivative truncation L. Brizi, M. Gómez-Reino & C. Scrucca ’09

Exploit the fact we are working with a SUSY theory.

L =

∫
dθ4(−3e−K/3Φ̄Φ) +

(∫
dθ2W + h.c.

)
. (14)

The e.o.m. for a H i chiral multiplet is

∂iW −
1
4

D
2
(

e−K/3Φ̄∂iK
)

Φ−2 = 0 two derivatives
=⇒ ∂iW = 0 . (15)

The resulting effective theory is exact up to leading order in ∂µ/mH , ψα/m3/2
H ,

Fα/m2
H and F Φ/mH .

The two descriptions then differ at (Fα)3, (Fα)2F Φ, Fα(F Φ)2 and (F Φ)3,
where

F Φ =
1
3

KMF M − eK/2W . (16)

With 〈W0〉 ∼ O(ε) all these extra terms are O(ε3).
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Solving ∂iW = 0

Solvin expanding in ε, H i = H i
0 + εH i

1 (now as a chiral multiplet!)

∂iW0(H i
0) = 0 , H i

1 = −W ij
0 ∂jW1|H i

0
. (17)

So with Wsim = W (H i
0) and Ksim = K (H̄ ī

0,H
i
0),

Wfull = Wsim + ε2
(

1
2
∂i∂jW0H i

1H j
1 + ∂iW1H i

1

)
+O(ε3) ,

Kfull = Ksim + ε
(
∂iKsimH i

1 + ∂īKsimH̄ ī
1

)
+O(ε2) . (18)

These corrections are clearly negligible,

Vfull = (1 +O(ε)) Vsim . (19)
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0,H
i
0),

Wfull = Wsim + ε2
(

1
2
∂i∂jW0H i

1H j
1 + ∂iW1H i

1

)
+O(ε3) ,

Kfull = Ksim + ε
(
∂iKsimH i
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Generalized setup: O(1) Yukawa couplings

Introducing Cα-multiplets with almost vanishing VEV’s,

W = W0(H i ) + η W̃0(H i ,Mµ,Cα) + εW1(H i ,Mµ,Cα) ,

K = K0 + K1,αβ̄CαC̄β̄ + (K2,αβCαCβ + c.c.) +O(C3) , (20)

Mµ denoting any kind of multiplet with O(1), VEV.

W̃0 = Y3,αβγ(H i ,Mµ)CαCβCγ +O(C4) ,

W1 = W̃1(H i ,Mµ) + µ2,αβ(H i ,Mµ)CαCβ +O(C3) . (21)

The following analysis can be generalized allowing O(1) mass terms.

Effective Theory
Solving ∂iW = 0 around ∂iW0(H i

0) = 0

Wfull = Wsim −
1
2

(
η∂iW̃0 + ∂iW1

)
W ij

0

(
η∂jW̃0 + ∂jW1

)
+O(η3, η2ε, ηε2, ε3) ,

Kfull = Ksim − η
[
∂iKsimW ij

0 ∂jW̃0 + ∂īKsimW
ī j̄
0∂j̄W̃ 0

]
+O(ε, η2) .

(22)
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Corrections

In the field-space region |C| . O(ε)

C-dependent parts

Wsim and Ksim are of O(ε3) and O(ε2) respectively.

With W0 = O(ε) these induce O(ε4) terms in V .

The induced couplings in Wfull and Kfull are at most of O(ε4) and O(ε3)
respectively., then

V (C)full = (1 +O(ε)) V (C)sim . (23)

Non-trustable operators
Schematically if W ⊃ YNCN :

δW ⊃ 1
mH

YNi YNj C
Ni +Nj , δK ⊃ 1

mH
∂iKsimYNi C

Ni + h.c. (24)
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Gauge Dynamics (Valid also in flat space)

Gauging an isometry group G generated by holomorphic Killing vectors
XA:

δλφ
M = λAX M

A , δλφ̄
M̄ = λ̄AX̄ M̄

A . (25)
With holomorphic gauge kinetic functions

fAB = δAB fA(H i ,Mµ,Cα) , Re(fA) = g−2
A . (26)

D-term potential

VD =
1
2

∑
A

g2
AD2

A , with DA = iX M
A GM . (27)

Comments on freezing

Gauge invariance of W0, relates the e.o.m.’s X i
A∂iW0 = 0.

Is not a meaningful gauge invariant statement for charged fields.

We impose
X i

A = 0 . (28)
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Unbroken Symmetry (No charged Mµ)

The solution to ∂iW = 0, H i , now further induces

fAB,full = fAB,sim − ∂i fABW ij
0 ∂jW̃0 +O(ε, η2) . (29)

New terms in the scalar potential

δVD ⊃
g2

AYNi

mH
CNi +4 +

εg2
AµMi

mH
CMi +4 . (30)

Taking C ∼ ε these are again negligible.

Comments
Even at two derivative level neglecting the covariant derivatives misses
FD and D2 terms.

In particular this approach cannot lead to g4
A terms.

These are suppressed by powers of mH .
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Broken symmetry (Charged Mµ)

G spontaneously broken to H: â ∈ G/H, and a ∈ H.

Extra heavy chiral multiplets: eaten by the Vector multiplet.

These cannot be frozen being stabilized by D-term dynamics.

The full massive Vector multiplet should be properly integrated out.

SUSY integration of the Vector multiplet Arkani-Hamed, Dine, Martin & Martin ’98

E.o.m. neglecting covariant derivatives, 〈D〉/m2
V � 1,

∂VâK = 0 . (31)

Gauge fixing: M µ̂ = 〈M µ̂〉 = M µ̂
0 , M µ̂ such that 〈χâ,µ̂〉 6= 0, i.e.,

non-vanishin component in the would-be Goldstone direction.

Denoting LA
′

the remaining chiral fields and V 0
â (LA

′
) the solutions, the

effective theory is described by

K ′ = K (M µ̂
0 ,L

A′
,V 0

â (LA
′
),Va) (32)
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Back to the unbroken case

The new theory is described by

K ′ , W ′ = W0(H i ) + εW1(H i ,M µ̂
0 ,L

α′
) , f ′a = f (M µ̂

0 ,L
A′

) , (33)

and

Gauge symmetry is un-broken.

Is possible to define a simplified theory

K ′sim = K ′(H i
0, H̄

ī
0) , W ′

sim = W ′(H i
0) , f ′a,sim = f ′a(H i

0) , (34)

and re-do our previous analysis for the matching.

This simplified theory coincide with the one obtained from,

Ksim = K (H i
0, H̄

ī
0) , Wsim = W (H i

0) , fA,sim = fA(H i
0) , (35)

after the integration of the heavy vector multiplet using the very same
gauge fixing.
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Back to the unbroken case
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A′

) , (33)
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0) , (35)

after the integration of the heavy vector multiplet using the very same
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Conclusions

Summary

In systems where the superpotential for the "moduli" is of the form

W = W0(H i ) + εW1(H i ,Mµ) , (36)

with arbitrary sufficiently regular Kähler potential, freezing of the H chiral
multiplets is a reliable approach provided that these are neutral and at H i

0

〈W0〉 ∼ O(ε) , ∂iW0 ∼ O(ε) , ∂i∂jW0 ∼ O(1) . (37)

Higher order couplings not described by the simple description are due
to the presence of O(1) couplings in the matter sector. W ⊃ YMCM :

δW ⊃ YM1YM2C
M1+M2 , δK ⊃ YMCM .
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The End

Thanks!
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