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Motivation

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

Parameters Parameters
’t Hooft coupling string scale
λ = g 2

YM Nc α′eff ∝ 1√
λ

(keeping RAdS = 1)

number of colours string coupling
Nc gs ∝ 1

Nc
(keeping λ fixed)

The gravity/string side is ‘easy’ at strong coupling
– conventional supergravity description
– strings are classical/semiclassical

α′ corrections difficult for the string worldsheet theory−→ Difficult to extend
to smaller λ.

Integrability: Solve the worldsheet theory exactly for any α′ (with gs = 0)
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Integrability program:

Goal: Solve exactly N = 4 SYM or superstrings in AdS5 × S5

in the large Nc limit for any value of the coupling λ = g 2
YM Nc

. . . what do we mean by ‘solve’?
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Basic questions

Gauge theory side:

N = 4 is an exact CFT

Find the spectrum of the dilatation operator

Equivalently, find the anomalous dimensions of all operators in N = 4 SYM
as a function of the coupling constant g 2 = λ/16π2

〈O(x)O(y)〉 =
const

|x − y |2∆

String theory side:

Find energy states of a superstring in AdS5 × S5

I.e. find the energy levels of quantized worldsheet QFT of the superstring

. . . in fact these questions coincide
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AdS/CFT dictionary

Operators in N = 4 SYM ←→ (quantized) string states in AdS5 × S5

Single trace operators ←→ single string states

Multitrace operators ←→ multistring states

Large Nc limit ←→ suffices to consider single string states

Operator dimension ←→ Energy of a string state in AdS5 × S5
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The worldsheet QFT of the superstring in AdS5 × S5

Consider the worldsheet theory of the string in AdS5 × S5 in a (generalized)
light cone gauge

Worldsheet hamiltonian corresponds to translations in global AdS time

One U(1)R charge is uniformly spread on the string worldsheet
– this defines the σ coordinate
– identifies the size of the worldsheet cylinder with the charge J of the
corresponding state

One obtains a highly interacting theory

The theory is not conformal (c.f. BMN limit/pp-wave)

The theory is not relativistic (in the two-dimensional sense)
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The worldsheet QFT of the superstring in AdS5 × S5

Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring
is integrable (on the classical level)

Assuming quantum integrability one may proceed to solve the theory exactly
on an infinite plane (historically this was considered in the spin-chain
language [Beisert,Staudacher])

Identify explicit global symmetry — suc (2|2)× suc (2|2) [Beisert]

Guess the set of asymptotic states (using information from pp-wave
limit/gauge theory)

Find the S-matrix between these states which satisfies the Yang-Baxter
Equation and has the appropriate global symmetry

S12S23S13 = S13S23S12

This fixes the S-matrix up to an overall scalar factor (≡ ‘dressing phase’)

S(p1, p2) = S0(p1, p2) ·
[
Ŝsuc (2|2)(p1, p2)⊗ Ŝsuc (2|2)(p1, p2)

]
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]
Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 8 / 26



The worldsheet QFT of the superstring in AdS5 × S5

Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring
is integrable (on the classical level)

Assuming quantum integrability one may proceed to solve the theory exactly
on an infinite plane (historically this was considered in the spin-chain
language [Beisert,Staudacher])

Identify explicit global symmetry — suc (2|2)× suc (2|2) [Beisert]

Guess the set of asymptotic states (using information from pp-wave
limit/gauge theory)

Find the S-matrix between these states which satisfies the Yang-Baxter
Equation and has the appropriate global symmetry

S12S23S13 = S13S23S12

This fixes the S-matrix up to an overall scalar factor (≡ ‘dressing phase’)

S(p1, p2) = S0(p1, p2) ·
[
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Ŝsuc (2|2)(p1, p2)⊗ Ŝsuc (2|2)(p1, p2)
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The worldsheet QFT of the superstring in AdS5 × S5

Generalize crossing equation for the scalar factor [RJ]

[Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution
of the crossing equation — the S-matrix is currently known exactly

Poles of the S-matrix lead to an infinite set of bound states labelled by Q.
These have to be added to the set of asymptotic states

The theory is solved in the infinite volume limit!

The S-matrix is a highly nontrivial function of λ (equivalently α′) which
incorporates α′ corrections to all orders!

Caveat: We still have to use this information to find the spec-
trum on a cylinder of finite size
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incorporates α′ corrections to all orders!

Caveat: We still have to use this information to find the spec-
trum on a cylinder of finite size
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Spectrum on a cylinder

In general this is a very complicated problem even for integrable QFT’s

Something may be said about large volume behaviour

The spectrum on a cylinder of large size is given by a Bethe ansatz

e ipi L =
∏
k 6=i

S(pi , pk )

In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert,
Staudacher]

But on top of this there are virtual corrections — Lüscher corrections

Lead to violations of the Bethe Asnatz

All this has a natural counterpart on the gauge theory side. . .
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Gauge theory counterpart

In N = 4 SYM compute anomalous dimensions from two-point correlation
functions

〈O(x)O(y)〉 =
const

|x − y |2∆

Correspond to the Bethe Ansatz

e ipi L =
∏
k 6=i

S(pi , pk )

Correspond to

1 Lüscher corrections

2 ... and multiple Lüscher corrections
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The Konishi operator

Simplest operator which is not protected by supersymmetry — the Konishi
operator

tr Φ2
i ←→ tr Z 2X 2 + . . . ←→ tr ZD2Z + . . .

Its anomalous dimension should be given by the ABA exactly up to 3 loops:

EBethe = 4 + 12g 2 − 48g 4 + 336g 6 − (2820 + 288ζ(3))g 8 + . . .

The true result is
E = EBethe + ∆wrapping E

with ∆wrapping E appearing first at 4 loops

A direct 4-loop perturbative computation was completed by F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon
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Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 20 / 26



Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 20 / 26



Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 20 / 26



Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 20 / 26



Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 20 / 26



The Konishi computation

For the Konishi at 4 loops only the F-term like expression contributes

∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

What particles should circulate in the loop?

fundamental magnons (Q = 1)
Q-magnon bound states (in the antisymmetric representation)
Moreover we should sum over all internal states of these particles ≡

P
b

We have to derive the S-matrix between the Q-magnon bound state and the
fundamental magnon (previously explicitly known only for Q = 1 and Q = 2)
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fundamental magnon (previously explicitly known only for Q = 1 and Q = 2)
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∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

We have (
z−

z+

)2

=
16g 4

(Q2 + q2)2
+ . . .

The scalar part gives

S
scalar ,sl(2)
Q−1 =

3q2 − 6iQq + 6iq − 3Q2 + 6Q − 4

3q2 + 6iQq − 6iq − 3Q2 + 6Q − 4
·

16

9q4 + 6(3Q(Q + 2) + 2)q2 + (3Q(Q + 2) + 4)2

The matrix part (summed over b) evaluates to

S
matrix,sl(2)
Q−1 =

5184Q2(3q2 + 3Q2 − 4)2g 4

(q2 + Q2)2((3q − 3iQ + 3i)2 − 3)2

We are left with an integral over q and a summation over Q
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The integral over q can be carried out analytically by residues

The result is

∞∑
Q=1

{
− num(Q)

(9Q4 − 3Q2 + 1)4 (27Q6 − 27Q4 + 36Q2 + 16)
+

864

Q3
− 1440

Q5

}

where

num(Q) =7776Q(19683Q18 − 78732Q16 + 150903Q14 − 134865Q12+

+ 1458Q10 + 48357Q8 − 13311Q6 − 1053Q4 + 369Q2 − 10)

Two last terms give at once 864 ζ(3)− 1440 ζ(5)

The remaining rational function remarkably sums up to an integer giving
finally

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon]
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Generalizations: twist two operators

We computed the 4-loop wrapping corrections for arbitrary twist two
operators

OM = tr ZDM Z + . . .

where D is a light-cone derivative and M is any even integer
[Bajnok,RJ, Lukowski]

The Konishi operator is just OM=2.

So far there is no gauge theory perturbative computation for arbitrary M

The 4-loop correction obeys the maximal transcendentality principle of
[Kotikov,Lipatov]

There is a prediction of the pole structure of the anomalous dimensions
analytically continued to M = −1 + ω from BFKL and NLO BFKL equations.

The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej,
Staudacher, Velizhanin]

The wrapping correction exactly restores agreement
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Generalizations: 5-loop Konishi (to appear)

The computation of the Konishi anomalous dimension from multiparticle
Lüscher corrections can be extended to 5 loops.

Several new features appear...

Due to the special form of kinematics already an infinite set of coefficients of
the BES dressing phase starts to contribute

One has to take into account the modification of the Bethe ansatz
quantization due to the virtual particles

How to check the result?

Not much hope for a direct perturbative computation but there are other
cross-checks...
The final answer should have a nice transcendentality structure...
The contribution of dynamical poles (µ-terms) should cancel between the
dressing phase contribution and the rest of the expression coming from the
matrix part and the modifications of BA quantization
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Lüscher corrections can be extended to 5 loops.

Several new features appear...

Due to the special form of kinematics already an infinite set of coefficients of
the BES dressing phase starts to contribute

One has to take into account the modification of the Bethe ansatz
quantization due to the virtual particles

How to check the result?

Not much hope for a direct perturbative computation but there are other
cross-checks...
The final answer should have a nice transcendentality structure...
The contribution of dynamical poles (µ-terms) should cancel between the
dressing phase contribution and the rest of the expression coming from the
matrix part and the modifications of BA quantization

Romuald A. Janik (Krakow) Integrability methods in AdS/CFT 25 / 26



Conclusions

The agreement of the Konishi computation with the 4-loop weak coupling
perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The computation of the finite size effects through Lüscher corrections is of a
distinctly (2D) quantum field theoretical nature

The result came from a single diagram – in contrast to direct perturbative
computations in gauge theory which are much more complex

This suggests that one can use string theory methods of AdS/CFT as an
efficient calculational tool also at weak coupling

May be possible to access information on strings in highly curved AdS5 × S5

Various groups proposed formulations (functional relations/systems of
nonlinear integral equations) which aim to give an exact solution for any λ

Use 5-loop Konishi as a testing ground for these formulations...
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