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Motivation

• F-Theory: Nonperturbative version of type IIB string theory
[Vafa;Sen]

• Add two auxiliary dimensions, singularities of compactification
manifold encode brane positions

• Recently, lots of interest in F-theory for model building interest
[Beasley,Heckman,Vafa;Saulina,Schäfer-Nameki;Bourjaily;Tatar,Watari. . . ]

• Local models do not address global constraints like tadpole
cancellation

• Four-form flux can stabilise moduli, including brane positions

• Simple example: F-Theory on K3 × K̃3, where K̃3 is an elliptic
fibration over P1

[Görlich et al.;Lust et al.; Aspinwall,Kallosh;Dasgupta et al.]

• Includes as special case the type IIB orientifold K3 × T 2/Z2

[Angelantonj et al.]
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F-Theory/M-Theory Duality

M-Theory
on

X6 × T 2

Compactify

one S1

Type IIA
on

X6 × S1
A

T -dualise

along S1
A

Type IIB
on

X6 × S1
B

(RB = 1/RA)

RB → ∞
(RA → 0)

Type IIB on X6

Four noncompact

dimensions

Shrink one S1

M-Theory on
X6 × T 2

Vol (T 2) → 0

M-Theory/F-Theory

Duality

Fibrewise duality: X6 × T 2
 elliptically fibred CY4

dual to type IIB on base of fibration
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C. Lüdeling (bctp/PI, Bonn University) Fixing Branes by Fluxes String Pheno 2009, Warsaw 3 / 14



F-Theory/M-Theory Duality

M-Theory
on

X6 × T 2

Compactify

one S1

Type IIA
on

X6 × S1
A

T -dualise

along S1
A

Type IIB
on

X6 × S1
B

(RB = 1/RA)

RB → ∞
(RA → 0)

Type IIB on X6

Four noncompact

dimensions

Shrink one S1

M-Theory on
X6 × T 2

Vol (T 2) → 0

M-Theory/F-Theory

Duality

Fibrewise duality: X6 × T 2
 elliptically fibred CY4

dual to type IIB on base of fibration
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C. Lüdeling (bctp/PI, Bonn University) Fixing Branes by Fluxes String Pheno 2009, Warsaw 3 / 14



K3: Calabi–Yau Two-Fold

• H2(K3, R) has signature (3, 19)

• Holomorphic two-form and Kähler form spanned by three real
forms ωi with ωi · ωj = δij and overall volume ν:

ω = ω1 + iω2 j =
√

2ν ω3

• K3 is hyperkähler, i.e. SO(3) rotating the ωi  geometry fixed
by positive-norm three-plane Σ ⊂ H2(K3, R) and ν

• Moduli space has 3 × 19 + 1 = 58 dimensions

• Integral basis for H2(K3) with intersection matrix

U ⊕ U ⊕ U ⊕ (−E8) ⊕ (−E8), where U =

(
0 1
1 0

)
and E8 is

Cartan matrix of E8

⇒ The ωi must have components along the U blocks,
components along “E8 directions” determine gauge group
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C. Lüdeling (bctp/PI, Bonn University) Fixing Branes by Fluxes String Pheno 2009, Warsaw 4 / 14



K3: Elliptic Fibration and F-Theory Limit

• For an elliptically fibred K3, require integral cycles B and F
(base and fibre) with

• intersection matrix

(
−2 1
1 0

)

• B · ω = F · ω = 0

⇒ (B , F ) spans a U block, and we can parametrise the Kähler
form as

j = b B + f F + caua (where ua · ω = 0)

• F-theory limit: Fibre volume shrinks to zero ⇒ b → 0. K3
volume is ν ∼ bf − caca, so we have to take ca → 0 as fast as√

b (as intuitively expected)

• In the limit, j = f F is the Kähler form of the P1 base
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Cycles Between Branes

[Braun,Hebecker,Triendl]

a b

c

Brane 1 Brane 2

3

4
−1 +1

• One leg in the base, one in the fibre torus

• Shrink to zero when the branes are moved on top of each other.

• They are topologically a sphere ↔ self-intersection −2.

• Cycles meeting at a brane intersect once, cycles encircling
O planes (×) do not intersect
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Shrinking Cycles and Gauge Enhancement

Intersection matrix of shrinking cycles determines gauge group:
Consider e.g. T 2/Z2 orientifold: One O7, four D7s  SO(8)

3

2 1

4

 




−2 1 0 0
1 −2 1 1
0 1 −2 0
0 1 0 −2




In appropriate basis, complex structure of K̃3 is [Braun,Hebecker,Triendl]

ω =
α

2
+ u e2 + s

β

2
−
(

u s − z2

2

)
e1 + zI ÊI

Explicit mapping between complex structure and brane positions!
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Flux Potential

• Type IIB: Three-form flux G3 on the bulk, two-form gauge flux
F2 on the branes can stabilise geometric and brane moduli

• In M-theory, these are combined into four-form flux G4 (brane
moduli become four-form geometric moduli)

• Consistency conditions:

• Flux quantisation: flux needs to be integral
• Tadpole cancellation (without spacetime-filling M2 branes)

1

2

∫

K3×fK3

G4 ∧ G4 =
χ

24
= 24

• G4 needs to have exactly one leg on each on base and fibre for
Lorentz invariance, hence two on each K3: G = G IΛηI ∧ η̃Λ,
but no flux along B or F
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Potential

• Flux potential (V is the volume) : [Haack,Louis]

V =
1

4V3

(∫

K3×fK3

G ∧ ∗G − χ

12

)

• K3 × K̃3 is not a proper CY4: Holonomy is SU(2) × SU(2)

• G4 induces map G : H2(K̃3) → H2(K3) and its adjoint G a by

G η̃ =

∫

fK3

G ∧ η̃ G a η =

∫

K3

G ∧ η

• Potential is concisely expressed in terms of these maps
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K3 × K̃3 Flux Potential

V = − 1

2(ν · ν̃)3

(
∑

j

‖G ω̃j‖2
⊥

+
∑

i

‖G aωi‖2
e⊥

)

Here ‖·‖2
⊥

is the norm orthogonal to the three-plane

• Positive definite potential

• Manifestly symmetric under SO(3)

• Minima at V = 0:

G ω̃j ∈ 〈ω1, ω2, ω3〉 G aωi ∈ 〈ω̃1, ω̃2, ω̃3〉

• ν and ν̃ are unfixed, flat directions (when V = 0)
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Minima: Existence, Flat Directions

• Minkowski minima do not necessarily exist: G aG must be
diagonalisable and positive semi-definite (not guaranteed
although G aG is self-adjoint, since metric is indefinite!)

• Flat directions generally exist and are desired: M-theory moduli
become part of 4D vector fields in F-theory limit  fixing these
moduli breaks the gauge group (rank-reducing)

• Flux also induces explicit mass term for three-dimensional
vectors

• Vacua can preserve N = 4, N = 2 or N = 0 supersymmetry in
four dimensions, depending on the action of G on the
three-plane
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Stabilisation Strategy

• F-theory limit fixes Kähler form (up to base volume), j = f F

• Holomorphic two-form determines shrinking cycles, i.e. gauge
enhancement

• To stabilise a desired brane configuration:

• Identify set of shrinking cycles to obtain desired brane stacks

• Choose these as part of a basis of H2
(
K̃3
)

and complete by

integral cycles
• Find an integral block-diagonal flux that satisfies tadpole

cancellation condition (strong constraint and computationally
costly)
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Examples

We give explicit examples of

• The T 2/Z2 orientifold with
SO(8)4: Four stacks of four D7
branes and one O7 plane each

3

2 1

4

• Moving one brane off a stack.
 SO(8)3 × SO(6) × U(1) or
SO(8)3 × SO(6)

• Moving two branes
 SO(8)3 × SO(4) × SU(2)
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Conclusion

• We have a nice geometric picture of D7 brane motion

• We found the flux potential in M-theory and explicit conditions
for the existence of minima and gauge symmetry breaking

• Translation to F-theory ⇒ recipe to find fluxes that stabilise a
desired situation

• Explicit examples: We can move branes

• Open problem: Numerical scan of matrices is very
time–consuming

• Outlook: Generalise to elliptically fibred four-folds to get
physically more realistic models, in particular intersecting branes
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