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Motivation

 Two popular lines of research in type Il vacua are

Closed strings: Flux vacua Open strings: D-brane models
CY;

D7

D7

Moduli stabilization Chirality
de SiFtel’ vacua MSSM/GUT spectra
Inflation Yukawa couplings

Warping Instanton effects



Motivation

“* Both subjects have greatly evolved in the past few years,
but mostly independently

“* Some overlapping research has shown that fluxes can have
interesting effects on D-branes
Chmara, Vbdney, Unanga 05

) . o Liiot, Reffent, Stiebenger 04
4 Soft-terms/moduli stabilization Gonte, 2. 7 05

4+ D-terms and superpotentials Wartuce: 06
Tnippathy, Trivedi 05
4+ Instanton zero mode lifting Saalina 05

Rallast, Rasthani-Poon, “fomasielle 05

4+ Warping effects Slin's Ttk



Motivation

* Both subjects have greatly evolved in the past few years,
but mostly independently

“* Some overlapping research has shown that fluxes can have
interesting effects on D-branes

“* The most interesting sector is however still missing




The problem

* The chiral sector of a D-brane model arises from
open strings with twisted boundary conditions

“* We do not know the precise effect of fluxes and
warping microscopically

4+ CFT tricky because of RR flux

4+ Full D-brane action not available
beyond U(1) gauge theories



The strategy

4 , , , )
Consider THPC | /Heterotic strmgs
in the field theorg limit

- J

Idea:

* Twisted open strings can be understood as wavefunctions

* Their coupling to fluxes can be read from the 10D action




Type | flux vacua

“* The particle content of type | theory is

bosons fermions

gravity gunN,Cun,® Yu, A closed st.
vector Ay X open st.
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Type | flux vacua

“* The particle content of type | theory is

bosons fermions
gravity gun,Cun, ¢ Yu, A closed st. Fluxes
vector Ay xX* open st.
Torsion
\ F3 = dCQ + ws
Open string e.o.m. Fy, = dA

<¢+i€¢/2Fg)X = 0

¢/2
D FEP _ GTFMNFMNP — 0



Type | flux vacua

“* The gravity background is of the form

ds?> = Z71%ds2, 5 + dsi%,

with Ms an SU(3)-structure manifold (= forms Jmn, Qmnp)
such that

Ze? = g, = const.
g;/2e¢/2F3 = kg 6_3¢/2d(63¢/2j)
d(e?TNJT) = 0 Full 56
Streminger 56
If Ms is complex = N=1 SUSY vacuum s 0

If Ms is not complex = N=0 no-scale vacuum Gimara & Graiia 07
List, T, Warntuces, Toimpia OF



Twisted tori

» Ansatz for ‘Me: elliptic fibration

, B4 : base
dshy, = 7-1/2 Z (e®) —|—ZS/2dSZB4 Mo : fiber
aclls
simplest examples — (warped) twisted tori (B4 = T%)
They can be described as:
) ST bundles
i) Coset manifolds T\ G G : nilpotent Lie group

[ : discrete subgroup
e Parallelizable

e Explicit metric



Twisted tori

» Ansatz for ‘Me: elliptic fibration

B4 : base
dsig, = 2717 ) (e)? + Z%/2ds3, M2 : fiber
aclls
simplest examples — (warped) twisted tori (B4 = T4)
For instance:
dsy, = Z (Rypdz™)?
m=1,2,4,5
dsfi, = [(Rsdx®)? + (Ree®)?]
F3 = —N(dz' ANdx?® +dz* Adz®) ANe® — gt xpa dZ2

M
% = da® + 7(x1da:2 — z?dxt + 2*dx® — 2 dx?)



Twisted tori

In our example In general
1 -~
de® = M(dx' A dx® + dx* A dx) de = 3 freb nee
1 2 4 5
e* Ne e*Ne 1
de® = R°M de® = - fe” Nef
( iRy | Rk ) € 7 Qe E



Twisted tori

In our example In general
- 1~
de® = M(dx' A dx® + dx* A dx) de” = 5 0 &0 A e
1 2 4 5
e* Ne e*Ne 1
d€6:R6M da:_ab/\c
( R R -+ RiR- ) e b€ €

fpe © structure constants of a 6D Lie algebra g

generators of g : 9, = €,%(x) Opo 0y, 0e] = — f20,



Twisted tori

In our example In general
1 -
dé® = M(dz' A da? + da* A da) de® = 5 fi.e’ NE
1 2 4 5
e* Ne e*Ne 1
de® = R°M de® = - fe” Nef
( RiRs | Raks ) ST

fp. = structure constants of a 6D Lie algebra g

generators of g : 9, = €,%(x) Opo (00, 0c] = — fi-0a
exp(g) = Hs x R G = exp(g)
Mg =T \Hs x Z\R Mg =T\G

(ForZ — 1)



Dimensional reduction

Dollowing Cremades, Vdies, 7. M. 04
* Consider a U(N) gauge group (i.e., N D9-branes)

“* The bosonic d.o.f. come from the 10D gauge boson Awm

Ay = B U, + W]f‘feag U, : Cartan subalgebra

“ Asusual (By)#0 = UWN)—][Una) = Gumr



Dimensional reduction

Following Cremades, Wdies, 7. M. 04
* Consider a U(N) gauge group (i.e., N D9-branes)

“* The bosonic d.o.f. come from the 10D gauge boson Awm

Ay = By U, + Wffeag U, : Cartan subalgebra

“ Asusual (B})#0 = UWN)—|[U(na) = Guns
“* We can expand the bosonic fields as
B(z",z') = bu(a) B(z') da* + > 0" (@) (B™) +£M(z") em  U(na) Adj.
Wizt z') = w,(z") W(z") dz* + Zwm(x“) O™ (") em (Mo, ) bif.

... and similarly for fermions



Laplace and Dirac egs.

“* The e.o.m for the adjoint fields read (Z—1)

9,0°B = —m%B gauge bosons
a 1 By % :
"0, + §fP+ X6 = MmyBsXe fermions
scalars
Pf‘* = % (1+Tpg,) Bs = 6D Maj. matrix

¢ For bifundamental fields:

see (Camana s Tall



Recap

¢ We want to understand the effect of fluxes on non-Abelian
gauge theories

“* Nice framework: type I/heterotic flux vacua — 10D field theory
“* Simplest examples in terms of twisted tori

“* The effect of fluxes appears in the modified Dirac
and Laplace equations. For adjoint fields and Z—1:

0°B = —m%pB

Oq
a A3 1 By L Kk
0, + §fP+ X6 = mxB6X6



Gauge Bosons

< Laplace equation mgg ~ _mQBBj

“* In our example:

A M A M
R0 = (9961 —+ 73326336 R, 0, = 8954 + ?335(9356

A M A M
RQ@Q — 8902 — Exlﬁxa R585 — 3335 — 7:1348336

R303 = 03 RgOg = Oye
If B does notdependon x6= 9* =9, = B —= 627”"5'5 k= (kv, ko, k3, ka, ks)

If B depends on x© like o2mikez® _  eq. of a W-boson in a magnetized T4,
with magnetic flux keM

F§' = kM (dx' A da? 4 da* A dx®)



Gauge Bosons

< Laplace equation WB = —mQBBj

* KK modes on the S’ fiber are analogous to magnetized open
strings = B = 6-functions & sums of Hermite functions

M=0 M40
4+ Fluxes freeze moduli :
= extra degeneracies : T

2 2
. kM| ke ks
— 1 6 3
ML= RR, MUY (R6> i (Rg

—

} 2lel /R

A

A ==} lel/Rs
A




L0 Bosons
Ga

ion
lace equat
< Lap

—my B
B —

en
ized op
tize
agne- ns
tom ctio
Oous . fun
re analog Hermite
he S fibeéz SIS O
t lon
on ctio
e
K Mo B =
* K ings =

Str|ng

duli
moat
. |:|uXeJ[Sra degen
ex
=

7X
&Z S
2 .-v~
L2 ...Q.
ZA L7 .Q.
2 .'.00
%0..0 .Q.h
%'Q'Q P
%%Qq’oﬁq
s
d o,’o'"

L7
LA
o 00‘...0..’7
0000%

r B
ions are

efunction
av

4 YV lized

7
.O.:%. 10
..Q.Q#
%..Q'
...ynh
'q.'.h@.
0’.’....0.
0.%%##’.&#
0.%%'.%0%#%
0.%%%%’.’.%
o %‘.‘Q’.’.‘.
y 0&.':.'."".‘;..'
05!




Group Manifolds

“* While the previous example was quite simple, one can solve
the Laplace eq. for more general manifolds of the form '\ G

“* A natural object to consider is the non-Abelian Fourier transform

fs 0(5) = /G B(g)ms(9)¢(5)dg

unirrep of G \

auxiliary Hilbert space H



Group Manifolds

“* While the previous example was quite simple, one can solve
the Laplace eq. for more general manifolds of the form '\ G

4 Let us consider the function

B2Y(9) = (mz(9)e, )

“——— scalar product in ‘H
4 Note that procuct!

A(ms(9)e,¥) = (1a(9)7a(A)e, ¥)
4+ So we can take ¥ = d-function and ¢ eigenfunction

4+ Finally we can impose [-invariance via

Bs(g) = > mas(v9)¢e(50)

yel’



Group Manifolds

“* While the previous example was quite simple, one can solve
the Laplace eq. for more general manifolds of the form '\ G

“* By construction, we have a correspondence of unirreps of G
and families of wavefunctions in '\ G

< Previous example — }QPH Heisenberg group = (Z, 7, 2)

Tk’ U(S) — €2Wik;[z+f'g/2+g'§] U(§—|— 517) —> fiber KK modes

LT S 7 =
e o= ik @ A Ry ) > base KK modes



Fermions

“* Dirac equation “+ F)U = mx‘I’ﬂ

“* Squared Dirac eq.




Fermions

. . D « Paé?a
¢ Dirac equation [@'(D + F)VU = mX\Ifﬂ 1
F < —fPB4
< Squared Dirac eq. ™~ 2

’ 0-
, ’ %\/\/\;E
*M+F)V = 2@ gy WA
) (D +F)U = |m,| MO

4+ Previous example: F =0

e = flux density

All entries of the matrix commute = standard diagonalization



Fermions

. . D «— TI90,
< Dirac equation @-(D +F)U =m \Ifﬂ
) F 1fPB4
< Squared Dirac eq. ™~ ’ + £
o woYW
'(D+F)\If = |my|*V ] s
E_ €3 4

4+ Previous example: F =0

0

2 ks
f _ O B AkBakﬁ +3 R66 12X
3 —_—
1 Ak + 252 8
ek

1. Aig},kb‘—'_ |R§| 4x

f:t = +1 B
n=0" n=0"
0 M, — e Y &

0



Fermions

% Squared Dirac eq. 'mrF)\D = |m, |°T J

[ Omd™ 0 0 0 \
) 0  0pd™ —ebp  —€d,e
CDHENDAE) = o g.0m <d
& ‘ Z m® < z1
7S o \ 0 e —eda D,0m -

(@]
()
e/



Fermions

< Squared Dirac eq. '(D+F)\If = |m, |°T j

4+ More involved example: F # 0

[ Ond™ O 0 0
. 0 0y, 0™ —e0,3 —e0,2
;52124; F)*D+F) = 0 - (?23 5, (?m e b1
S 5o /o,i?e/\ o \ 0 5822 —8851 0, O™ — £2 )
2157 1 1
Eigenvectors: - )
321 00,3051 + Mg (?22
53 = 552 B g:l: = Azfézf — Mg 321 B
A23 0.3053 + mgi
2 2 9 1 2
e T m, = (20 y/eh +4m)



Recap |

“* We have computed the spectrum of KK modes in several
type | vacua based on twisted tori

< If one assumes the hierarchy Vol}g/f > Vol,

then one has

KK KK
€= MAux K Mpase < Mg

<N

Masgless modes_ Base KK modes  Fiber KK modes
and lifted moduli

R . .
W = const like in T8 P likein T Exotic, localized Y



About warping

“* In the above we have assumed a constant warping

% One can check that V2,7 = —¢% + ...

“* So for \/01119/42 > Voly;, we have ¢ < m{f;ge and

Z = const. is a good approximation
% However, for Vol}/” ~ Voly, we have

+ Warping effects

4 Fiber modes more localized = should dominate



Type |IB T-dual

“* We can take our models to type IIB by T-duality
on the fiber coordinates:

N D9-branes N D7-branes
KK mode on By ~ (T%); x (T?); — KK mode on (T?); x (T%),
KK mode on II; ~ (T%)3 Winding mode on (7%);
D7 . | . B=B,+ H,
----- v
)
° B =B,

____________________

(Tz)1 (Tz)2 i (T%) EER /A,



Conclusions

“* We have considered type | flux vacua in order to see the
effect of fluxes on open strings via field theory calculations

“* Assuming constant Z, one can compute exactly the massless
and massive spectrum of wavefunctions for models based on
twisted tori and group quotients ' \ G

“* The techniques used here for adjoint fields also work for
bifundamental chiral multiplets wee Dimana's Tall

“* Computing 4D couplings via wavefunctions, we can compare
with the ones from 4D sugra. They indeed agree for € small

“* For € not small, however, we expect new phenomena, in part
due to warping and in part due to exotic KK modes



Outlook

“* As a byproduct, we have developed a method for computing
wavefunctions on group manifolds and quotients ' \ G

“* This is not only useful for type | compactifications, but also

for the KK spectrum of type IIA flux vacua
Stlverstein 07

+ de Sitter vacua Fague, Underwood, Shiu, van Biet 05

4+ AdS vacua | Lt & Taampio OF
see Villadore s & Bagenmann ¢ Talhe



Outlook

“* As a byproduct, we have developed a method for computing
wavefunctions on group manifolds and quotients ' \ G

“* This is not only useful for type | compactifications, but also
for the KK spectrum of type IIA flux vacua

. Scluenstein 07

+ de Sitter vacua Fague, Underwood, Shiu, van Biet 05
4+ AdS vacua | Lt & Taampio OF
see Villadono ¢ & ZBagermann o Talto

“* We have also seen that the effect of RR fluxes is very simple
once that the background eom have been applied

.1 .1
(F“c?a +3 [f + eWFgD X6 — (F“’@a + §fPf4> X6

...hint for a CFT computation?



