Open String Wavefunctions in Flux Compactifications

Fernando Marchesano
Open String Wavefunctions in Flux Compactifications

Fernando Marchesano

In collaboration with Pablo G. Cámara
Two popular lines of research in type II vacua are

Closed strings: Flux vacua

Open strings: D-brane models

- Moduli stabilization
- de Sitter vacua
- Inflation
- Warping

- Chirality
- MSSM/GUT spectra
- Yukawa couplings
- Instanton effects

...
Motivation

- Both subjects have greatly evolved in the past few years, but mostly independently.

- Some overlapping research has shown that fluxes can have interesting effects on D-branes:
 - Soft-terms/moduli stabilization
 - D-terms and superpotentials
 - Instanton zero mode lifting
 - Warping effects

Cámara, Ibáñez, Uranga'03
Lüst, Reffert, Stieberger'04
Gomis, F.M., Mateos'05
Martucci'06
Tripathy, Trivedi'05
Saulina'05
Kallosh, Kashani-Poor, Tomasiello'05
Shiu's Talk
Motivation

- Both subjects have greatly *evolved* in the past few years, but *mostly independently*

- Some overlapping research has shown that fluxes can have interesting effects on D-branes

- The most interesting sector is however still missing

\[G_3 \]
The problem

- The chiral sector of a D-brane model arises from open strings with twisted boundary conditions.
- We do not know the precise effect of fluxes and warping microscopically.
 - CFT tricky because of RR flux.
 - Full D-brane action not available beyond U(1) gauge theories.
The strategy

Idea: Consider Type I/Heterotic strings in the field theory limit

- Twisted open strings can be understood as wavefunctions.
- Their coupling to fluxes can be read from the 10D action.
The particle content of *type I theory* is

<table>
<thead>
<tr>
<th>gravity</th>
<th>bosons</th>
<th>fermions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{MN}, C_{MN}, ϕ</td>
<td>A_α^M</td>
<td>ψ_M, λ closed st.</td>
</tr>
<tr>
<td>vector</td>
<td>A_α^M</td>
<td>χ^α open st.</td>
</tr>
</tbody>
</table>
Type I flux vacua

- The particle content of type I theory is

 \begin{align*}
 \text{gravity} & : \ g_{MN}, \ C_{MN}, \ \phi \\
 \text{vector} & : \ A_\alpha^M \\
 \text{bosons} & : \ \psi_M, \ \lambda \\
 \text{fermions} & : \ \chi^\alpha \\
 \text{fluxes} & : \ F_3 = dC_2 + \omega_3 \\
 & \quad F_2 = dA
 \end{align*}
The particle content of type I theory is

- **Bosons:** g_{MN}, C_{MN}, ϕ
- **Fermions:** ψ_M, λ

Closed string e.o.m.:

\[
\left(\mathcal{D} + \frac{1}{4} e^{\phi/2} F_3 \right) \chi = 0
\]

Open string e.o.m.:

\[
D_K F^{KP} - \frac{e^{\phi/2}}{2} F_{MN} F^{MNP} = 0
\]
The gravity background is of the form

\[ds^2 = Z^{-1/2} ds^2_{\mathbb{R}^{1,3}} + ds^2_{\mathcal{M}_6} \]

with \(\mathcal{M}_6 \) an SU(3)-structure manifold (→ forms \(J_{mn}, \Omega_{mnp} \)) such that

\[Ze^\phi \equiv g_s = \text{const.} \]
\[g_s^{1/2} e^{\phi/2} F_3 = * \mathcal{M}_6 e^{-3\phi/2} d(e^{3\phi/2} J) \]
\[d(e^\phi J \wedge J) = 0 \]

If \(\mathcal{M}_6 \) is complex \(\Rightarrow \mathcal{N}=1 \) SUSY vacuum
If \(\mathcal{M}_6 \) is not complex \(\Rightarrow \mathcal{N}=0 \) no-scale vacuum
Twisted tori

- Ansatz for \mathcal{M}_6: elliptic fibration

$$\text{ds}^2_{\mathcal{M}_6} = Z^{-1/2} \sum_{a \in \Pi_2} (e^a)^2 + Z^{3/2} \text{ds}^2_{B_4}$$

simplest examples \rightarrow (warped) twisted tori ($B_4 = T^4$)

They can be described as:

i) S^1 bundles

ii) Coset manifolds $\Gamma \backslash G$

- Parallelizable
- Explicit metric

$A_4 : \text{base}$

$\Pi_2 : \text{fiber}$

$G : \text{nilpotent Lie group}$

$\Gamma : \text{discrete subgroup}$
Twisted tori

• Ansatz for \mathcal{M}_6: elliptic fibration

$$ds^2_{\mathcal{M}_6} = Z^{-1/2} \sum_{a \in \Pi_2} (e^a)^2 + Z^{3/2} ds^2_{B_4}$$

simplest examples \rightarrow (warped) twisted tori ($B_4 = T^4$)

For instance:

$$ds^2_{B_4} = \sum_{m=1,2,4,5} (R_m dx^m)^2$$

$$ds^2_{\Pi_2} = \left[(R_3 dx^3)^2 + (R_6 \tilde{e}^6)^2 \right]$$

$$F_3 = -N(dx^1 \wedge dx^2 + dx^4 \wedge dx^5) \wedge \tilde{e}^6 - g_s^{-1} \ast_{T^4} dZ^2$$

$$\tilde{e}^6 = dx^6 + \frac{M}{2} (x^1 dx^2 - x^2 dx^1 + x^4 dx^5 - x^5 dx^4)$$

Π_2 : fiber

B_4 : base
Twisted tori

In our example

\[d\tilde{e}^6 = M(dx^1 \wedge dx^2 + dx^4 \wedge dx^5) \]
\[de^6 = R^6 M \left(\frac{e^1 \wedge e^2}{R_1 R_2} + \frac{e^4 \wedge e^5}{R_4 R_5} \right) \]

In general

\[d\tilde{e}^a = \frac{1}{2} \tilde{f}^a_{bc} \tilde{e}^b \wedge \tilde{e}^c \]
\[de^a = \frac{1}{2} f^a_{bc} e^b \wedge e^c \]
Twisted tori

In our example

\[d\tilde{e}^6 = M (dx^1 \wedge dx^2 + dx^4 \wedge dx^5) \]
\[de^6 = R^6 M \left(\frac{e^1 \wedge e^2}{R_1 R_2} + \frac{e^4 \wedge e^5}{R_4 R_5} \right) \]

In general

\[d\tilde{e}^a = \frac{1}{2} \tilde{f}^a_{bc} \tilde{e}^b \wedge \tilde{e}^c \]
\[de^a = \frac{1}{2} f^a_{bc} e^b \wedge e^c \]

\(f^a_{bc} \) : structure constants of a 6D Lie algebra \(\mathfrak{g} \)

Generators of \(\mathfrak{g} \) : \(\hat{\partial}_a \equiv e_a^\alpha (x) \partial_{x^\alpha} \)

\[[\hat{\partial}_b, \hat{\partial}_c] = -f^a_{bc} \hat{\partial}_a \]
Twisted tori

In our example
\[d\tilde{e}^6 = M(dx^1 \wedge dx^2 + dx^4 \wedge dx^5) \]
\[de^6 = R^6 M \left(\frac{e^1 \wedge e^2}{R_1 R_2} + \frac{e^4 \wedge e^5}{R_4 R_5} \right) \]

\(f_{bc}^a \): structure constants of a 6D Lie algebra \(\mathfrak{g} \)

generators of \(\mathfrak{g} \): \(\hat{\partial}_a \equiv e_a^\alpha(x) \partial_{x^\alpha} \) \quad \[[\hat{\partial}_b, \hat{\partial}_c] = -f_{bc}^a \hat{\partial}_a \]

\[\exp(\mathfrak{g}) = \mathcal{H}_5 \times \mathbb{R} \]
\[\mathcal{M}_6 = \Gamma_{\mathcal{H}_5} \backslash \mathcal{H}_5 \times \mathbb{Z} \backslash \mathbb{R} \]

In general
\[d\tilde{e}^a = \frac{1}{2} f_{bc}^a \tilde{e}^b \wedge \tilde{e}^c \]
\[de^a = \frac{1}{2} f_{bc}^a e^b \wedge e^c \]

(For \(Z \to 1 \))
Consider a $U(N)$ gauge group (i.e., N D9-branes)

The bosonic d.o.f. come from the 10D gauge boson A_M

$$A_M = B_M^\alpha U_\alpha + W_M^{\alpha\beta} e_{\alpha\beta}$$

U_α : Cartan subalgebra

As usual $\langle B_m^\alpha \rangle \neq 0 \implies U(N) \to \prod_\alpha U(n_\alpha) = G_{unbr}$
Dimensional reduction

Following Cremades, Ibáñez, F.M. '04

- Consider a $U(N)$ gauge group (i.e., N D9-branes)

- The bosonic d.o.f. come from the 10D gauge boson A_M

 \[A_M = B_\alpha^M U_\alpha + W_\alpha^\beta e_{\alpha\beta} \]

 \[U_\alpha : \text{Cartan subalgebra} \]

- As usual \[\langle B_\alpha^m \rangle \neq 0 \implies U(N) \to \prod_\alpha U(n_\alpha) = G_{unbr} \]

- We can expand the bosonic fields as

 \[B(x^\mu, x^i) = b_\mu(x^\mu) B(x^i) \, dx^\mu + \sum_m b_\mu(x^\mu) [\langle B^m \rangle + \xi^m(x^i) e_m \]

 \[U(n_\alpha) \text{ Adj.} \]

 \[W(x^\mu, x^i) = w_\mu(x^\mu) W(x^i) \, dx^\mu + \sum_m w_\mu(x^\mu) \Phi^m(x^i) e_m \]

 \[(\bar{n}_\alpha, n_\beta) \text{ bif.} \]

 ... and similarly for fermions
Laplace and Dirac eqs.

The e.o.m for the adjoint fields read (Z→1)

\[\hat{\partial}_a \hat{\partial}^a B = -m_B^2 B \]

\[\left(\Gamma^a \hat{\partial}_a + \frac{1}{2} f P^B_+ \right) \chi_6 = m_\chi B_6^* \chi_6^* \]

...

\[P^B_+ = \frac{1}{2} (1 \pm \Gamma_B) \]

\[B_6 = 6D \text{ Maj. matrix} \]

For bifundamental fields:

\[\hat{\partial}_a \rightarrow \hat{\partial}_a - i(\langle B_\alpha^\alpha \rangle - \langle B_\beta^\beta \rangle) \]

see Cámaras Talk
Recap

- We want to understand the effect of fluxes on non-Abelian gauge theories
- Nice framework: type I/heterotic flux vacua \rightarrow 10D field theory
- Simplest examples in terms of twisted tori
- The effect of fluxes appears in the modified Dirac and Laplace equations. For adjoint fields and $\mathbb{Z}\rightarrow 1$:

$$\hat{\partial}_a \hat{\partial}^a B = -m_B^2 B$$

$$\left(\Gamma^a \hat{\partial}_a + \frac{1}{2} f P_+^{B_4} \right) \chi_6 = m_\chi B_6^* \chi_6^*$$
Gauge Bosons

- Laplace equation

\[\hat{\partial}_a \hat{\partial}^a B = -m_B^2 B \]

- In our example:

\[
\begin{align*}
R_1 \hat{\partial}_1 &= \partial_{x^1} + \frac{M}{2} x^2 \partial_{x^6} \\
R_2 \hat{\partial}_2 &= \partial_{x^2} - \frac{M}{2} x^1 \partial_{x^6} \\
R_3 \hat{\partial}_3 &= \partial_{x^3} \\
R_4 \hat{\partial}_4 &= \partial_{x^4} + \frac{M}{2} x^5 \partial_{x^6} \\
R_5 \hat{\partial}_5 &= \partial_{x^5} - \frac{M}{2} x^4 \partial_{x^6} \\
R_6 \hat{\partial}_6 &= \partial_{x^6}
\end{align*}
\]

If B does not depend on \(x^6 \) \(\Rightarrow \) \(\hat{\partial}^a = \partial_a \Rightarrow \) \(B = e^{2\pi i \vec{k} \cdot \vec{x}} \quad \vec{k} = (k_1, k_2, k_3, k_4, k_5) \)

If B depends on \(x^6 \) like \(e^{2\pi i k_6 x^6} \) \(\Rightarrow \) eq. of a W-boson in a magnetized \(T^4 \), with magnetic flux \(k_6 M \)

\[
F_2^{\text{cl}} = k_6 M (dx^1 \wedge dx^2 + dx^4 \wedge dx^5)
\]
Gauge Bosons

- Laplace equation
 \[\hat{\partial}_a \hat{\partial}^a B = -m_B^2 B \]

- KK modes on the S^1 fiber are analogous to magnetized open strings $\Rightarrow B = \theta$-functions & sums of Hermite functions

- Fluxes freeze moduli
 \Rightarrow extra degeneracies

\[
m_B^2 = \frac{|k_6 M|}{\pi R_1 R_2} (n + 1) + \left(\frac{k_6}{R_6} \right)^2 + \left(\frac{k_3}{R_3} \right)^2
\]

\[
M = 0 \quad \quad \quad M \neq 0
\]
\[
\begin{array}{c}
\vdots \\
k_6 = 2 \\
2|\varepsilon|/R_6
\end{array}
\]
\[
\begin{array}{c}
\vdots \\
k_6 = 1 \\
|\varepsilon|/R_6
\end{array}
\]
\[
\begin{array}{c}
\vdots \\
k_6 = 0
\end{array}
\]
Gauge Bosons

✶ Laplace equation

\[\hat{\partial}_a \hat{\partial}^a B = -m_B^2 B \]

✶ KK modes on the S^1 fiber are analogous to magnetized open strings $\Rightarrow B = \theta$-functions & sums of Hermite functions

✧ Fluxes freeze moduli
\Rightarrow extra degeneracies

✧ Wavefunctions are localized
While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$.

A natural object to consider is the non-Abelian Fourier transform

$$\hat{f}_{\omega} \varphi(\vec{s}) = \int_G B(g)\pi_{\omega}(g)\varphi(\vec{s}) dg$$

unirrep of G

auxiliary Hilbert space \mathcal{H}
While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$

Let us consider the function

$$B_{\omega}^{\varphi, \psi}(g) = (\pi_{\omega}(g)\varphi, \psi)$$

Note that

$$\Delta (\pi_{\omega}(g)\varphi, \psi) = (\pi_{\omega}(g)\pi_{\omega}(\Delta)\varphi, \psi)$$

So we can take $\Psi = \delta$-function and φ eigenfunction

Finally we can impose Γ-invariance via

$$B_{\omega}(g) = \sum_{\gamma \in \Gamma} \pi_{\omega}(\gamma g)\varphi(\tilde{s}_0)$$
Group Manifolds

- While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$.
- By construction, we have a correspondence of unirreps of G and families of wavefunctions in $\Gamma \backslash G$.
- Previous example $\rightarrow \mathcal{H}_{2p+1}$ Heisenberg group $\cong (\vec{x}, \vec{y}, z)$.

\[
\pi_{k'_{z}} u(\vec{s}) = e^{2\pi ik'_{z}[z+\vec{x}\cdot\vec{y}/2+\vec{y}\cdot\vec{s}]} u(\vec{s} + \vec{x}) \quad \text{fiber KK modes}
\]

\[
\pi_{k'_{x}, k'_{y}} = e^{2\pi i(k'_{x}\cdot\vec{x} + k'_{y}\cdot\vec{y})} \quad \text{base KK modes}
\]
Fermions

- Dirac equation
 \[i(D + F)\Psi = m_\chi \Psi^* \]

- Squared Dirac eq.
 \[(D + F)^*(D + F)\Psi = |m_\chi|^2\Psi \]

\[D \leftarrow \Gamma^a \hat{\partial}_a \]
\[F \leftarrow \frac{1}{2} f P^B_+ \]

Moduli lifting info.
Fermions

- Dirac equation
 \[i(D + F)\Psi = m_\chi \Psi^* \]

- Squared Dirac eq.
 \[(D + F)^*(D + F)\Psi = |m_\chi|^2\Psi \]

- Previous example: \(F = 0 \)

\[-D^*D = \begin{pmatrix} \hat{\partial}_m \hat{\partial}^m & 0 & 0 & 0 \\ 0 & \hat{\partial}_m \hat{\partial}^m & -\varepsilon \hat{\partial}_6 & 0 \\ 0 & \varepsilon \hat{\partial}_6 & \hat{\partial}_m \hat{\partial}^m & 0 \\ 0 & 0 & 0 & \hat{\partial}_m \hat{\partial}^m \end{pmatrix} \]

\[\varepsilon = \text{flux density} \]

All entries of the matrix commute \(\Rightarrow \) standard diagonalization
Fermions

- Dirac equation
 \[i(D + F)\Psi = m\chi \Psi^* \]

- Squared Dirac eq.
 \[(D + F)^*(D + F)\Psi = |m\chi|^2\Psi \]

- Previous example: \(F = 0 \)

\[\begin{align*}
 \xi_3 &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} B \\
 \xi_{\pm} &= \begin{pmatrix} 1 \\ \pm i \\ 0 \end{pmatrix} B
\]
Fermions

Squared Dirac eq. \((D + F)^*(D + F)\Psi = |m_\chi|^2\Psi \)

More involved example: \(F \neq 0 \)

\[
- (D + F)^*(D + F) = \begin{pmatrix}
\hat{\partial}_m \hat{\partial}^m & 0 & 0 & 0 \\
0 & \hat{\partial}_m \hat{\partial}^m & -\epsilon \hat{\partial}_{z^3} & -\epsilon \hat{\partial}_{z^2} \\
0 & \epsilon \hat{\partial}_{\bar{z}^3} & \hat{\partial}_m \hat{\partial}^m & \epsilon \hat{\partial}_{z^1} \\
0 & \epsilon \hat{\partial}_{\bar{z}^2} & -\epsilon \hat{\partial}_{\bar{z}^1} & \hat{\partial}_m \hat{\partial}^m - \epsilon^2
\end{pmatrix}
\]

Entries no longer commute!!
Fermions

Squared Dirac eq. \((D + F)^*(D + F)\Psi = |m_\chi|^2\Psi\)

More involved example: \(F \neq 0\)

\[-(D + F)^*(D + F) = \]

\[
\left(\begin{array}{cccc}
\hat{\partial}_m \hat{\partial}_m & 0 & 0 & 0 \\
0 & \hat{\partial}_m \hat{\partial}_m & -\varepsilon \hat{\partial}_{\bar{z}3} & -\varepsilon \hat{\partial}_{\bar{z}2} \\
0 & \varepsilon \hat{\partial}_{\bar{z}3} & \hat{\partial}_m \hat{\partial}_m & \varepsilon \hat{\partial}_{\bar{z}1} \\
0 & \varepsilon \hat{\partial}_{\bar{z}2} & -\varepsilon \hat{\partial}_{\bar{z}1} & \hat{\partial}_m \hat{\partial}_m - \varepsilon^2 \\
\end{array}\right)
\]

Entries no longer commute!!

Eigenvectors:

\[
\xi_3 \equiv \begin{pmatrix} \hat{\partial}_{\bar{z}1} \\ \hat{\partial}_{\bar{z}2} \\ \hat{\partial}_{\bar{z}3} \end{pmatrix} B
\]

\[
m^2_{\xi_3} = m^2_B
\]

\[
\xi_\pm \equiv \begin{pmatrix} \hat{\partial}_{\bar{z}3} \hat{\partial}_{\bar{z}1} + m_{\xi_\pm} \hat{\partial}_{\bar{z}2} \\ \hat{\partial}_{\bar{z}3} \hat{\partial}_{\bar{z}2} - m_{\xi_\pm} \hat{\partial}_{\bar{z}1} \\ \hat{\partial}_{\bar{z}3} \hat{\partial}_{\bar{z}3} + m^2_{\xi_\pm} \end{pmatrix} B
\]

\[
m^2_{\xi_\pm} = \frac{1}{4} \left(\varepsilon_\mu \pm \sqrt{\varepsilon^2_\mu + 4m^2_B}\right)^2
\]
Recap II

- We have computed the spectrum of KK modes in several type I vacua based on twisted tori.

- If one assumes the hierarchy $\text{Vol}_{B_4}^{1/2} \gg \text{Vol}_{\Pi_2}$ then one has:

 $\varepsilon = m_{\text{flux}} \ll m_{\text{KK base}} \ll m_{\text{KK fib}}$

 - **Massless** modes and lifted moduli: $\psi = \text{const}$ like in T^6
 - **Base KK** modes: ψ like in T^4
 - **Fiber KK** modes: Exotic, localized ψ
About warping

• In the above we have **assumed a constant warping**

• One can check that \(\nabla_{T^4}^2 Z^2 = -\epsilon^2 + \ldots \)

• So for \(\text{Vol}^{1/2}_{B_4} \gg \text{Vol}_{\Pi_2} \) we have \(\epsilon \ll m_{\text{base}}^{KK} \) and \(Z = \text{const.} \) is a **good approximation**

• However, for \(\text{Vol}^{1/2}_{B_4} \sim \text{Vol}_{\Pi_2} \) we have

 ✦ **Warping effects**

 ✦ **Fiber modes more localized** ⇒ should dominate
We can take our models to type IIB by T-duality on the fiber coordinates:

\[N \text{ D9-branes} \]

KK mode on \(B_4 \simeq (T^2)_1 \times (T^2)_2 \) \[\rightarrow \]

KK mode on \(\Pi_2 \simeq (T^2)_3 \)

\[N \text{ D7-branes} \]

KK mode on \((T^2)_1 \times (T^2)_2\)

Winding mode on \((T^2)_3\)

\[\gamma \]

\[\begin{align*}
B &= B_0 + \int_{\gamma} H_3 \\
B &= B_0 \\
(T^2)_3 &\equiv \mathbb{R}^2/\Lambda_2
\end{align*}\]
Conclusions

- We have considered type I flux vacua in order to see the effect of fluxes on open strings via field theory calculations.

- Assuming constant Z, one can compute exactly the massless and massive spectrum of wavefunctions for models based on twisted tori and group quotients $\Gamma \backslash G$.

- The techniques used here for adjoint fields also work for bifundamental chiral multiplets. See Cámara's talk.

- Computing 4D couplings via wavefunctions, we can compare with the ones from 4D sugra. They indeed agree for ϵ small.

- For ϵ not small, however, we expect new phenomena, in part due to warping and in part due to exotic KK modes.
As a byproduct, we have developed a method for computing wavefunctions on group manifolds and quotients $\Gamma \backslash G$

This is not only useful for type I compactifications, but also for the KK spectrum of type IIA flux vacua

- de Sitter vacua
- AdS vacua

Silverstein ’07
Haque, Underwood, Shiu, van Riet ’08
Lüst & Tsimpis ’04

see Villadoro’s & Zagermann’s Talks
Outlook

✦ As a byproduct, we have developed a method for computing wavefunctions on group manifolds and quotients $\Gamma \backslash G$

✦ This is not only useful for type I compactifications, but also for the KK spectrum of type IIA flux vacua

✧ de Sitter vacua

✧ AdS vacua

✦ We have also seen that the effect of RR fluxes is very simple once that the background eom have been applied

\[
\left(\Gamma^a \hat{\partial}_a + \frac{1}{4} \left[f + e^{\phi/2} F_3 \right] \right) \chi_6 \rightarrow \left(\Gamma^a \hat{\partial}_a + \frac{1}{2} f P_+ B_4 \right) \chi_6
\]

...hint for a CFT computation?

Silverstein'07
Haque, Underwood, Shiue, van Riet'08
Lüst & Tsimpis'04
see Villadoro’s & Zagermann’s Talks