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Heterotic Compactifications
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® Heterotic Standard Model: V' . G = SU(4), W [ F' = Z3 X Zs

Braun, He, Ovrut, Pantev 2006




R* Theory Gauge Group:

Gauge connection
H = Spin(10)
Wilson line F' = Z3 x Z3 =

szn(lo) — H = SU(S)C X SU(Z)L X U(l)yXU(l)B_L

rank Spin(10)=5 plus F Abelian = extra gauged U(1)5_1.
Note that

Ly (R —parity) CU(1)p-r

= no rapid proton decay. But must be spontaneously
broken above the scale of weak interactions.




R* Theory Spectrum:

Es — Spin(10) =
248 = (1,45) @ (4,16) @ (4,16) & (6,10) & (15,1 )

The Spin(10) spectrum is determined from ng = h' (X, Ur(V)).

For example,
nig = h (X,V) =27

Spin(10) —— SU(3)c x SU(2)r x U(1)y x U(1)p_1, =

The 3 x2x 1y x1p_1 spectrum is determined from
n. = (R'(X,Ur(V)) ® R)*****. For example, R = 16

Tensoring and taking invariant subspace gives 3 families

of quarks/leptons each transforming as




Vp — (1, 1, O, 3)

under SU(3)C X SU(2)L X U(l)y X U(l)B—L-
Similarly we get | pair of Higgs-Higgs conjugate fields

H=(1,2,3,0), H=(1,2,-3,0)

That is, we get exactly the matter spectrum of the MSSM!

In addition, there are vector

bundle moduli




Supersymmetric Interactions:

The most general is

3
W = Z()\u,in’HUi + X QiHd; + N\ i LiHv; + X\ ;L;He;)
1=1
Note B-L symmetry forbids dangerous B and L violating terms

LLe, LQd, udd
Can we evaluate Yukawa couplings from first principles? Yes!
a) Texture:

W=...ALHr + ... Braun, He, Ovrut

= a Yukawa coupling is the triple product

T3 % g L3 x 73 73 X 1.3

Internal super-geometry (X elliptically fibered over dP9 base) =
in flavor diagonal basis for each of

)\1 :Ov )\27)\3#0




That is, naturally light first family and heavy second/third
families.

b) EXp|icit Calculation: Braun, Brelidze, Douglas, Ovrut
Anderson, Braun, Karp, Ovrut

The triple product =

qa b,C
A= [ Vamb el emads
X

where

= need to calculate the metric and eigenfunctions of the
Laplacian. Unfortunately, a Calabi-Yau manifold does not admit
a continuous symmetry. = the metric, gauge connection

and, hence, the Laplacian are unknown! Remarkably, these

can be well-approximated by




Ricci-Flat Metrics, Scalar Laplacians and Gauge Connections
on Calabi-Yau Threefolds

Let s,,a=0,..., Ny — 1 be degree-k polynomials on the CY
and h&? a specific matrix. Defining
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More interesting is how closely they approach g,z for large k.

This can be estimated using
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Fermat quintic:
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The error measure o for the metric on the Fermat quintic, com-

puted with the two different point generation algorithms




Scalar Laplacians:

Given a metric g, =
1

A =
V9

0 (9""\/90y)
Solve the eigen-equation

where (1, is the multiplicity from continuous/finite symmetry.

Choose a basis {f,Ja = 1,...,k} = the eigen-equation becomes

> (ol Al fo)(Foldma) =D Amlfalfo) (foldm.i)

b

Numerical Solution:

1) Solve numerically for A, and ¢n

2) For fixed k let ny, — oo




Fermat quintic:
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Eigenvalues of the scalar Laplace operator on the Fermat quintic.
The metric 1s computed at degree kp = 8, using np = 2,166,000
points. The Laplace operator is evaluated at degree ky = 3 using a
varying number ng of points.




SU(N) Gauge Connections:

Let z,, «=0....,Ni, — 1 be degree-ky polynomials on the
CY carrying the N-representation of U(N) and Hﬁ‘ﬁ a specific

matrix. Defining an SU(N) connection
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ki )ab 2 7 - _ B
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where A/ satisfies the Hermitian Yang-Mills equations. That is

0

Expressed this way A’(fggl)i at any finite kx is not enlightening. More

interesting is how closely they approach A" for large k. This can
be estimated using
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Supersymmetry Breaking, the |
and the LHC

_ Ambroso, Ovrut
Soft Supersymmetry Breaking:

N=1| Supersymmetry is spontaneously broken by the moduli
during compactification = soft supersymmetry breaking

interactions. The relevant ones are

Vos = ng\VS\Q +my|H|? +m%‘ﬁ‘2 — (BHH + he) + ...

At the compactification scale M ~ 10'°GeV these parameters
are fixed by the vacuum values of the moduli. For example




However, at a lower scale ;© measured by ¢ = ln(ML) these

L C
parameters change under the renormalization group.

For example,

2dmgg 3 & 2
167 a2 Z(myzqt) ,
i=1

Solving these, at a scale /1 =~ 10" Gel = 15, ~ —25

My, (tB_L)2 = my(0)2—1.9 m,, (0)? —8.57 m, (0)?

’

Including the D-term effect

Meffrq (tB—L)2 = My, (?fB—L)2

Meffug (tB—L)2 = —4m,, (0)2

Therefore, we expect the spontaneous breaking of B-L at t5_ ;.




Result:

The vacuum expectation value at tz_; is
2m,, (0)

\/%94

= a B-L vector boson mass of

(v3) =

At this scale, no other symmetry is broken.




Similarly, at the electroweak scale ;1 ~ 10°CeV = (o ~ —29.6

A2
my (tew)? ~———mp(0)* , mg (tew)® = mu(0)°
tan(
where tans = % and 0 < A” < 1 is related to 1/5(0). = at

tew electroweak symmetry is broken by the expectation value

= a Z-boson mass of




It follows that there is a B-L/EVV gauge hierarchy given by

Mag N tang
My; A

Our approximations are valid for the range

For A = % , the B-L/EWV hierarchy in this range is

M 4
15.8 < P <100

We conclude that this vacuum exhibits a natural hierarchy
of O(10) to O(100) =

All super-partner masses are related through intertwined
renormalization group equations. = Measuring some
masses predicts the rest!




The slepton and squark masses to leading order are

(m2,Y) = ((m2,)) = 1.OT5 mg (0)%, ((m?

where

Note that all mass squares are positive and, hence, the
B-L/EWV vacuum is a stable local minimum!




