

LARGE HADRON COLLIDER IN THE LEP TUNNEL

Vol. II

PROCEEDINGS OF THE ECFA-CERN WORKSHOP

held at Lausanne and Geneva, 21-27 March 1984

String Pheno 2009 15-19 June Warszawa – Helenka Przysiężniak – LAPP CNRS on leave @ U. de Montréal

Introduction

Large Hadron Collider (LHC) pp collider $2\pi R \sim 27 \text{ km}$ $\sqrt{s} = 14 \text{ TeV}$ L= $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ ALICE, CMS, LHCb, ATLAS,... Many physics processes High event rates High energies New physics

> Start-up November 2009 Single beams Followed by collisions $@\sqrt{s} = 10 \text{ TeV}$ L=10^{30,31,32} cm⁻²s⁻¹

Introduction

LHC looking for something beyond SM SM tried and tested experimentally in all possible ways \rightarrow

Fortunately/unfortunately SM rather robust Few deviations observed → still compatible with statistical fluctuations

 \rightarrow

Looking for direct/indirect deviations from SM Measure SM observables with highest precision ever *Direct searches for new physics*

Many many 10¹⁰⁵ more models than final states

Strongly encouraged to look at various final state topologies Also certainly wiser with first data

Outline

LHC ATLAS (and a tiny bit of CMS) Early Physics Phenomenological tools Higgs hunt Beyond the SM SUSY

N.B. All analyses performed for E_{cm} =14TeV unless otherwise mentioned

19.09.2008

Making last step of dipole circuit in sector 34, to 9.3kA At 8.7kA, development of resistive zone in dipole bus bar splice Electrical arc developed which punctured helium enclosure, allowing helium release into insulating vacuum Large pressure wave travelled along accelerator in both directions

Today

All dipole resistance measurements were investigated High resistance in bus bars had been monitored and is now understood Problematic dipoles fixed

Additional security measures: quench protection system upgrade

Year						2009	Э				(20	010								
Month	F	М	Α	М	J	J	Α	S	0	Ν	Þ	J	F	м	Α	М	J	J	Α	S	0	N	D	J	F	м
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH
									24 w	eek	s ph	ysics	; pos	sible	2								_	>		
Base '	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH	SH
									44 w	/eek	s ph	ysics	; pos	sible	2							4	_	-		
	Ģ	Gai	n 2	0 v	vee	eks	of	ph	iys	ics	n	20	10	by	ru	nn	ing	gdu	urii	ng	wii	nte	r n	noi	ntł	IS
							~	_						/	_											
															HI	GH	pri	ce E	lec	tric	ity					
Delay (4W)	SH	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH
Delay (8W)	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH

Month	No. Bunches	Protons per bunch	β* [m]	% Nom	Peak luminosity cm-2s-1	Integrated Iuminosity				
1	Beam Commissioning									
2	43	3 x 10 ¹⁰	4	0.4	1.2 x 10 ³⁰	100 – 200 nb ⁻¹				
3	43	5 x 10 ¹⁰	4	0.7	3.4 x 10 ³⁰	~2 pb ⁻¹				
4	156	5 x 10 ¹⁰	2	2.5	2.5 x 10 ³¹	~13 pb ⁻¹				
5	156	7 x 10 ¹⁰	2	3.3	4.9 x 10 ³¹	~25 pb⁻¹				
6	720	3 x 10 ¹⁰	2	6.7	4.0 x 10 ³¹	~21 pb ⁻¹				
7	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹				
8	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹				
9	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹				
10	lons									
Total						200 – 300 pb ⁻¹				

Expected luminosity

ATLAS A Toroidal LHC Apparatus

Calorimetry $|\eta| < 4.9$ EMBC, EMEC accordion LAr + Pb $|\eta| < 3.2$ Tile Hadronic Fe + scintillator $|\eta| < 1.7$ HEC Hadr end cap Cu+Lar $1.5 < |\eta| < 3.2$ FCAL Forward calo Cu+W+Lar $3.1 < |\eta| < 4.9$

Muon spectrometer |η| < 2.7
 High precision tracking
 MDT Monitored Drift Tubes
 CSC Cathode Strip Chambers
 Trigger chambers
 RPC Resistive Plate Chambers
 TGC Thin Gap Chambers
 Air core toroid system
 → strong bending power
 in large volume

Inner Detector

~6m long 1.1m radius inside 2T Solenoid

Pixels

SCT Silicon Strips

TRT Transition Radiation Tracker e/π separation

3 trigger levels : L1, L2, Event Filter (L2+EF=HLT) 40 MHz \rightarrow 200 Hz

CMS vs ATLAS

1	Parameter	ATLAS	CMS
	Weight (tons)	7k	12.5k
	Diameter (m)	22	15
	Length (m)	46	20
	Magnetic field for tracking (T)	2	4
	Toroid peak fields (T)	3.9 (B)	-
		4.1 (EC)	-
	Solid angle lepton id for tracking		
	(Δφ X Δη)	2π X 5.0	2π X 5.0
	Solid angle : E measurement		
	(Δφ Χ Δη)	2π X 9.6	2π X 9.6
	Cost (MCHF)	550	550

Resolution performances

	ATLAS	CMS
Tracker	Si pixels, strips + TRT (pid) $\sigma/p_T \approx 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels, strips $\sigma/p_T \approx 1.5 \times 10^{-4} p_T \oplus 0.005$
EM calorimeter	Pb + LAr $\sigma/E \approx 10\%/\sqrt{E \oplus 0.007}$	PbWO ₄ crystals $\sigma/E \approx 2-5\%/\sqrt{E \oplus 0.005}$
Hadronic calorimeter	Fe+scintillator / Cu + Lar $\sigma/E \approx 50\%/\sqrt{E \oplus 0.03}$	Cu+scintillator $\sigma/E \approx 100\%/\sqrt{E \oplus 0.05}$
Combined Muons (ID+MS)	2%@50GeV to 10%@1TeV	1%@50GeV to <mark>5%@1TeV</mark>

Identification performances

Photons	Jet rejection ~ few 10 ³ for ϵ_{γ} ~ 80%
Electrons	Jet rejection ~ 10^5 for $\epsilon_e \sim 80\%$
B-jets	Light flavor jet rejection ~ 100 for $\epsilon_{\text{B-jets}} \sim 60\%$
τ→hadrons	Jet rejection ~ few hundreds for $\epsilon_{\tau had}$ ~ 50%

e.g.

- $J/\psi \rightarrow \mu\mu$ 800/day
- 160/day • *Z*→*μ*μ
- *Z* → *ee*
- Top events
- Inclusive jets
- Minimum bias events
- Underlying events

Early physics

1pb-1 = 3.85 days @ L=10³¹ cm⁻²s⁻¹

($\varepsilon_{\text{machine}} \times \varepsilon_{\text{detector}} = 30\%$)

etc.

Uncertainties for 100pb-1 (10 fb-1)

• e/γ	fake rates =50 (10) %	σ _p =20 (5) %	ε _{id} = 1 (0.2) %	Escale=1 (0.1) %
• µ	р _т < 100 GeV	σ _p =12 (1) %	$\epsilon_{id} = 1 (0.1) \%$	
	p _T = 1TeV	σ _p =100 %	ε _{id} = 5 (0.1) %	Escale= 1 (0.1) %
• Jets		$\sigma_{\rm E}$ =10 %		Escale =±5 % η <3.2
				Eacolo $\pm 10.0/$ 2.2 d m ± 4.0

- **MET**=-($\Sigma pT_{es} + \Sigma ET_{jets} + \Sigma ET_{unclustered}$) sum of all uncertainties! + "fake" MET
- *Luminosity* 20 (3) %
- Theoretical e.g. EW and QCD Xsections 15-50 %
- PDFs 5-20 %

Escale=±10 % 3.2<|η|<4.9

Phenomenological tools - Generators

HO QCD corrections → K-factors If K-factors known for signal and dominant bgd → included in analyses If K-factors unknown → Born-level predictions for signal and bgd Both LO and NLO MC generators used For several processes, tree-level Matrix Element calculations + Parton Shower matching All tree level MC Xsec normalized to NLO Xsec CTEQ6L (LO) and CTEQ6M ((N)NLO) structure function parametrizations used

General-purpose MC generators

PYTHIA, HERWIG Sherpa : EW bosons + jets AcerMC : Zbbar, Zttbar ALPGEN : W/Z + jets with MLM PS + ME matching MadGraph/MadEvent : W/Z + partons MC@NLO : inclusive W and Z, Higgs, ttbar

Specific processes

Charybdis : Black Holes

CompHEP/CalcHEP : New Physics

TopReX : top

WINHAC : hadro production of Ws decaying into leptons

DIPHOX, RESBOS : NLO for $\gamma\gamma$

Hadronisation and underlying event (UE) modelling

PYTHIA, HERWIG (hadronisation) / JIMMY (UE)

UE parameters tuned to published data from Tevatron and other experiments

Specific decays

TAUOLA \rightarrow Decay of τ leptons **PHOTOS QED** \rightarrow Radiation of photons from charged leptons **EvtGen** \rightarrow b-hadron decays

Higgs hunt

SM Higgs Hunt – discovery/exclusion

Left: Significance contours for JLdt vs m_HThick curve $\rightarrow 5\sigma$ discoveryApproximations used in combination \rightarrow conservative but not valid <2fb-1 (hatched area)</td>Right: Expected JLdt to exclude Higgs vs m_H

Not all search channels exploited in combination \rightarrow conservative estimates of sensitivity With 2fb-1 expected sensitivity $\geq 5\sigma$ for 143 GeV < m_{Higgs} < 179 GeV and expected upper limit @95% CL on Higgs mass is 115 GeV

SM Higgs Hunt - Determining Higgs properties

Older analyses → need updating

Mass

300 fb⁻¹

```
\sigma_{\rm m} \sim 0.1\% for m<sub>H</sub>=100-400 GeV/c<sup>2</sup> \sigma_{\rm m} \sim 1\% for m<sub>H</sub> ~ 700 GeV/c<sup>2</sup>
```

Width

Direct measurement from fit to mass peak 300 fb⁻¹ $\sigma_{\Gamma} \sim 6\%$ for m_H>200 GeV/c²

Spin and CP eigenvalues

Is it the J^{CP}=0⁺⁺ SM Higgs ? Study angular distributions and correlations in H \rightarrow ZZ \rightarrow 4ℓ (µ or e) and VBF H \rightarrow WW/ $\tau\tau$ $_{\Box}$

 $\begin{array}{ll} 30 \ fb^{\text{-1}} & \mbox{exclusion of non-SM CP with 2 [5]} \sigma \ for \ m_{\text{H}} = 120 \ [160] \ GeV/c^2 \\ \leq 300 \ fb^{\text{-1}} & \ (\text{J,CP}) = (1,-1), \ (1,+1), \ (0,-1) \ ruled \ out \ for \ m_{\text{H}} > 200 \ GeV/c^2 \end{array}$

Coupling parameters

By measuring rates of a large number of Higgs production and decay channels Various combinations of couplings can be determined

300 fb⁻¹ 110<m_H<190 GeV/c² $\Delta g^2/g^2 \simeq 10\%$ -60% (\neq b) $\Delta \Gamma_H/\Gamma_H \simeq 10\%$ -75%

Self coupling

Difficult Will need at the very least 300 fb-1

MSSM Higgs Hunt

h, H, A and H \pm

Benchmark scenario m_h^{max} maximal theoretically allowed region for m_h

MHMAX scenario

Beyond the SM

Topological searches and Model dependent searches

BSM

Dilepton resonances at high mass

Simplicity of final state \rightarrow important channel with early data Tevatron excludes resonance m ~< 1 TeV

Z'

In context of Sequential SM (SSM), E₆, and Left-Right symmetric models **Randall Sundrum Graviton**

Warped extra-dimension linking SM brane and Planck brane

Only graviton propagates into XtraD \rightarrow tower of KK excitations $G^* \rightarrow \ell + \ell$ -

Technicolor Strawman model

New techni-fermions bound together by QCD-like force : ρ_{TC} and ω_{TC} dilepton decay

Z'→e+e-

 5σ significance with stats errors only Systematic errors change result by ~ few %

 $\begin{array}{l} m_{z'} = 1 \ \text{TeV} \\ e+e- & < 100 \ \text{pb-1} \\ \mu+\mu- \ 20 \ \text{to} \ 40 \ \text{pb-1} \\ \tau+\tau- & \sim 1 \text{fb-1} \end{array}$

RS and technicolor \sim 1fb-1 for ${\sim}0.5{-}1.5$ TeV dilepton resonance

BSM

LO

000

000

two jets

19

Dilepton + dijets

Leptoquarks

 $LQ \rightarrow leptons+quarks$

Tevatron exclusion limits for β =BR(LQ $\rightarrow \ell^{\pm}q$)=1 ~< 300-350 GeV

Left Right Symmetric Model

3 heavy right-handed Majorana $\nu 's~N_e, N_\mu$ and N_τ W_{R} and Z' produced via DY $m(K_1) - m(K_S) \rightarrow m_{WR} > 1.6 \text{ TeV}$ SN1987A + LEP invisible Z $\rightarrow m_N \sim$ few 100 GeV

BSM

Black Holes

In XtraD models $M_{Planck} \rightarrow M_{EWSB}$ \rightarrow gravity coupling strength increased to size ~ other interactions \rightarrow unification of gravity and gauge interactions \rightarrow Black Holes (BH) production @ LHC

BH formation, radiation and decay

BHs form if impact parameter of head-on collision between 2 partons < $R_{schwarzschild}$ R_{s} depends on n=umber of XtraDs and M_{D} =fundamental Planck scale Parton level Xsec valid for $M_{BH} >> M_{D}$ BHs emit pairs of virtual particles and decay by balding (Graviton radiation), followed by evaporation (Hawking radiation) ending by Planck phase $M_{BH} \sim M_{D}$ (QG regime : predictions very difficult...)

Charybdis BH MC

Only simulates SM particles emitted during evaporation and Planck phases $M_{BH}{\geq}\,5M_D$ with $M_D{\sim}\,1TeV$

Discovery reach N.B.

Using semi-classical assumptions valid only above Planck scale (minimum m_{BH} imposed in simulations) Assuming correct transition parton level \rightarrow hadron level Xsec in Transplanckian region

Minimum m_{BH} varied to obtain conservative discovery reach

Few pb-1 \rightarrow discovery of BH with m_{BH} > 5 TeV 1 fb-1 \rightarrow m_{BH} > 8 TeV

BSM String balls

If $M_{BH} < 5M_{D} ==$ the General Relativity threshold not satisfied \rightarrow Quantum Gravity In context of weakly-coupled string theory, highly-excited string states produced with Xsec \sim Xsec_{BH} Even if BHs produced \rightarrow evolve into string states String balls \rightarrow new form of matter involving gravity and string theory

4 parameters : string scale M_s and coupling g_{s_p} n=umber of extraDs, M_D =fundamental Planck scale $M_s < M_D < M_s/g_s^2 \sim 5 M_D$ (BH prod threshold) Highly-excited long strings emit particles in bulk or on brane SB decay mainly on brane

Limits on Xsec vs $m_{threshold}$ for string ball production 100 pb⁻¹ at E_{cm} =10 TeV Exclude@95%CL Xsec > 185 fb for 3.0 TeV < $m_{threshold}$ <5.4 TeV Based on a simple model for string ball production $M_s < 1.6$ TeV and $M_p < 2.4$ TeV excluded

SUSY

 \leftrightarrow

SUSY

If R-parity is conserved

 \rightarrow sparticles produced in pairs (squarks, gluinos) \rightarrow cascade decay down to stable lightest SUSY particle (LSP)

Some investigated scenarios : mSUGRA (LSP=neutralino)

SUSY breaking mediated by gravitational interaction *GMSB (LSP=gravitino)*

SUSY breaking mediated by gauge interactions through messenger gauge fields

Split SUSY

Gluinos can be meta-stable forming a bound state

so-called $R_{\mbox{\tiny rg}}\mbox{-hadron}$

Gravitino LSP and stop $\breve{N}LSP$ scenario

Generic possible candidate for NLSP is lightest ${}^{\sim}t_1$ which would form stable bound states denoted $R_{{}^{\sim}t}$

Current experimental limits $m_{squarks,gluinos}$ <~600 GeV, tan β = 3-5, A_0 =0, μ <0 @ e.g. Tevatron 2fb-1

SUSY discovery based on inclusive searches

Least model-dependent SUSY signature \rightarrow multiple jets (e.g. \geq 4) + MET

Final state \rightarrow jets + possible leptons + MET

Variables e.g. MET, Effective mass (Meff) = $\sum_{i=1,4} pT_{jeti} \sum_{i=1,4} pT_{lepti} + MET$ **Data driven determination of bgds** : W,Z,top 20% QCD 50% with 1fb-1

2 different approaches

 \rightarrow Detailed studies for various signatures (jets + MET + 0,1,2,3... leptons) \rightarrow full simulation

ightarrow Scans over subsets of SUSY parameter space ightarrow fast simulation

 $\tilde{\chi}_2^0$

SUSY scans

Over parameters of several R-parity conserving SUSY models Look for excess above cut on Meff (best performance) or MET

Scans 1fb-1

Plots based on analyses that require a certain number of jets and leptons (e or μ) Find an optimal M_{eff} cut in steps of 400 GeV to maximize significance (20% bgd uncertainty included)

 5σ discovery for mSUGRA tan β = 10 and 50 4 jets + N lepts = 0,1,2,3

Scans and detailed analyses with SM bgds estimated from data \rightarrow R-parity conserving SUSY observable for m_{gluino, squark} \leq 1 TeV with 1fb–1 of understood data

SUSY or something else?

Is it SUSY ?

e.g. Universal Extra Dimensions vs SUSY $\rightarrow 2^{nd}$ level KK particle discovery (if light enough) or spin measurements (100 fb-1 at the very least)

If SUSY, what kind ?

- Edges and thresholds in dilepton, lepton-jet, dijet invariant mass distributions \rightarrow Mass values
- All observables in a fit to SUSY parameters \rightarrow m_{1/2}, m_0, tan β , A_0

Summary, conclusion and outlook

100m sprint "random BIG grid" scan over LHC physics and phenomenological models

m_{NP} < 1TeV discovery with 1fb-1 in many final states In some cases even 100pb-1 will do

In all cases one needs a mastered detector

Simple final states are most reliable e.g. dilepton resonances (Z, Z', G). Contribute to →Understanding detector → Discovery

> SM, detector, EW and QCD backgrounds, PDFs, MET, etc. understanding will definitely need at least 1 fb-1

> > Lots of work awaiting

References

Most of the results shown in this talks are published in:

The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 S08003, 2008

Expected Performance of the ATLAS Experiment Detector, Trigger and Physics, CERN-OPEN-2008-020; http://arxiv.org/abs/0901.0512

Physics Performance Technical Design Report CMS Collaboration, CERN/LHCC 2006-021, J. Phys. G: Nucl. Part. Phys. 34 (2007)

For string balls

S. Dimopoulos and R. Emparan, String balls at the LHC and beyond, Phys. Lett. B 526 (2002) 393–398, [arXiv:hep-ph/0108060v1].

K. Cheung, Black hole, string ball, and p-brane production at hadronic supercolliders, Phys. Rev. D 66 (2002) 036007, [arXiv:hep-ph/0205033v4].

A. Chamblin and G. C. Nayak, Black hole production at the CERN LHC: String balls and black holes from pp and lead-lead collisions, Phys. Rev. D 66 (2002) 091901(R), [arXiv:hep-ph/0206060v3].

Backup slides

Spin measurements

Older results, not recently updated

Spin measurements

Older results, not recently updated

hep-ph/0006114

 Select events with two isolated electrons and look at high mass region:

○ discover graviton up to m_g = 2080 GeV at 100 fb⁻¹

 \circ spin-1 can be ruled out/spin-2 determined at 90% CL up to m_G = 1720 GeV at 100 fb⁻¹

19.09.2008

While recovering from transformer failure

Making last step of dipole circuit in sector 34, to 9.3kA

At 8.7kA, development of resistive zone in dipole bus bar splice

Later estimated from cryogenic data on heat deposition to be $220n\Omega$

Electrical arc developed which punctured helium enclosure, allowing helium release into insulating vacuum Large pressure wave travelled along accelerator in both directions

Today

All dipole resistance measurements were investigated

High resistance in bus bars had been monitored and is now understood

Problematic dipoles fixed

Additional security measures: quench protection system upgrade

Incident: The magnet circuits in the seven other sectors of the LHC had been fully commissioned to their nominal currents (corresponding to beam energy of 5.5 TeV) before the first beam injection on 10 September 2008. For the main dipole circuit, this meant a powering in stages up to a current of 9.3 kA. The dipole circuit of sector 3-4, the last one to be commissioned, had only been powered to 7 kA prior to 10 September 2008. After the successful injection and circulation of the first beams at 0.45 TeV, commissioning of this sector up to the 5.5 TeV beam energy level was resumed as planned and according to established procedures.

On 19 September 2008 morning, the current was being ramped up to 9.3 kA in the main dipole circuit at the nominal rate of 10 A/s, when at a value of 8.7 kA, a resistive zone developed in the electrical bus in the region between dipole and quadrupole Q24. The first evidence was the appearance of a voltage of 300 mV detected in the circuit above the noise level: the time was 11:18:36 CEST. No resistive voltage appeared on the dipoles of the circuit, individually equipped with quench detectors with a detection sensitivity of 100 mV each, so that the quench of any magnet can be excluded as initial event. After 0.39 s, the resistive voltage had grown to and the power converter, unable to maintain the current ramp, tripped off at 0.46 s (slow discharge mode). The current started to decrease in the circuit and at 0.86 s, the energy discharge switch opened, inserting dump resistors in the circuit to produce a fast power abort. In this sequence of events, the quench detection, power converter and energy discharge systems behaved as expected.

Within the first second, an electrical arc developed and punctured the helium enclosure, leading to release of helium into the insulation vacuum of the cryostat.

The spring-loaded relief discs on the vacuum enclosure opened when the pressure exceeded atmospheric, thus relieving the helium to the tunnel. They were however unable to contain the pressure rise below the nominal 0.15 MPa absolute in the vacuum enclosures of subsector 23-25, thus resulting in large pressure forces acting on the vacuum barriers separating neighboring subsectors, which most probably damaged them. These forces displaced dipoles in the subsectors affected from their cold internal supports, and knocked the Short Straight Section cryostats housing the quadrupoles and vacuum barriers from their external support jacks at positions Q23, Q27 and Q31, in some locations breaking their anchors in the concrete floor of the tunnel. The displacement of the Short Straight Section cryostats also damaged the "jumper" connections to the cryogenic distribution line, but without rupture of the transverse vacuum barriers equipping these jumper connections, so that the insulation vacuum in the cryogenic line did not degrade.

ATLAS

L1 40 MHz \rightarrow 75 kHz (40 kHz @startup)

Decision within 2.5 μ s Data from calorimeters (Lar and Tile) and muon detectors Calorimeter \rightarrow multiplicities and E thresholds of EM clusters, taus, jets, MET, sum ET, Etjets Muon \rightarrow trajectories in Resistive Plate Chambers (RPC) + Thin Gap Chambers (TGC) in endcap \rightarrow multiplicity for various muon pT thresholds

L2 75 kHz \rightarrow 2kHz (1 kHz @startup)

Sw running on PC farm Uses regions-of-interest (RoI) identified at L1 Seed \rightarrow pT threshold and η - ϕ position from L1, specialized timing optimized algorithms RoI constructed around seed Size of RoI determined by L2 (smaller for e than for jets) Data is then unpacked, analyzed and a decision is made *Event is built/reconstructed*

EF $2kHz \rightarrow 200 Hz$

4s/evt Sw running on farm of CPUs Seed → access to built event and offline reconstruction algorithms

Trigger menus

e (electron), g (photon), EM (electromagnetic), J (jets), FJ (forward jets), XE (MET)
TE (Total scalar sum ET), JE (Scalar sum of jet ET), MU (muons), and tau (tau leptons)
e.g. 2e15i == 2 isolated electrons, pT > 15 GeV tau20i XE30 == isolated hadr tau, pTvis > 20 GeV, MET > 30 GeV

Early physics

e.g.

• *Z* →*ee*

- $J/\psi \rightarrow \mu\mu$ 800/day \rightarrow tracker p scale, trigger
- $Z \rightarrow \mu \mu$ 160/day $\rightarrow \mu$ spectrometer alignement, E/p scale, trigger, ε_{μ} , EM calo uniformity
 - \rightarrow EM calo uniformity (10⁵ evts /~0.7%), module/module variations, T effects
- **Top events** \rightarrow light jet calibration/E scale, ε_{b-jet} , m_{Top} , ttbar Xsec
- *Inclusive jets* → sensitive to NP
- *Minimum bias events* (inel had-had int) \rightarrow pp int, multiparton int, proton struct, UE
- Underlying events everything except 2 outgoing hard scattered jets

First 100 pb-1

1pb-1 = 3.85 days L=10³¹ cm⁻²s⁻¹ with machine X detector ε = 30%

Channel	Evts to tape (1 expt)	Total stats : LEP,Tevatron	
W→µv	10 ⁶	10 ⁴ , 10 ⁶⁻⁷	
Ζ→μμ	10 ⁵	10 ⁶ , 10 ⁵⁻⁶	
ttbar \rightarrow WbWb \rightarrow µv+X	104	-, 10 ³⁻⁴	
QCD jets pT>1TeV	> 10 ³	_	
Gluino gluino m=1TeV	50	_	
Early physics			
• Inclusive jets		\rightarrow sensitive to NP	

- $W \rightarrow \ell \nu$
- Top events
- Narrow resonances at ~ 1 TeV e.g. Z', Graviton \rightarrow 5 σ with 100 pb-1 in e+e-
- Di jet narrow resonances e.g. Z', W'

- \rightarrow angular distribution to constrain PDFs
- \rightarrow light jet calibration/Escale, $\epsilon_{\rm b\text{-jet}}$ m_{\rm Top}, ttbar Xsec
- - \rightarrow 2 TeV excited quark with 100 pb-1

First 100 pb-1

Minimum bias events

- Inelastic hadron-hadron events selected with the minimum bias trigger
- -Usually associated with inelastic non-single-diffractive events

 $-\sigma_{\text{total}}$ (102-118mb) = $\sigma_{\text{elastic}} + \sigma_{\text{single diffractive}} + \sigma_{\text{double diffractive}} + \sigma_{\text{non diffractive}}$

Need these evts to study proton-proton interactions, investigate multiparton int. and struct. of proton, understand UE

Underlying events

Soft part associated with hard scatters. In parton-parton scatt., UE defined as everything except two outgoing hard scattered jets (beam-beam remnants, addition parton-parton int., ISR+FSR) Can we use MB to model UE? Beam-beam remnant and multiple int.

Inclusive jets

Jet spectrum at high pT sensitive to new physics. Can fake/mask signal if not well understood.

W→€v

Angular distribution to constrain PDFs. Experimental uncertainty <5% making it possible to discriminate between PDFs.

Top events

Top signal quickly observed even with limited detector performance (leptons+jets) but MET problem \rightarrow light jet-calibration (jet E scale), b-jet efficiency, general detector performance Top mass, ttbar cross section
Phenomenological tools - Generators

Total Xsec at LHC

 $\sigma_{pp tot}$ at 14 TeV = 102 mb (PYTHIA) = 23 mb (elastic) + 79 mb (inelastic) $\sigma_{inelastic}$ = 14mb (single diffractive scatt) + 10 mb (double diffractive scatt) + X $\sigma_{non single diffractive}$ == $\sigma_{minimum bias}$ = $\sigma_{inelastic}$ - $\sigma_{single diffractive}$ = 65 mb

Multijet prod

Even if NLO corrections partially known, uncertainties from missing HO corrections large Mostly use LO estimates with large errors to cover HO uncertainty

W/Z (+jets)

Inclusive production Xsecs of W and Z bosons known at NNLO and used Residual uncertainties at few % level Exclusive W/Z + jet Xsecs LO MC \rightarrow PYTHIA or PS matched MCs ALPGEN or Sherpa \rightarrow normalized to inclusive NNLO Xsecs

Diboson

NLO Xsec qqbar and gg box-diagram (30% for ZZ using RESBOS) taken into account

$H \rightarrow \gamma \gamma$ in GF, ttH, VBF

good γ /jet separation to remove reducible bgd vertex reconstruction for good mass resolution

H→ZZ→4ℓ (4e, 4µ, 2e2µ) in GF

main bgd ZZ irreducible, ttbar and Zbb reducible lepton isolation and impact parameter

VBF H→ττ

2 high pT jets at large rapidity; no color flow between tagged jets \rightarrow rapidity gap

$H \rightarrow WW$ in GF, WH, ttH, VBF

no mass peak in this channel need good understanding of bgd

$H \rightarrow bbbar$ in ttH

large background which looks very much like signal

SM Higgs Hunt – discovery/exclusion

10 fb-1 Expected significance for various channels and for combination for low mass range (left) and masses up to 600 GeV (right)

Combination approximations

The statistical treatment requires knowledge of the distribution of a test statistic based on the profile likelihood ratio. To determine these distributions by Monte Carlo so as to establish discovery at a high level of significance would require an enormous amount of simulated data, which is not practical at present. Therefore the distributions have been estimated using the functional form expected to hold in the large sample limit. Investigations shown in Section 3 indicate that this approximation should be reliable for an integrated luminosity above 2 fb–1.

To determine the discovery significance or to set limits using a given data set, one must carry out a global fit. For this one needs first to combine the likelihood functions for the individual channels into the full likelihood function containing a single strength parameter m, and use this to find the profile likelihood ratio. It is possible, however, to find approximate values for the median discovery significance and limits in a way that only requires as input the separate profile likelihood ratio values from each of the channels. This is very useful especially in the planning phase of a search that combines multiple channels.

The procedure relies on two separate approximations. First, we estimate the median value of the profile likelihood ratio by evaluating the likelihood function with a single, artificial data set in which all statistical fluctuations are suppressed. Second, to determine the significance values from the likelihood ratios, we use the asymptotic form of the distribution of $-2\ln\lambda(\mu)$ valid for sufficiently large data samples.

The limitations of the approximation are investigated and

for one case where it is found to be insufficiently accurate (the discovery significance for the channel $H \rightarrow W+W-$ plus no jets), an alternate procedure is followed.

SM Higgs Hunt – E_{cm} = 10 vs 14 TeV

Physics Processes

Higgs Xsec decreases by factor ~ 2 Signficance reduction by factor ~ 1.5

h, H, A and H \pm

Benchmark scenario m_h^{max} maximal theoretically allowed region for m_h

h, H, and A and H±

WW and ZZ decay modes

→ suppressed like $\cos(\beta - \alpha)$ for H (α =mixing angle of 2 CP-even Higgs), absent for A Coupling of Higgses to 3rd generation fermions strongly enhanced for large regions of parameter space Benchmark scenario m_h^{max} maximal theoretically allowed region for m_h

Neutral Higgs searches

Charged Higgs searches

The search strategies for charged Higgs bosons depend on their hypothesized mass, which dictates both the production rate and the available decay modes.

Below the top quark mass, the main production mode is through top quark decays, $t \rightarrow H^+b$, and in this range the $H^+ \rightarrow \tau \nu$ decay mode is dominant.

Above the top quark threshold, production mainly takes place through gb fusion (gb \rightarrow tH+), and for such high charged Higgs boson masses the decay into a top quark and a b quark dominates, H+ \rightarrow tb

2 Higgs doublets resulting in five 5 Higges 3 neutral h, H, and A and 2 charged H±

At tree level their properties (mass, width and BR) can be predicted in terms of only two parameters typically m_A mass of the CP-odd Higgs boson $tan \beta$ tangent of the ratio of the vacuum expectation values of the two Higgs doublets

> MSSM couplings of Higgses to fermions and bosons different from SM : • WW and ZZ decay modes \rightarrow suppressed like $\cos(\beta - \alpha)$ for H where α =mixing angle of 2 CP-even Higgs h,H \rightarrow absent for A

• coupling of Higgses to 3rd generation fermions strongly enhanced for large regions of parameter space

h, **H**, **A** $\rightarrow \tau \tau$ \rightarrow important discovery channel. GF prod or associated prod with b quarks

h,H,A $\rightarrow \mu\mu$ \rightarrow strongly enhanced large values of tan β Discovery channel or for exclusion of a large region of m_A - tan β

MSSM Higgs

2 Higgs doublets resulting in five 5 Higges 3 neutral h, H, and A and 2 charged H±

At tree level, mass, width and BR can be predicted in terms of

 m_A mass of the CP-odd Higgs boson

tan meta tangent of ratio of vacuum expectation values of 2 Higgs doublets

WW and ZZ decay modes \rightarrow suppressed like $\cos(\beta - \alpha)$ for H (α =mixing angle of 2 CP-even Higgs), absent for A coupling of Higgses to 3rd generation fermions strongly enhanced for large regions of parameter space Benchmark scenario m_h^{max} maximal theoretically allowed region for m_h

Dashed lines \rightarrow includes an additional 10% uncertainty on the ttbar Xsec Bands \rightarrow influence of the syst uncert on the signal Xsec conclusion

The A and H bosons are degenerate for M_A>130 GeV therefore they are added together. A and h are degenerate for M_A<130 GeV therefore they are added together. Finally at 130 GeV A,H,h are almost degenerate and they have been added together.

Eps plots in https://twiki.cern.ch/twiki/bin/view/Atlas/HiggsMaterialForPublicTalks#Global_Analysis_of_MSSM_Higgs_MS

Dilepton resonances at high mass

Z

In context of Sequential SM (SSM), E₆, and Left-Right symmetric models *Randall Sundrum Graviton*

Warped extra-dimension linking SM brane and Planck brane

Drawing by G

l andsberg

Only graviton propagates into XtraD \rightarrow tower of KK excitations $G^* \rightarrow \ell + \ell$ -

Technicolor Strawman model

New techni-fermions bound together by QCD-like force : $~\rho_{\text{TC}}$ and ω_{TC} dilepton decay

Dilepton resonances at high mass

Z' shape analysis significance dertermination

The resulting sensitivity is in general higher in the shape analysis than the estimation given in the number counting approach. In the shape analysis, the data is fitted or compared to two models: a background-only model and a signal-plus-background model. These are also called "null hypothesis", noted H0 and "test hypothesis", noted H1, respectively. The input signal and background shapes are given to the fitting algorithms either as histograms in the non-parameterized approach [44] or as functions in the parameterized approach. For each of the models, a likelihood or a χ^2 distribution is computed and the log of the ratio of the two likelihoods (LLR) or the difference of two χ^2 s are estimated and used to compute the confidence levels. Either $CL_b = CL_{H0}$ alone, or $CL_s = CL_{H1}/CL_{H0}$ (in the "modified frequentist approach" [44]) can then be used to compute the significance S:

$$S = \sqrt{2} \times Erf^{-1}(1 - CL_b) \quad \text{or} \quad S = \sqrt{2} \times Erf^{-1}(1 - \frac{1}{CL_s}) \tag{1}$$

in the *double tail* convention⁷.

Dilepton resonances at high mass

Systematics :

- DY dominant bgd
- Tree-level dilepton Xsec have large NLO EW and QCD corrections for SM DY and NP EW NLO \rightarrow -4 to -16 % for e+e- , -12 to -38 % for µ+µ- for 300 GeV < m_{inv} < 2 TeV QCD th uncert \rightarrow ±8.5% at 1 TeV, ±14% at 3 TeV
- Muon spectrometer alignement \rightarrow resonance peak resolution degradation
- Particle id efficiency 5% for muons, 1% for electrons, and 5% for τ
- Energy scale 1% for muons, 1% for electrons, and 5% for τ
- pT resolution
- Luminosity

Pythia e+e- tree level bgds before cuts and after $|\eta|$ <2.5 and Nlepton \geq 1 with pT>65GeV

(left) Diff Xsec of 1 TeV Z' → e+e-full simulation with parametrization of peak and of DY (right) 1fb-1 Log-likelihood ratio densities 2 TeV Z' for signal and bgd hypotheses Vertical line = median experiment in H1 hypothesis.

But also $Z' \rightarrow \mu + \mu$ - 20 to 40 pb-1 $Z' \rightarrow \tau + \tau$ - resonance ~1fb-1 For 1 TeV Z'

 $Z' \rightarrow \tau + \tau$ - resonance ~1fb-1 for significance of > 5

Dilepton + dijets

l or l

two iets

Leptoquarks $LQ \rightarrow$ leptons+quarks

DØ and CDF 95%CL limits, respectively for β =BR(LQ $\rightarrow \ell^{\pm}q$)=1

- 1^{st} gen $m_{LQ1} > 256 \text{ GeV} (250 \text{ pb-1}) m_{LQ1} > 236 \text{ GeV} (200 \text{ pb-1})$
- 2^{nd} gen $m_{LQ2} > 251$ GeV (300 pb-1) $mL_{Q2} > 226$ GeV (200 pb-1)
- Full lumi Tevatron exclusion limits ~> 300-350 GeV

Left Right Symmetric Model

3 heavy right-handed Majorana v's N_e, N_µ and N_τ W_R and Z' produced via DY W_R \rightarrow eN_e/µN_µ with N_e/N_µ \rightarrow e/µ q' qbar ent experimental limits (no direct searches for beavy Majorana)

- *Current experimental limits* (no direct searches for heavy Majorana v's)
- $m(K_L) m(K_S) \rightarrow m_{WR} > 1.6 \text{ TeV}$
- + SN1987A + LEP invisible Z $\rightarrow~m_{_{N}} \sim$ few 100 GeV $\rightarrow~m_{_{WR}} \sim$ Tev
- NCs \rightarrow m(Z') > 400 GeV
- D0 direct searches $m_{WR} \sim > 750$

Dilepton + dijets

Leptoquarks

Symmetry between leptons and quarks → search for leptoquarks LQ LQ = bosons with quark and lepton quantum numbers and fractional el charge LQ → leptons+quarks Exp limits on lepton number violation, FCNC and proton decay → 3 gen of LQ Each LQ couples to a lepton and a quark from same SM gen LQs can be produced in pairs by strong interaction or in association with a lepton via LQ-quark-lepton coupling

 $\begin{array}{lll} D \not 0 & \mbox{and CDF 95\%CL limits, respectively for β=BR(LQ \rightarrow \ell^{\pm}q)=1$ \\ 1^{st} gen & m_{LQ1} > 256 \ GeV \ (250 \ pb-1) & m_{LQ1} > 236 \ GeV \ (200 \ pb-1) \\ m_{LQ2} > 251 \ GeV \ (300 \ pb-1) & mL_{Q2} > 226 \ GeV \ (200 \ pb-1) \\ Full lumi \ Tevatron \ exclusion limits \ \sim> \ 300-350 \ GeV \\ \end{array}$

Left Right Symmetric Model : non zero L-handed v masses and baryogenesis

LRSMs of the weak interaction conserve parity at high $E \rightarrow 3$ new heavy right-handed Majorana v's N_e , N_μ and N_τ Smallest gauge group for LRSM $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. At low E, LR symmetry broken and parity is violated Majorana nature of heavy v's explains masses of 3 L-handed v's through See-Saw mechanism Lepton number L viol in processes with Majorana v's \rightarrow baryogenesis via leptogenesis \rightarrow B, L violated but B–L conserved Most LRSMs also introduce new VB W_R and Z', Higgs bosons, and L-R mixing parameter W_R and Z' produced via DY ; $W_R \rightarrow eN_e$ followed by $N_e \rightarrow e q'$ qbar; $W_R \rightarrow \mu N_\mu$ followed by $N_\mu \rightarrow \mu q'$ qbar

- $m(K_L) m(K_S) \rightarrow m_{WR} > 1.6 \text{ TeV}$
- Supernova SN1987A and LEP invisible Z \rightarrow heavy R-handed Majorana v's with m ~ few 100 GeV \rightarrow W_R at TEV scale
- Exp data on NCs \rightarrow m(Z') > 400 GeV
- D0 direct searches m_{WR} > 739 GeV (decay to dileptons and to diquarks) and 768 GeV (decays to diquarks)
- No direct searches for heavy Majorana $\nu^\prime s$

Lepton + MET at high mass

luminosity

Lepton + MET at high mass

Lepton + MET at high mass

Discovery limits Significance = $\sqrt{[2((s+b)\ln(1+s/b)-s]]}$

Vector Boson Scattering

If no light Higgs boson \rightarrow alternative to SM, SUSY, Little Higgs

EWSB could result from strong coupling interaction

- Technicolor with Goldstone boson resulting from chiral symmetry breaking
- Higgsless extra dimensions, where KK gauge bosons exchanged in s-channel
 - Extra vector bosons mixing with SM vector bosons

Chiral Lagrangian model effective theory valid up to $4\pi v \sim 3$ TeV, where v = 246 GeV vev of SM Higgs

Not an early discovery!

- 2 highly boosted VBs in central rapidity region
- For $p_T > \sim 250$ GeV, hadr decaying VB seen as one single wide and heavy jet
- 2 high rapidity/high energy "tag" jets
- No colour exchange between protons → suppression of QCD rad between jets → central jet veto
 Systematics : bgd and signal Xsec, limited MC stats, lumi, pile-up and UE, etc.

Process	Cross section (fb)		Luminosity (fb ⁻¹)		Significance
	signal	background	for 3σ	for 5σ	for 100 fb ⁻¹
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 500 GeV	0.31 ± 0.05	0.79 ± 0.26	85	235	3.3 ± 0.7
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 800 GeV	0.65 ± 0.04	0.87 ± 0.28	20	60	6.3 ± 0.9
$WW/WZ \rightarrow \ell \nu \ jj,$					
m = 1.1 TeV	0.24 ± 0.03	0.46 ± 0.25	85	230	3.3 ± 0.8
$W_{jj}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.28 ± 0.04	0.20 ± 0.18	30	90	5.3 ± 1.9
$W_{\ell\nu}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.40 ± 0.03	0.25 ± 0.03	20	55	6.6 ± 0.5
$W_{jj}Z_{\ell\ell}, m = 800 \text{ GeV}$	0.24 ± 0.02	0.30 ± 0.22	60	160	3.9 ± 1.2
$W_j Z_{\ell\ell}, m = 800 \text{ GeV}$	$0.27 \pm 0.02 \pm 0.05$	$0.23 \pm 0.07 \pm 0.05$	38	105	4.9 ± 1.1
$W_j Z_{\ell\ell}, m = 1.1 \text{ TeV}$	$0.19 \pm 0.01 \pm 0.04$	$0.22 \pm 0.07 \pm 0.05$	68	191	3.6 ± 1.0
$W_{\ell \nu} Z_{\ell \ell}, m = 1.1 \text{ TeV}$	0.070 ± 0.004	0.020 ± 0.009	70	200	3.6 ± 0.5
$Z_{VV}Z_{\ell\ell}, m = 500 \text{ GeV}$	0.32 ± 0.02	0.15 ± 0.03	20	60	6.6 ± 0.6

For m=500 GeV and 800 GeV, chiral Lagrangian vector resonance discovered with < 100 fb-1

Vector Boson Scattering

Not an early data analysis !

If no light Higgs boson → alternative to SM, SUSY, Little Higgs EWSB could result from strong coupling interaction No assumptions about underlying dynamics of EWSB SM low energy effective theory

- In SM, perturbative unitarity violated in VBS at high energy for $m_{\rm H}$ >870 GeV or if no Higgs for $\rm E_{cm} \sim 1.7~TeV$
- \rightarrow NP at high energy, possibly vector boson pair resonances
- Technicolor with Goldstone boson resulting from chiral symmetry breaking
- Higgsless extra dimensions, where KK gauge bosons exchanged in s-channel
 - Extra vector bosons mixing with SM vector bosons

→ Perform generic search

Chiral Lagrangian model

Effective theory valid up to $4\pi v \sim 3$ TeV, where v = 246 GeV vev of SM Higgs If no light scalar Higgs, description of longitudinal gauge boson scattering at TeV scale With non linear EWSB

Set of dimension-4 effective operators describe low energy interactions At LHC, VBS at TeV where interaction becomes strong → necessary to unitarise scattering amplitudes Unitarisation prescriptions : Pade or Inverse Amplitude Method based on meson scattering in QCD

In Lagrangian which describes VBS only 2 parameters namely a4 and a5 are important Depending on their values : Higgs-like scalar resonances and/or technicolour-like vector resonances Properly-unitarised amplitudes for VBS suited in higher energy range Poles for certain values of α_4 and $\alpha_5 \rightarrow$ resonances Other unitarisation procedures possible \rightarrow resonances not necessarily produced

59

In ED models $M_{Planck} \sim M_{EWSB}$

 \rightarrow coupling strength of gravity increased to size ~ other interactions \rightarrow unification of gravity and gauge interactions

 \rightarrow quantum gravity effects observable at LHC \rightarrow Black Holes (BH) production @ LHC

BHs would decay semi-classically by Hawking radiation emitting high energy particles

N.B. Semi-classical assumptions, valid only above Planck scale, necessary to enable quantitative description and predictions \rightarrow minimum m_{BH} imposed in simulations

1. BH Formation

Semi classical arguments \rightarrow BH formed if impact parameter of head-on collision between 2 partons < R_{schwarzschild} Schwarzschild 1916 + generalization by Myers and Perry 1986

for D=4+n dimensions $\rm R_{S}\,{\propto}$ (1/M_{D}) (M_{BH}/M_{D})^{1/(n+1)}

 R_s depends on n=number of xtra-dims and on M_D =effective Planck scale

Exact Xsec needs QG theory \rightarrow use quasi classical black disc approximation

 $\sigma = f \pi R_s^2$ (f=formation factor~1)

Parton level Xsec grows with energy, non perturbative

valid for $M_{BH} >> M_{D}$

Possible for any combination of q/g . All gauge/spin quantum numbers allowed. BH charged and colored

2. Hawking radiation (1975)

Pairs of virtual particles appear at event horizon with one particle escaping Black body spectrum in D=4+n with

 $T_{Hawking} = (n+1)/(4\pi R_S) \propto M_D \ x \ (M_{BH}/M_D)^{1/(n+1)} \ x \ (n+1)$

3. BH decay

- 1. Balding phase : Graviton radiation
- 2. Evaporation phase : $M_{BH} >> M_{D}$ Hawking radiation where most of initial energy is emitted mostly in SM particles
- 3. Planck phase : $M_{BH} \rightarrow M_D$ QG regime : predictions "very difficult"...

Semi-classical assumptions, valid only above Planck scale, necessary to enable quantitative description and predictions \rightarrow minimum m_{BH} imposed in simulations

Parton level Xsec grows with energy, non perturbative valid for $M_{BH} >> M_{D}$

MCs reasonable for $M_{BH} >> M_D$

Total Xsec = convoluting parton-level Xsec with PDFs integrating over phase space, summing over parton types Transition from parton-level to hadron-level Xsec based on a factorization ansatz Validity of this formula for energy region above the Planck scale is unclear Even if factorisation is valid, extrapolation of the PDFs into this transplanckian region is questionable

Charybdis BH MC

- 1. Balding phase : not simulated
- 2. Evaporation phase : only SM particles are generated, no gravitons. Democratic decay into SM particles.
- 3. Planck phase : only SM particles generated. Two body decays.
- \rightarrow MCs reasonable for M_{BH}>>M_D
- → Total Xsec = convoluting parton-level Xsec with PDFs integrating over phase space, summing over parton types Transition from parton-level to hadron-level Xsec based on a factorization ansatz
 Validity of this formula for energy region above the Planck scale is unclear
 Even if factorisation is valid, extrapolation of the PDFs into this transplanckian region is questionable

BH event simulation with Charybdis

- \rightarrow Semi classical model : M_{BH} \geq 5M_D
- → Due to high T_{Hawking} and mass scale, semi-classical BHs tend to emit particles with very high E and pT
- \rightarrow High multiplicity and high sphericity events
- ightarrow Democratic BH decay into SM particles only loosely achieved because of charged and coloured input state

FIGURE 1. Particle Multiplicities in BH datasets, with *n* extra dimensions and minimum BH mass *m*.

Democratic decay example 72% q, g 11% e, μ, τ W^{\pm} , Z 8% 6% γ Н 2% 1% γ h/l activity 5:162 h/γ activity 100:1

FIGURE 2. Circularity in BH and SM background events

Diphoton resonance in Randall Sundrum XtraD

Tevatron excludes $M_G < 240 \text{ GeV/c}^2$ with coupling k/ $M_{Planck} = 0.01$

sigma

5 sigma"

Signal and background G $\rightarrow \gamma\gamma$ with M_G = 500 GeV/c² , 1 TeV/c² with k/ M_{Planck} = 0.01

Significance

Taking into account systematic uncertainties (PDFs, Luminosity)

Devations from SM in rare b decays

B⁰_s→μ+μ-

 $B^0_s \rightarrow \ell + \ell - \text{ with } \ell \pm = e \pm, \mu \pm, \text{ or } \tau \pm, \text{ decays mediated by FCNC forbidden in the SM at tree level.}$

Lowest-order contributions in SM involve weak penguin loops and weak box diagrams that are CKM suppressed. Below lowest order SM contributions diagrams.

Since the BOs meson is a pseudoscalar that has positive C parity and the transition proceeds in an $\ell = 0$ state, electromagnetic penguin loop forbidden. Two leptons are either both right-handed or both left-handed leading to additional helicity suppression. Thus, branching fractions expected in the Standard Model are tiny.

In extensions of the SM, the $B_s^0 \rightarrow \mu + \mu$ - branching fraction may be enhanced by several orders of magnitude. CDF and D0 have not yet observed a signal (2fb-1).

CDF limit $B(B_s^0 \rightarrow \mu + \mu) < 5.8 \times 10^{-8}$ @ 95% CL ~ 1 order of magnitude higher than SM prediction New physics could be SUSY, Higgs doublet models, models with extra gauge bosons

LU ana NLU XSEC : PRUSPINU + CTEQON	NLO Xsec : PROSPINO + CTE	EQ6M
-------------------------------------	---------------------------	------

Label	$\sigma^{ m LO}$ (pb)	$\sigma^{ m NLO}$ (pb)	Ν	L (fb ⁻¹)
SU1	8.15	10.86	200 K	18.4
SU2	5.17	7.18	50 K	7.0
SU3	20.85	27.68	500 K	18.1
SU4	294.46	402.19	200 K	0.50
SU6	4.47	6.07	30 K	4.9
SU8.1	6.48	8.70	50 K	5.7
SU9	2.46	3.28	40 K	12.2

- SU1 $m_0 = 70$ GeV, $m_{1/2} = 350$ GeV, $A_0 = 0$, $\tan \beta = 10$, $\mu > 0$. Coannihilation region where $\tilde{\chi}_1^0$ annihilate with near-degenerate $\tilde{\ell}$.
- SU2 $m_0 = 3550 \text{ GeV}, m_{1/2} = 300 \text{ GeV}, A_0 = 0, \tan\beta = 10, \mu > 0$. Focus point region near the boundary where $\mu^2 < 0$. This is the only region in mSUGRA where the $\tilde{\chi}_1^0$ has a high higgsino component, thereby enhancing the annihilation cross-section for processes such as $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow WW$.
- SU3 $m_0 = 100$ GeV, $m_{1/2} = 300$ GeV, $A_0 = -300$ GeV, $\tan \beta = 6$, $\mu > 0$. Bulk region: LSP annihilation happens through the exchange of light sleptons.
- SU4 $m_0 = 200$ GeV, $m_{1/2} = 160$ GeV, $A_0 = -400$ GeV, $\tan \beta = 10$, $\mu > 0$. Low mass point close to Tevatron bound.
- SU6 $m_0 = 320$ GeV, $m_{1/2} = 375$ GeV, $A_0 = 0$, $\tan\beta = 50$, $\mu > 0$. The funnel region where $2m_{\tilde{\chi}_1^0} \approx m_A$. Since $\tan\beta \gg 1$, the width of the pseudoscalar Higgs boson A is large and τ decays dominate.
- SU8.1 $m_0 = 210$ GeV, $m_{1/2} = 360$ GeV, $A_0 = 0$, $\tan\beta = 40$, $\mu > 0$. Variant of coannihilation region with $\tan\beta \gg 1$, so that only $m_{\tau_1} m_{\tilde{\chi}_1^0}$ is small.
 - SU9 $m_0 = 300$ GeV, $m_{1/2} = 425$ GeV, $A_0 = 20$, $\tan \beta = 20$, $\mu > 0$. Point in the bulk region with enhanced Higgs production

Theoretical framework

SUSY theoretically favoured candidate for BSM Protect Higgs boson mass from quadratically diverging radiative corrections, in a theory where SM is only valid up to a scale Λ . Invariance of the theory under a symmetry which transforms fermions into bosons and vice-versa.

SUSY predictions :

for each SM particle degree of freedom \rightarrow corresponding sparticle with Δ spin = ½ SUSY generators commute with SU(2)×U(1)×SU(3) symmetries of the SM, and with Poincare group.

In unbroken SUSY, partner particles would have the same quantum numbers and masses as SM particles. Since no superpartner has been observed to date, SUSY must be broken.

Assume minimal possible particle content i.e. common simplification approach, and parametrize SUSY-breaking Lagrangian as Σ of all terms which do not reintroduce quadratic divergences

 \rightarrow MSSM characterised by a large number of parameters (100) Conservation of baryonic and leptonic quantum numbers

 \rightarrow new multiplicative quantum number R-parity = 1 (-1) for (s)particles

If R-parity is conserved \rightarrow sparticles produced in pairs. Subsequent decay down to stable lightest SUSY particle (LSP). Cosmological arguments \rightarrow LSPs weakly interacting and escape direct detection \rightarrow MET

Impossible to explore 100-dim param space of MSSM \rightarrow adopt some specific assumptions for SUSY breaking :

• mSUGRA : SUSY breaking mediated by gravitational interaction

• GMSB : SUSY breaking mediated by gauge interaction through messenger gauge fields LSP=neutralino in mSUGRA, gravitino in GMSB \rightarrow different topologies

mSUGRA points

Predicted cosmological relic density of neutralinos should be consistent with observed density of CDM. To reproduce observed relic density, mSUGRA must ensure efficient annihilation of neutralinos in early U. Possible only in restricted regions of mSUGRA parameter space, where annihilation enhanced : either by a significant higgsino component in lightest neutralino or through mass relationships. Points defined in terms of mSUGRA parameters at GUT :

SU1	m ₀ =70 GeV, m _{1/2} =350 GeV, A ₀ = 0, tan β = 10, μ > 0 Coannihilation region where χ^0_1 annihilate with slepton
SU2	m ₀ =3550 GeV, m _{1/2} =300 GeV, A ₀ = 0, tan β = 10, μ > 0 Focus point region near boundary where μ^2 < 0. Only region in mSUGRA where ~ χ^0_1 has high higgsino component → annih Xsec enhanced
SU3	m_0 =100 GeV, $m_{1/2}$ =300 GeV, A_0 = -300 GeV, tan β = 6, μ > 0 Bulk region: LSP annih through exchange of light sleptons
SU4	m_0 =200 GeV, $m_{1/2}$ =160 GeV, A_0 = -400 GeV, tan β = 10, μ > 0 Low mass point close to Tevatron bound
SU6	m ₀ =320 GeV, m _{1/2} =375 GeV, A ₀ = 0, tan β = 50, μ > 0 Funnel region where 2m(χ^0_1) ~ m(A). Since tan β>>1, Γ (A)>> and τ decays dominate
SU8.1	m ₀ =210 GeV, m _{1/2} =360 GeV, A ₀ = 0, tan β = 40, μ > 0 Variant of coannih region with tan β >>1 such that only m(~ τ_1)-m(~ χ^0_1) is small
SU9	m_0 =300 GeV, $m_{1/2}$ =425 GeV, A_0 = 20, tan β = 20, μ > 0 Point in bulk region with enhanced Higgs prod
Wide range	of possible decay topologies. Common features e.g. gluino mass < 1 TeV, m($^{\circ}g$)/m($^{\circ}\chi^{0}_{1}$)= 6–8 For all except SU2, m($^{\circ}q$) \cong m($^{\circ}g$). Gluinos and squarks copiously produced.

Decays give relatively high pT jets, possibly leptons, and MET.

68

If R-parity is conserved

 \rightarrow sparticles produced in pairs (squarks, gluinos)

 \rightarrow sparticle cascade decay down to stable lightest SUSY particle (LSP)

Some possible scenarios :

mSUGRA (LSP=neutralino) SUSY breaking mediated by gravitational interaction

 $m_0 = 70 \text{ GeV}$ $m_{1/2} = 350 \text{ GeV}$ $A_0 = 0 \tan \beta = 10 \mu > 0$ SU1 10.9pb m_0 =3550 GeV $m_{1/2}$ =300 GeV A_0 = 0 tan β = 10 μ > 0 SU2 7.18pb $m_0=100 \text{ GeV}$ $m_{1/2}=300 \text{ GeV}$ $A_0=-300 \text{ GeV}$ $\tan\beta=6 \mu>0$ 27.7pb SU3 $m_0=200 \text{ GeV}$ $m_{1/2}=160 \text{ GeV}$ $A_0=-400 \text{GeV}$ $\tan\beta=10 \ \mu>0 \ 402 \text{pb}$ SU4 m_0 =320 GeV $m_{1/2}$ =375 GeV A_0 = 0 tan β = 50 μ > 0 SU6 6.1pb SU8.1 m₀=210 GeV m_{1/2}=360 GeV A₀=0 tan β = 40 μ > 0 8.7pb $m_0=300 \text{ GeV}$ $m_{1/2}=425 \text{ GeV}$ $A_0=20 \tan \beta = 20 \mu > 0$ SU9 3.3pb

GMSB (LSP=gravitino)

SUSY breaking mediated by gauge interactions through messenger gauge fields

Split SUSY

Gluinos can be meta-stable forming a bound state so-called $R_{^{\rm r}g}^{\rm -}hadron$

Gravitino LSP and stop NLSP scenario

Generic possible candidate for NLSP is lightest $^{\rm \sim}t_1$ which would form stable bound states denoted $R_{\rm \sim_t}$

Coannih where χ_{1}^{0} annih with slept Focus point near boundary where $\mu^{2} < 0$ Bulk: LSP annih through exch of light slepts Low mass point close to Tevatron bound Funnel : $2m(\chi_{1}^{0}) \sim m(A)$. τ decays dominate Variant of coannih: tan $\beta >>1$

Point in bulk with enhanced Higgs prod

GMSB

SUSY breaking which takes place in hidden sector is transmitted to visible MSSM fields through a messenger sector whose mass scale is much below Planck scale ($M_{mess} \ll M_{Planck}$) via the ordinary SM gauge interactions Gravitino is very light (in general \ll 1 GeV) and is always the LSP In minimal GMSB, all SUSY breaking interactions are determined by a few parameters Squarks, sleptons, and gauginos obtain their masses radiatively from the gauge interactions with massive messengers their masses depend on number of messenger generations, N₅ (messenger fields form complete SU(5) representations) Gaugino masses scale like N₅ while scalar masses scale like $\sqrt{N_5}$ For N₅ = 1, NLSP = $\gamma \chi_1^0$ with decays as $\rightarrow \gamma + \gamma G$ For $N_5 \ge 2$, NLSP = $\sim \tau_1$ When tan β not too large, mass splitting between $\sim \tau_1$ and $\sim e_R$, μ_R is small, rendering them co-NLSP's which decay into leptons and ~G When tan β large $\sim \tau_1$ is sole NLSP Effective visible sector SUSY breaking parameter Λ sets overall mass scale for all MSSM superpartners, which scales linearly with Λ These masses only depend logarithmically on messenger scale M_{mess} \rightarrow MSSM masses predominantly determined by Λ

 $N_5 = 1$, tan $\beta = 5$, sgn(μ) = +

 $N_5 = 3$, tan $\beta = 5$, sgn(μ) = +

name	NLO (LO) σ [pb]	Λ [TeV]	M_m [TeV]	$M_{\tilde{\tau}_1}$ [GeV]
GMSB5	21.0 (15.5)	30	250	102.3

→ Data-driven determinations of W, Z, and top backgrounds to Supersymmetry :

Claim for discovery of NP possible only if SM bgds understood and under control MC alone not sufficient

Bgds will have to be derived from data, possibly helped by MC

Careful combination of multiple, independent methods needed : complementary bgd sources and systematics

SUSY signal will affect bgd estimates, at a level that depends on SUSY signal properties, as well as on method Methods with very tight control samples see almost no effect

For looser methods, bgd is overestimated (contaminated by SUSY) by ~20–30% for SU1, SU2, SU3 and SU6.

If SUSY excess observed (possible with 1 fb–1), correct for bgd overestimation.

More work is needed in this area.

SU4 is special case because of its light spectrum : kinematics similar to SM bgds and high Xsec Difficult to provide bgd predictions but SU4 would not be missed.

→ Estimation of QCD backgrounds to Searches for Supersymmetry

Difficult to undertand/distinguish QCD jet events amongst SUSY evts with jets and MET Sub-dominant bgds at high MET and large jet multiplicity, but not so clear with real data Dead material, jet punch-through, pile-up of machine bgds and other effects \rightarrow non-Gaussian tails to detector jet response \rightarrow "fake" MET QCD bgd

Accurate estimation of QCD jet bgds difficult:

- fake MET poorly modeled in GEANT4
- theoretical and experimental uncertainties
- large QCD Xsect \rightarrow difficult to produce statistically significant MC samples

Variables sensitive to SUSY : MET and Meff= $\sum_{i=1,4} |pT(j_i)|$ +MET

MC based bgd estimates systematic uncertainties

- PDFs and underlying event ~ 20% each
- jet energy scale ~ 5% \rightarrow ~ 30%
- MC modelling of QCD jet physics at 14 TeV : Δ (dijet PS.vs.ME+PS) ~ 50%
- luminosity ~20–30% at start-up (machine params)
 < 3–5% (from total Xsec; W/Z counting)

Detector simulation uncertainties due to imperfect description of ATLAS response to QCD jets Uncertainty in response of ATLAS calorimetry to jets $\sim 100\% \rightarrow$ similar uncertainties in bgd estimate.

Fake MET from fast sim, transfer function technique, and full sim, for 140<pT<280 GeV (left) and for 560<pT<1120 GeV (right). Ratio w.r.t. full sim.

→ Prospects for Supersymmetry Discovery Based on Inclusive Searches

Search for generic SUSY with R parity conserved : SUSY particles produced in pairs and decay to LSP χ_1^0 \rightarrow jets, possible leptons and MET

Common variables used:

Effective mass (Meff)

$$M_{\rm eff} \equiv \sum_{i=1}^{4} p_T^{\rm jet,i} + \sum_{i=1} p_T^{\rm lep,i} + E_{\rm T}^{\rm miss}$$

Stransverse mass (m_{T2})

The stranverse mass m_{T2} variable can be defined in terms of the transverse mass (Eq. (2)) by:

$$m_{T2}^{2}(\mathbf{p}_{T}^{\alpha}, \mathbf{p}_{T}^{\beta}, \mathbf{p}_{T}^{\text{miss}}, m_{\alpha}, m_{\beta}, m_{\chi}) \equiv \min_{\mathbf{q}_{T}^{(1)} + \mathbf{q}_{T}^{(2)} = \mathbf{p}_{T}^{\text{miss}}} \left[\max\left\{ M_{T}^{2}(\mathbf{p}_{T}^{\alpha}, \mathbf{q}_{T}^{(1)}; m_{\alpha}, m_{\chi}), M_{T}^{2}(\mathbf{p}_{T}^{\beta}, \mathbf{q}_{T}^{(2)}; m_{\beta}, m_{\chi}) \right\} \right]$$
(4)

where m_{χ} is the trial mass for the lightest SUSY particle and $\mathbf{p}_T^{\alpha,\beta}$ are the transverse momenta of two visible particles (each of which is a canididate decay product of one of the two SUSY parent particles).

Transverse Sphericity (ST)

$$S_T \equiv \frac{2\lambda_2}{(\lambda_1 + \lambda_2)}$$

where λ_1 and λ_2 are the eigenvalues of the 2×2 sphericity tensor $S_{ij} = \sum_k p_{ki} p^{kj}$. The tensor is computed using all jets with $|\eta| < 2.5$ and $p_T > 20$ GeV, and all selected leptons.

SUSY events tend to be relatively spherical ($S_T \sim 1$) since the initial heavy particles are usually produced approximately at rest in the detector and their cascade decays emit particles in many different directions. QCD events are dominated by back-to-back configurations ($S_T \sim 0$).

SUSY discovery based on inclusive searches

Least model-dependent SUSY signature \rightarrow multiple jets (e.g. \geq 4) + MET High jet multiplicity \rightarrow bgd reduction : QCD and W/Z+jets Final state \rightarrow jets + possible leptons + MET

Variables commonly used

- MET
- Effective mass (Meff) = $\Sigma_{i=1,4} pT_{jeti} \Sigma_{i=1,4} pT_{lepti} + MET$
- Stransverse mass (m_{T2})
- Transverse Sphericity (ST)

Data driven determination of bgds

W,Z,top 20% QCD 50% with 1fb-1

2 different approaches

 \rightarrow Detailed studies for various signatures (jets + MET + 0,1,2,3... leptons) \rightarrow full simulation

 \rightarrow Scans over subsets of SUSY parameter space using \rightarrow fast simulation

Zero lepton mode (1 fb-1)

For this topology and for leptonic topologies, very simple sets of cuts: Evts with Njet \geq 4 and with

1<Njet<4 : high bgd but easier to reconstruct, favoured in some SUSY models

Njet ≥4

- 1. pTjets > 50 GeV + \geq 1 jet with pT > 100 GeV; MET >100 GeV
- 2. MET > 0.2 x Meff
- 3. Transverse sphericity ST > 0.2
- 4. $\Delta \phi$ (jet1-MET) > 0.2, $\Delta \phi$ (jet2-MET) > 0.2, $\Delta \phi$ (jet3-MET) > 0.2
- 5. Reject events with e or $\boldsymbol{\mu}$
- 6. Meff > 800 GeV

Njet=2

One lepton mode (1fb-1)

≥4 jets

For Nlepton=1 \rightarrow multijet QCD bgd greatly reduced

 τ decays of gauginos are dominant but leptonic τ decays \rightarrow significant 1-lepton rate for high masses.

2 (left) or 3 (right) jets

Detailed studies of signatures e.g. Two lepton mode (1fb-1)

Opposite-sign di-leptons from neutralino decays, especially $\chi_2^0 \rightarrow \ell + \ell - + \chi_1^0$ directly or through an intermediate slepton Leptons produced from independent decays \rightarrow same-flavour (OSSF) or different-flavour (OSDF) dilepton pairs $\ell = e, \mu$

Opposite sign $+ \ge 4$ jets

1. N_{lepton} = 2 isolated opposite-sign pT > 10 GeV $|\eta|$ < 2.5 if N_{lepton}>2 \rightarrow evts vetoed

2. $N_{jets} \! \geq \! 4 \text{ pT} \! > \! 50 \text{ GeV}, N_{jets} \! \geq \! 1$ with pT > 100, 200, 300, 320 GeV

3. MET> 100, 110, 140 GeV MET > 0.2M_{eff}

4. Transverse sphericity ST > 0.2

Same sign $+ \ge 4$ jets

SM, small rate for prompt, isolated, same-sign dilepts \rightarrow some ℓ from hadronized heavy/light quarks

SUSY gluino is self-conjugate Majorana fermion \rightarrow like-sign dileptons common.

1. N_{lepton}=2 same-sign pT > 20 GeV

2.
$$N_{iets} \ge 4 \text{ pT} > 50 \text{ GeV}$$

$$\dot{N}_{iets} \ge 1 \text{ pT} > 100 \text{ GeV}$$

3. MET > 100 GeV

4. MET > 0.2 X Meff

Process	Cuts 1–3	Cut 4	Z_n
SU1	30.1	21.9	7.2
SU2	13.0	6.6	1.9
SU3	37.9	24.9	7.7
SU4	251.8	138.8	19.9
SU6	18.0	13.9	4.5
tt	2.1	< 2.3	
W + jets	0.7	0.0	
Z + jets	0.0	0.0	

2leptons + \geq 4 jets : SU1, SU3, SU4 (SU6) \leq 1fb-1 for \geq 5 σ

77

Three lepton mode (1fb-1)

Trileptons from all sources, not just from direct gaugino production Two approaches

3-leptons + jet with high-pT jet

1. $N_{lepton} \ge 3$, pT > 10 GeV 2. $N_{jet} \ge 1$, pT > 200 GeV Zn significance + 20% bgd uncert.

3-leptons + MET :

No veto on jets

 \rightarrow sensitive to direct gaugino prod and to tri- ℓ from squark and gluino decays

Analysis cuts optimized for SU2

 \rightarrow gaugino pair prod dominates

SUSY dominant source of tri- ℓ includes $\chi^0_2 \rightarrow \ell + \ell - + \chi^0_1$

ightarrow require at least 1 OSSF lepton pair

1. Nℓ ≥ 3, pT > 10 GeV

- 2. \geq 1 OSSF dilepton pair, M > 20 GeV
- 3. Isol cut $p^{0.2}_{T,trk} < 1$ GeV for μ and < 2 GeV for el i.e. pTmax of any extra track within cone R = 0.2 around lepton
- 4. MET > 30 GeV
- 5. $M < M_z 10$ GeV for any OSSF dilepton pair

Sample	Cut 1	Cut 2	S/B	S/\sqrt{B}	Z_n
SU2	35	13	1.1	3.7	2.7
SU3	139	94	7.8	27.1	11.5
SU4	1284	312	26.0	90.0	24.4
tt	455	11	-	_	_
ZZ	59	0	_	_	_
ZW	193	1	_	_	-
WW	3	0	_	_	_
$Z + \gamma$	9	0	-	_	_
Zb	656	0	-	-	-

Process	Cuts 1-2	Cut 3	Cut 4	Cut 5
SU1	42.2	33.0	32.6	24.1
SU2	29.8	24.1	21.1	17.6
SU3	130.1	101.2	98.6	63.9
SU4	968.1	691.5	654.3	544.9
SU8.1	10.2	8.0	8.0	5.3
WZ	188.3	166.2	122.5	22.8
ZZ	55.9	46.4	10.3	1.6
Zb	582.5	221	1.3	0
tt	283.2	59.9	56.6	47.9

	SU1	SU2	SU3	SU4	SU8
S	24.1	17.6	63.9	544.9	5.3
В			73.5		
S/\sqrt{B}	2.8	2.1	7.5	63.5	0.6
Z_n	1.3	1.0	3.5	16.4	0.3

3 leptons : SU3, SU4 \leq 1fb-1 for \geq 5 σ

Tau mode (1fb-1)

SUSY models generically violate $e/\mu/\tau$ universality

 τ Decays dominant for $\mbox{tan}\beta\gg 1$

Look for signatures involving hadronic τ decays

- 1. $N_{jets} \ge 4$, pT > 50 GeV and $N_{jets} \ge 1$, pT > 100 GeV
- 2. MET> 100 GeV
- 3. $\Delta \phi$ (j_i,MET) > 0.2 for 3 leading jets
- 4. No isolated leptons
- 5. N $_{\tau} \ge$ 1, pT >40 GeV and $|\eta|$ < 2.5 (lik method)
- 6. MET > 0.2 X Meff
- 7. M_{τ} > 100 GeV, calculated using p_{vis} of hardest τ and MET

b-jet mode (1fb-1)

SUSY rich in b quarks : sbottom/stop lighter than 1st and 2nd gen. squarks and Higgsino couplings enhance heavy flavour production

% evts containing b jets : from 14.4% for SU2 to 72.8% for SU4, whereas QCD $^{\sim}$ 1%

- 1. $N_{jets} \ge 4$, pT > 50 GeV
- 2. Leading jet pT > 100 GeV
- 3. MET > 100 GeV
- 4. MET > 0.2 X Meff
- 5. Transverse sphericity ST > 0.2
- 6. $N_{jets} \ge 2$ tagged as b jets
- 7. M_{eff} > 600, 800, or 1000 GeV

Sample	S	В	S/B	S/\sqrt{B}	Z_n
SU3	259	51	5.1	36.3	12
SU6	119	51	2.3	16.7	6.8

		S/B	Z_n for 0.1 fb ⁻¹	Z_n for 1 fb ⁻¹
Γ	SU1	3.8	6.0	9.3
	SU2	1.3	2.3	5.0
	SU3	6.2	7.5	13.0
	SU4	13.4	12.6	21.7
	SU6	4.9	7.1	11.2

Tau mode : SU3, SU6 \leq 1fb-1 for \geq 5 σ b-jet mode : SU1, SU2, SU3, SU4, SU6 \leq 1fb-1 for \geq 5 σ

SUSY GMSB

High-pT photons in GMSB models

 $\chi^0_1 \rightarrow {}^\circ G + \gamma$ gives 2 high pT photons + MET long lived ${}^\circ \chi^0_1$ give non pointing photons

- Njets \geq 4 with pT > 50 GeV and pT > 100 GeV for leading jet
 - MET > 100 GeV and MET > 20% X Meff
 - \geq 1 photon with pT>20 GeV and $|\eta|{<}2.5$

SUSY R-hadrons

Long Lived Heavy particles in Split-SUSY and gravitino LSP

Penetrating hard charged track with high E deposition and long time of flight

May undergo charge exchange in calorimeter

Multiple nuclear interactions before reaching muon system

ightarrow appearance of high pT tracks in muon system with no matching track in ID

 \rightarrow electric charge flipping between ID and muon system

 $m_{R-hadrons} \sim < 200 \text{ GeV}$ already excluded

Selection

low trigger efficiency 20 (30) % for m=2 TeV (few 100GeV)

no hard muon-like track (pT > 250 GeV) near (R < 0.36) a hard jet (pT > 100 GeV)

- at least one hard muon track with no linked ID track
- 2 hard back-to-back ID tracks
- 2 hard back-to-back like-sign muon tracks
- at least one hard muon track with hard matching ID track of opposite charge

name	NLO (LO) cross-section [pb]	sparticle	Mass [GeV]				
R-Hadron1	567 (335)	ĝ	300				
R-Hadron2	12.2 (6.9)	ĝ	600				
R-Hadron3	0.43 (0.23)	ĝ	1000				
R-Hadron4	0.063 (0.033)	ĝ	1300				
R-Hadron5	0.011 (0.006)	ĝ	1600				
R-Hadron6	0.0014 (0.00075)	ĝ	2000				
R-Hadron7	11.4 (7.8)	ĩ	300				
R-Hadron8	0.27 (0.18)	ĩ	600				
R-Hadron9	0.010 (0.0064)	ĩ	900				

R1 to R6 are R_{r_g} -hadron while R7 to R0 are R_{r_t}

1fb-1 discovery
m(R _{~g}) < 1 TeV
m(R _{~t1}) ~< 550 GeV

Sample	Accepted events	Rate (Events / fb ⁻¹)
300 GeV gluino	235	6.44×10^{3}
600 GeV gluino	551	2.70×10^{3}
1000 GeV gluino	774	10.7
1300 GeV gluino	732	1.20
1600 GeV gluino	685	0.147
2000 GeV gluino	546	$1.26 imes 10^{-2}$
300 GeV stop	78	70.0
600 GeV stop	134	3.9
1000 GeV stop	170	0.1
J5	1	0.893
J8	1	2.26×10^{-3}
$Z \rightarrow \mu \mu$	1	0.776

Scans

Over parameters of several R-parity conserving SUSY models

Data-driven methods for SM bgds \rightarrow 1fb-1 estimated errors ~50% for QCD jets and ~20% for W, Z, and t bgds Look for excess above cut on Meff (best performance) or MET

Signal Xsec norm to LO HERWIG. Bgd Xsec norm to NLO (NLO usually increases Xsec = conservative)

Impossible to scan 105-dim parameter space of MSSM

or even 19-dim subspace with flavour and CP conservation and degeneracy of $1^{\mbox{\scriptsize st}}$ two gens

 \rightarrow use SUSY models with many fewer parameters

mSUGRA fixed 25X25 grid, $\tan\beta$ = 10, A_0 = 0, μ > 0

(60 GeV < m_0 < 2940 GeV in steps of 120 GeV) X (30 GeV < $m_{1/2}$ < 1470 GeV in steps of 60 GeV) SUSY spectra using ISAJET 7.75 with m_{top} = 175 GeV, 20k events/point. Only constraints from direct searches

mSUGRA fixed 14X14 grid: $\tan\beta = 50$, $A_0 = 0$, $\mu < 0$

Large tan β increases the mixing of $\tilde{b}_{L,R}$ and $\tilde{\tau}_{L,R} \rightarrow$ enhanced b and t production.

(200 GeV < m_0 < 3000 GeV in steps of 200 GeV) X (100 GeV < $m_{1/2}$ < 1500 GeV in steps of 100 GeV) m_{top} = 175 GeV Only constraints from direct searches

mSUGRA random grid with constraints

All mSUGRA params varied in 2 regions compatible with DM and other constraints with μ > 0 and m_{top} = 175 GeV ISAJET 7.75 used. All points satisfy : LEP m_h > 114.4 GeV, WMAP total DM limit Ω h² < 0.14,

within 3σ BR limits B(b \rightarrow s γ) = (3.55± 0.26)×10⁻⁴ and B(Bs \rightarrow µ+µ-) < 1.5 \cdot 10⁻⁷,

with $\delta a_{\mu} < 3\sigma$ upper limit from muon anomalous magnetic moment measurement $a_{\mu} = (11659208\pm6) \times 10^{-10}$ GMSB fixed grid

 M_{mess} = 500 TeV, N_{mess} = 5, C_{grav} = 1: with N_{mess} = 5, NLSP = slepton which decays promptly to leptons or τ 's 10 TeV < Λ < 80 TeV in 10 TeV steps and 5 < tan β < 40 in steps of 5

Non Universal Higgs Model (NUHM) grid:

Similar to mSUGRA but does not assume that Higgs masses unify with squark and slepton ones at GUT scale \rightarrow more gaugino/Higgsino mixing at weak scale \rightarrow relaxes mSUGRA DM constraints

Step size of 100 GeV for m_0 and $m_{1/2}$. Values of μ and M_A at weak scale are adjusted to give acceptable CDM 82

Measurements from R-parity-conserving mSUGRA evts

- Edges and thresholds in dilepton, lepton-jet, dijet invariant mass distributions \rightarrow Mass values
- Rate of tau leptons \rightarrow tan β
- Trileptons \rightarrow chargino/neutralino couplings

In R-parity-conserving models, decay chain of sparticles cannot be completely reconstructed (LSP undetected) Edge positions are measured in m_{inv} distribution of sparticle decay products

• If m(sleptons) > m(χ^0_2)

$$\rightarrow \qquad \chi_2^0 \rightarrow \chi_1^0 \ell + \ell - \text{ (as in SU4)}$$

- → Non triangular m_{inv} with $m_{\ell+\ell-}^{edge} = m(\chi_2^0) m(\chi_1^0)$
- If at least one of sleptons m(slepton) < m(χ^0_2))

$$\rightarrow \qquad \chi^0_2 \rightarrow {}^{\circ}\ell + \ell - \rightarrow \chi^0_1 \ell + \ell - \text{ (as in SU1 and SU3)}$$

 $\rightarrow~$ Triangular m_{inv} with an endpoint at:

$$m^{\rm edge}_{\ell\ell} = m_{\tilde{\chi}^0_2} \sqrt{1 - \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}^0_2}}\right)^2} \sqrt{1 - \left(\frac{m_{\tilde{\chi}^0_1}}{m_{\tilde{\ell}}}\right)^2} \ . \label{eq:medge}$$

To determine masses of all particles involved in decay chain, one can use $m_{\ell\ell q}$, $m^{thr}_{\ell\ell q}$, $m_{\ell q}(low)$ and $m_{\ell q}(high)$ where only 2 leading jets are considered

 $m_{\ell\ell q}$ using jet giving lowest $m_{\ell\ell q}$ value

 $m^{thr}_{\ell\ell q}$ jet giving highest $m_{\ell\ell q}$ value used

 $m_{\ell q}$ (low) and $m_{\ell q}$ (high) lower and higher $m_{\ell q}$ value of each event using same jet as for $m_{\ell \ell q}$

Also studies of $\sim q_R$ pairs ($\sim q_R \rightarrow \chi_1^0 q$; SU3, SU4) and light stop signatures (SU4) $\sim t_1 \rightarrow \chi_1^{\pm} b$.

→ Measurements from R-parity-conserving mSUGRA evts Higgs from the decay of a SUSY particle

 $\chi^{0}_{2} \rightarrow \chi^{0}_{1}h$ dominates unless slepton is lighter than χ^{0}_{2} in which case the ~ ℓ + ℓ - and ~ $\nu\nu$ bar decays open up In SU9, BR($\chi^{0}_{2} \rightarrow \chi^{0}_{1}h$) ~ 87% ~ $q_{L} \rightarrow ~\chi^{0}_{2} q \rightarrow ~\chi^{0}_{1}hq \rightarrow MET + bbbar + jet$

- 1. MET > 300 GeV
- 2. 2 light-flavoured pT > 100 GeV
- 3. 2 b jets pT > 50 GeV
- 4. no leptons with pT > 10 GeV

→ Measurements from R-parity-conserving mSUGRA evts Masses and SUSY parameters

SUSY particle masses and mass differences in SU3 and SU4 From $\chi 2$ fit using dilepton and lepton+jets edges. Parabolic MIGRAD errors and jet energy scale errors. Error correlations (+-). 1 fb–1 for SU3 and 0.5 fb–1 for SU4. Fits to presudo experiment results in SU3. Mean and RMS of fit.
2 possible assumptions for sign(μ) = ±1 Effect of different assumptions
on theoretical uncertainties is also shown.

Observable	SU3 m _{meas}	SU3 m _{MC}	SU4 m _{meas}	SU4 m _{MC}
	[GeV]	[GeV]	[GeV]	[GeV]
$m_{\tilde{\chi}_1^0}$	$88 \pm 60 \mp 2$	118	$62 \pm 126 \mp 0.4$	60
$m_{\tilde{\chi}^0_2}$	$189\pm60\mp2$	219	$115 \pm 126 {\mp} 0.4$	114
m _{q̃}	$614 \pm 91 \pm 11$	634	$406 \pm 180 \pm 9$	416
ma	$122 \pm 61 \pm 2$	155		
····ℓ				
Observable	SU3 $\Delta m_{\rm meas}$	SU3 $\Delta m_{\rm MC}$	SU4 $\Delta m_{\rm meas}$	SU4 $\Delta m_{\rm MC}$
Observable	SU3 ∆m _{meas} [GeV]	SU3 ∆m _{MC} [GeV]	SU4 ∆m _{meas} [GeV]	SU4 $\Delta m_{\rm MC}$ [GeV]
Observable $m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}}$	$SU3 \Delta m_{meas}$ [GeV] $100.6 \pm 1.9 \mp 0.0$	SU3 Δm _{MC} [GeV] 100.7	$\begin{array}{c} \text{SU4} \Delta m_{\text{meas}} \\ \text{[GeV]} \\ 52.7 \pm 2.4 \mp 0.0 \end{array}$	SU4 Δm _{MC} [GeV] 53.6
Observable $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$ $m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$	SU3 Δm_{meas} [GeV] 100.6±1.9∓0.0 526±34±13	SU3 Δm _{MC} [GeV] 100.7 516.0	$SU4 \ \Delta m_{meas} \\ [GeV] \\ 52.7 \pm 2.4 \mp 0.0 \\ 344 \pm 53 \pm 9 \\ \end{bmatrix}$	SU4 Δm _{MC} [GeV] 53.6 356
Observable $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}$ $m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$ $m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}$	SU3 Δm_{meas} [GeV] 100.6 \pm 1.9 \mp 0.0 526 \pm 34 \pm 13 34.2 \pm 3.8 \mp 0.1	SU3 Δm _{MC} [GeV] 100.7 516.0 37.6	SU4 Δm_{meas} [GeV] 52.7 \pm 2.4 \mp 0.0 344 \pm 53 \pm 9	SU4 Δm _{MC} [GeV] 53.6 356

Parameter	SU3 value	fitted value	exp. unc.				
			_				
	$\operatorname{sign}(\mu) = +1$						
$tan \beta$	6	7.4	4.6				
M_0	100 GeV	98.5 GeV	$\pm 9.3 \text{ GeV}$				
$M_{1/2}$	300 GeV	317.7 GeV	$\pm 6.9 \text{ GeV}$				
A_0	-300 GeV	445 GeV	$\pm 408~{\rm GeV}$				
	sign(µ	() = -1					
$tan \beta$		13.9	±2.8				
M_0		104 GeV	$\pm 18 \text{ GeV}$				
$M_{1/2}$		309.6 GeV	$\pm 5.9 \text{ GeV}$				
A_0		489 GeV	$\pm 189~{\rm GeV}$				

→ Multi-lepton + MET searches in SU2

Leptonic decay of pairs of heavy gauginos, such as χ^0_2 and χ^+_1 , through real or virtual W[±], Z⁰ or sleptons to leptons and a pair of LSPs Heavy gauginos produced directly or in decay of heavier partner particles Most important bgds \rightarrow ttbar, Zb and ZW SU2 trileptons

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
tt	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2 k	14.5k	1910	1682	322	218	154
WW	400k	22.7 k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4 k	559 k	6523	2409	386	0	0
inclusive SUSY S		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino \mathscr{S}		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Numbers of evts and significance SU2 10 fb-1

SUSY scans

Over parameters of several R-parity conserving SUSY models Look for excess above cut on Meff (best performance) or MET

Scans 1fb-1

Plots based on analyses that require a certain number of jets and leptons (e or μ) Find an optimal M_{eff} cut in steps of 400 GeV to maximize significance Zn with 20% bgd uncertainty

Detailed studies of signatures e.g. Two lepton mode (1fb-1)

Opposite-sign di-leptons from neutralino decays, especially $\chi_2^0 \rightarrow \ell + \ell - + \chi_1^0$ directly or through an intermediate slepton Leptons produced from independent decays \rightarrow same-flavour (OSSF) or different-flavour (OSDF) dilepton pairs $\ell = e, \mu$

Opposite sign $+ \ge 4$ *jets*

Sample	$E_{\rm T}^{\rm miss}$ cut	Leading jet cut	signal	background	Significance
SU1	100 GeV	320 GeV	37.97	6.30	6.94
SU2	140 GeV	200 GeV	13.74	22.68	1.07
SU3	140 GeV	200 GeV	125.34	22.68	11.45
SU4	110 GeV	100 GeV	772.53	66.80	24.70

Same sign $+ \ge 4$ jets

Process	Cuts 1–3	Cut 4	Z_n
SU1	30.1	21.9	7.2
SU2	13.0	6.6	1.9
SU3	37.9	24.9	7.7
SU4	251.8	138.8	19.9
SU6	18.0	13.9	4.5
tt	2.1	< 2.3	
W + jets	0.7	0.0	
Z + jets	0.0	0.0	

2leptons + \geq 4 jets : SU1, SU3, SU4 \leq 1fb-1 for \geq 5 σ

SUSY GMSB

High-pT photons in GMSB models

 $\chi^0_1 \rightarrow {}^\circ G + \gamma$ gives 2 high pT photons + MET long lived ${}^\circ \chi^0_1$ give non pointing photons

At least 4 high pT jets, MET, and photons

name	NLO (LO) σ [pb]	Λ [TeV]	M_m [TeV]	C_{G}	<i>cτ</i> [mm]	$M_{\tilde{\chi}_1^0}$ [GeV]
GMSB1	7.8 (5.1)	90	500	1.0	1.1	118.8
GMSB2	7.8 (5.1)	90	500	30.0	$9.5 \cdot 10^2$	118.8
GMSB3	7.8 (5.1)	90	500	55.0	$3.2 \cdot 10^{3}$	118.8

$$N_5 = 1$$
 (# mess gen), tan β = 5, sgn(μ) = +

SUSY R-hadrons

Long Lived Heavy particles in Split-SUSY and gravitino LSP

Penetrating hard charged track with high E deposition and long time of flight

May undergo charge exchange in calorimeter

Multiple nuclear interactions before reaching muon system

 \rightarrow appearance of high pT tracks in muon system with no matching track in ID

 \rightarrow electric charge flipping between ID and muon system

 $m_{\text{R-hadrons}} \sim < 200 \text{ GeV}$ already excluded

name	NLO (LO) cross-section [pb]	sparticle	Mass [GeV]
R-Hadron1	567 (335)	ĝ	300
R-Hadron2	12.2 (6.9)	ĝ	600
R-Hadron3	0.43 (0.23)	ĝ	1000
R-Hadron4	0.063 (0.033)	ĝ	1300
R-Hadron5	0.011 (0.006)	ĝ	1600
R-Hadron6	0.0014 (0.00075)	ĝ	2000
R-Hadron7	11.4 (7.8)	ĩ	300
R-Hadron8	0.27 (0.18)	ĩ	600
R-Hadron9	0.010 (0.0064)	ĩ	900

R1 to R6 are R_{r_g} -hadron while R7 to R0 are R_{r_t}

Sample	Accepted events	Rate (Events / fb ⁻¹)
300 GeV gluino	235	6.44×10^{3}
600 GeV gluino	551	2.70×10^{3}
1000 GeV gluino	774	10.7
1300 GeV gluino	732	1.20
1600 GeV gluino	685	0.147
2000 GeV gluino	546	$1.26 imes 10^{-2}$
300 GeV stop	78	70.0
600 GeV stop	134	3.9
1000 GeV stop	170	0.1
J5	1	0.893
J8	1	2.26×10^{-3}
$Z \rightarrow \mu \mu$	1	0.776

1fb-1 discovery m(R_{~g}) < 1 TeV m(R_{~t1}) ~< 550 GeV