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Large hierarchies in Nature

☞ Observed hierarchy: MP/mW ∼ 1017

☞ Compelling answer: scale of supersymmetry breakdown
set by dimensional transmutation Witten (1981)

Λ ∼ MP exp
(

−b/g2
)

➥ hierarchically small gravitino mass (‘gaugino condensation’)
Nilles (1982)

mW ∼ m3/2 ∼
Λ3

MP
2
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Problem with string theory realization

☞ However: embedding into string theory y run-away
problem

Dine, Seiberg (1985)

Re S~1�g2

V
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Moduli fixing and non-perturbative terms

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

• Race-track
Krasnikov (1987). . .

use several gaugino

condensates
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Moduli fixing and non-perturbative terms

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

• Race-track

• Kähler stabilization
Casas (1996)

Binétruy, Gaillard & Wu (1996)

. . .

non-perturbative corrections

to the Kähler potential
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Moduli fixing and non-perturbative terms

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

• Race-track

• Kähler stabilization

• Flux
compactification

e.g. Kachru, Kallosh, Linde & Trivedi (2003)

e.g. KKLT proposal
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Moduli fixing and non-perturbative terms

There exist various possibilities to fix the gauge coupling/stabilize
the dilaton:

• Race-track

• Kähler stabilization

• Flux
compactification

• etc. . . .
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Constant + exponential scheme

☞ KKLT type proposal: Weff = c + A e−a S

☞ Gravitino mass

m3/2 ∼ |c|
m3/2

!
≃ TeV

−−−−−−−→ |c| ∼ 10−15

☞ Philosophy of flux compactifications: many vacua, in some
of them c might be small by accident

☞ Our proposal: hierarchically small expectation of the
perturbative superpotential due to approximate U(1)R
symmetry

c → 〈Wpert〉 ∼ 〈φ〉
N with N = O(10)

typical VEV < 1 order of���XXXU(1)R
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Hierarchically small 〈W 〉

Two ingredients:

1 in the presence of an exact U(1)R symmetry

∂W

∂φi

= 0 y 〈W 〉 = 0

2 for an approximate R symmetries

〈W 〉 ∼ 〈φ〉N

typical
field vev

order
of explicit

U(1)R breaking
terms
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〈W 〉 = 0 because of U(1)R (I)

aim: show that

∂W

∂φi

= 0 y 〈W 〉 = 0

Consider a superpotential

W =
∑

cn1···nM
φn1

1 · · ·φ
nM

M

with an exact R-symmetry

W → e2iα W , φj → φ′

j = ei r j α φj

where each monomial in W has total R-charge 2
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Consider a field configuration 〈φi〉 with

Fi =
∂W

∂φi

= 0 at φj = 〈φj〉

Under an infinitesimal U(1)R transformation, the superpotential
transforms nontrivially

W (φj) → W (φ′
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i
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〈W 〉 = 0 because of U(1)R (II)

Consider a field configuration 〈φi〉 with

Fi =
∂W

∂φi

= 0 at φj = 〈φj〉

Under an infinitesimal U(1)R transformation, the superpotential
transforms nontrivially

W (φj) → W (φ′

j ) = W (φj) +
∑

i �
��S
SS

∂W

∂φi

∆φi
!
= e2iα W

This is only possible if 〈W 〉 = 0 !

bottom-line:

∂W

∂φi

= 0 y 〈W 〉 = 0
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Comments

1 Statement 〈W 〉 = 0 holds regardless of whether U(1)R is
unbroken (where it is trivial) or broken

2 Relation to Nelson-Seiberg theorem Nelson & Seiberg (1994)






setting without
supersymmetric
ground state







requires
−−−−−→

does not imply

←−−−−−−−−−−/////////

U(1)R symmetry

3 in local SUSY :
∂W

∂φi

= 0 and 〈W 〉 = 0 imply DiW = 0

(That is, a U(1)R symmetry implies Minkowski solutions.)

4 in ‘no-scale’ type settings

solutions of
global SUSY
F term eq.’s

=

stationary points
of supergravity
scalar potential

Weinberg (1989)
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Approximate R symmetries

☞ Consider now the case of an approximate R symmetry, i.e.
explicit R symmetry breaking terms appear at order N in
the fields φi

☞ This allows us to avoid certain problems:

• for a continuous U(1)R symmetry we would have
• a supersymmetric ground state with 〈W 〉 = 0 and U(1)R

spontaneously broken

• a problematic R-Goldstone boson

• however, for an approximate U(1)R -symmetry one has
• Goldstone-Boson massive and harmless

• a non-trivial VEV of W at order N in φ VEVs

〈W 〉 ∼ 〈φ〉N

☞ Such approximate U(1)R symmetries can be a
consequence of discrete ZR

N symmetries
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Origin of high-power discrete R-symmetries

☞ Discrete R symmetries arise as remnants of Lorentz
symmetries of compact space

→

☞ Orbifolds break SO(6) ≃ SU(4) Lorentz symmetry of
compact space to discrete subgroups

☞ For example, in Z6-II orbifolds one has

GR = [Z6 × Z3 × Z2]R
see e.g. Araki, Kobayashi, Kubo, Ramos-Sánchez, M.R., Vaudrevange (2008)
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Realization in heterotic mini-landscape

☞ Heterotic orbifolds appear ‘tailor-made’ for applying these
ideas

☞ To be specific, focus on the heterotic mini-landscape
= potentially realistic string derived models with nice
features:

• MSSM spectrum with one Higgs pair
• potentially realistic flavor structure, see-saw, R parity, . . .
• many standard model singlets si

cf. talks by R. Kappl, H.P. Nilles, S. Ramos-Sánchez

☞ In a large subset of the mini-landscapemodels, there is a
correlation between the MSSM µ term and 〈W 〉

µ ∼ 〈W 〉
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Some details

☞ We studied one example (heterotic benchmark model IA)
with 23 SM singlets si getting a VEV

☞ R symmetry breaking terms appear at order 9

☞ We solve Da = 0 as well as global Fi = 0 at order 9

☞ We specifically search for solutions |si | < 1, and find that
they exist

☞ All fields acquire positive m2

(no flat directions; not destroyed by supergravity corrections)

☞ Superpotential VEV 〈W 〉 ∼ 〈si〉
9 ≪ 1 (as expected)

bottom-line:

straightforward embedding in heterotic orbifolds
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General picture

☞ The more fields are switched on, the lower N we obtain
examples:

• benchmark model 1A with 23 fields y N = 9
• model with 7 fields y N = 26

☞ Suppressed si in accord with scale set by Fayet-Iliopoulos
term

☞ One approximate Goldstone mode η

mη ∼ 〈W 〉/〈s〉
2 . . . somewhat heavier than the gravitino

☞ In most examples: all other si fields acquire masses≫mη

i.e. isolated points in si space with Fi = Da = 0

☞ Minima survive supergravity corrections
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Application: moduli stabilization

☞ Most direct application: fix the dilaton

☞ Effective superpotential

Weff = 〈W 〉+ A e−a S +
1

2
mη η2

☞ Dilaton adjusts to 〈W 〉

m3/2 ≃ 〈Weff〉 ∼ 〈W 〉

bottom-line:

• dilaton fixed

• true origin of hierarchically small m3/2(∼ mW ):
approximate R symmetry
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Summary & outlook

☞ Approximate R symmetries can explain a suppressed
expectation value of the perturbative superpotential

〈W 〉 ∼ 〈φ〉
N

with 〈φ〉 < 1

☞ Such a suppressed superpotential VEV can play an
important role in moduli fixing

☞ In this picture, the hierarchy between mW ∼ m3/2 and MP is
consequence of an approximate symmetry

☞ Still to do:

• ‘uplifting’
• fixing of T and complex structure moduli

(duality invariance; field-theoretic radion stabilization, . . .)
• unequivocal signatures of this scenario
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Embedding into the MiniLandscape

☞ We analyzed a couple of models

☞ We find 〈Wpert〉 ∼ 〈s〉
N with N = 9 . . . 26

☞ Assuming that the FI term sets the scale of the ∼ 〈s〉 this
leads to

〈W 〉 ∼ 〈Wpert〉 ∼ 10−O(10)

☞ note: the solutions of F-term equations are points in field
space (no moduli in si -space)

➥ application: this

• generates a suppressed µ term

µ ∼ 〈W 〉 ∼ m3/2

• fixes the gauge coupling / dilaton

☞ question: is the dilaton fixed at realistic values?
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Gauge coupling vs. scale of hidden sector strong dynamics

Hidden sector strong dynamics

☞ Relation between m3/2 ≪ MP and the scale of hidden
sector strong dynamics

G = GSM ×G4

m3/2 ≃
Λ3

M2
P

gravitino mass scale of hidden sector strong dynamics
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Gauge coupling vs. scale of hidden sector strong dynamics

Hidden sector strong dynamics

☞ Relation between m3/2 ≪ MP and the scale of hidden
sector strong dynamics

☞ We estimate the scale
of hidden sector strong
dynamics (i.e. calculate the β-

function)
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Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

☞ Distribution of the (naive) scale of hidden sector strong
dynamics
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Properties of the hidden sector

☞ Distribution of the (naive) scale of hidden sector strong
dynamics
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Properties of the hidden sector

☞ Distribution of the (naive) scale of hidden sector strong
dynamics
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☞ Note: hidden sector usually stronger coupled
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Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

☞ Distribution of the (naive) scale of hidden sector strong
dynamics
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☞ Note: hidden sector usually stronger coupled

bottom-line:

statistical preference for intermediate scale of
condensation / a realistic gauge coupling
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